Space Science Reviews

, Volume 212, Issue 1–2, pp 813–834 | Cite as

Disk Evolution and the Fate of Water

  • Lee HartmannEmail author
  • Fred Ciesla
  • Oliver Gressel
  • Richard Alexander
Part of the following topical collections:
  1. The Delivery of Water to Protoplanets, Planets and Satellites


We review the general theoretical concepts and observational constraints on the distribution and evolution of water vapor and ice in protoplanetary disks, with a focus on the Solar System. Water is expected to freeze out at distances greater than 1–3 AU from solar-type central stars; more precise estimates are difficult to obtain due to uncertainties in the complex processes involved in disk evolution, including dust growth, settling, and radial drift, and the level of turbulence and viscous dissipation within disks. Interferometric observations are now providing constraints on the positions of CO snow lines, but extrapolation to the unresolved regions where water ice sublimates will require much better theoretical understanding of mass and angular momentum transport in disks as well as more refined comparison of observations with sophisticated disk models.


Accretion and accretion disks Protoplanetary disks Atomic, molecular, chemical, and grain processes 



The research of L. Hartmann was supported by the University of Michigan and in part by NASA grant NNX16AB46G. F. Ciesla acknowledges support from NASA’s Exobiology and Outer Planets Research Programs (NNX12AD59G and NNX14AQ17G). O. Gressel has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 638596). R. Alexander has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 681601), and also acknowledges support from the Leverhulme Trust through a Philip Leverhulme Prize.


  1. Y. Abe, E. Ohtani, T. Okuchi, K. Righter, M. Drake, in Water in the Early Earth, ed. by R.M. Canup, K. Righter et al.(2000), pp. 413–433 Google Scholar
  2. R.D. Alexander, C.J. Clarke, J.E. Pringle, Photoevaporation of protoplanetary discs—I. Hydrodynamic models. Mon. Not. R. Astron. Soc. 369, 216–228 (2006) ADSCrossRefGoogle Scholar
  3. R. Alexander, I. Pascucci, S. Andrews, P. Armitage, L. Cieza, The dispersal of protoplanetary disks, in Protostars and Planets VI (2014), pp. 475–496 Google Scholar
  4. S.M. Andrews, J.P. Williams, Circumstellar dust disks in Taurus-Auriga: the submillimeter perspective. Astrophys. J. 631, 1134–1160 (2005) ADSCrossRefGoogle Scholar
  5. S.M. Andrews, D.J. Wilner, A.M. Hughes, C. Qi, K.A. Rosenfeld, K.I. Öberg, T. Birnstiel, C. Espaillat, L.A. Cieza, J.P. Williams, S.-Y. Lin, P.T.P. Ho, The TW Hya disk at 870 μm: comparison of CO and dust radial structures. Astrophys. J. 744, 162 (2012) ADSCrossRefGoogle Scholar
  6. X.-N. Bai, Magnetorotational-instability-driven accretion in protoplanetary disks. Astrophys. J. 739, 50 (2011) ADSCrossRefGoogle Scholar
  7. X.-N. Bai, Wind-driven accretion in protoplanetary disks. II. Radial dependence and global picture. Astrophys. J. 772, 96 (2013) ADSCrossRefGoogle Scholar
  8. X.-N. Bai, Hall-effect-controlled gas dynamics in protoplanetary disks. I. Wind solutions at the inner disk. Astrophys. J. 791, 137 (2014) ADSCrossRefGoogle Scholar
  9. X.-N. Bai, Hall effect controlled gas dynamics in protoplanetary disks. II. Full 3D simulations toward the outer disk. Astrophys. J. 798, 84 (2015) ADSCrossRefGoogle Scholar
  10. X.-N. Bai, J.M. Stone, Wind-driven accretion in protoplanetary disks. I. Suppression of the magnetorotational instability and launching of the magnetocentrifugal wind. Astrophys. J. 769, 76 (2013) ADSCrossRefGoogle Scholar
  11. X.-N. Bai, J. Ye, J. Goodman, F. Yuan, Magneto-thermal disk winds from protoplanetary disks. Astrophys. J. 818, 152 (2016) ADSCrossRefGoogle Scholar
  12. S.A. Balbus, J.F. Hawley, Instability, turbulence, and enhanced transport in accretion disks. Rev. Mod. Phys. 70, 1–53 (1998) ADSCrossRefGoogle Scholar
  13. A. Banzatti, P. Pinilla, L. Ricci, K.M. Pontoppidan, T. Birnstiel, F. Ciesla, Direct imaging of the water snow line at the time of planet formation using two ALMA continuum bands. Astrophys. J. Lett. 815, 15 (2015) ADSCrossRefGoogle Scholar
  14. E.A. Bergin, L.I. Cleeves, U. Gorti, K. Zhang, G.A. Blake, J.D. Green, S.M. Andrews, N.J. Evans II, T. Henning, K. Öberg, K. Pontoppidan, C. Qi, C. Salyk, E.F. van Dishoeck, An old disk still capable of forming a planetary system. Nature 493, 644–646 (2013) ADSCrossRefGoogle Scholar
  15. E. Bergin, N. Calvet, P. D’Alessio, G.J. Herczeg, The effects of UV continuum and \(\mbox{Ly}{\alpha}\) radiation on the chemical equilibrium of T Tauri disks. Astrophys. J. Lett. 591, 159–162 (2003) ADSCrossRefGoogle Scholar
  16. W. Béthune, G. Lesur, J. Ferreira, Self-organization in protoplanetary discs. Global, non-stratified Hall-MHD simulations. Astron. Astrophys. 589, 87 (2016) CrossRefGoogle Scholar
  17. T. Birnstiel, C.W. Ormel, C.P. Dullemond, Dust size distributions in coagulation/fragmentation equilibrium: numerical solutions and analytical fits. Astron. Astrophys. 525, 11 (2011) ADSCrossRefGoogle Scholar
  18. B. Bitsch, A. Johansen, M. Lambrechts, A. Morbidelli, The structure of protoplanetary discs around evolving young stars. Astron. Astrophys. 575, 28 (2015) ADSCrossRefGoogle Scholar
  19. R.D. Blandford, D.G. Payne, Hydromagnetic flows from accretion discs and the production of radio jets. Mon. Not. R. Astron. Soc. 199, 883–903 (1982) ADSzbMATHCrossRefGoogle Scholar
  20. S.M. Blevins, K.M. Pontoppidan, A. Banzatti, K. Zhang, J.R. Najita, J.S. Carr, C. Salyk, G.A. Blake, Measurements of water surface snow lines in classical protoplanetary disks. ArXiv e-prints (2015) Google Scholar
  21. S.D. Brittain, J.R. Najita, J.S. Carr, Near infrared high resolution spectroscopy and spectro-astrometry of gas in disks around Herbig Ae/Be stars. Astrophys. Space Sci. 357, 54 (2015) ADSCrossRefGoogle Scholar
  22. N. Calvet, P. D’Alessio, L. Hartmann, D. Wilner, A. Walsh, M. Sitko, Evidence for a developing gap in a 10 Myr old protoplanetary disk. Astrophys. J. 568, 1008–1016 (2002) ADSCrossRefGoogle Scholar
  23. J.S. Carr, J.R. Najita, Organic molecules and water in the inner disks of T Tauri stars. Astrophys. J. 733, 102 (2011) ADSCrossRefGoogle Scholar
  24. E.I. Chiang, P. Goldreich, Spectral energy distributions of T Tauri stars with passive circumstellar disks. Astrophys. J. 490, 368–376 (1997) ADSCrossRefGoogle Scholar
  25. F.J. Ciesla, J.N. Cuzzi, The evolution of the water distribution in a viscous protoplanetary disk. Icarus 181, 178–204 (2006) ADSCrossRefGoogle Scholar
  26. L.A. Cieza, S. Casassus, J. Tobin, S.P. Bos, J.P. Williams, S. Perez, Z. Zhu, C. Caceres, H. Canovas, M.M. Dunham, A. Hales, J.L. Prieto, D.A. Principe, M.R. Schreiber, D. Ruiz-Rodriguez, A. Zurlo, Imaging the water snow-line during a protostellar outburst. Nature 535, 258–261 (2016). doi: 10.1038/nature18612 ADSCrossRefGoogle Scholar
  27. L.I. Cleeves, F.C. Adams, E.A. Bergin, Exclusion of cosmic rays in protoplanetary disks: stellar and magnetic effects. Astrophys. J. 772, 5 (2013) ADSCrossRefGoogle Scholar
  28. L.I. Cleeves, E.A. Bergin, C.M.O. Alexander, F. Du, D. Graninger, K.I. Öberg, T.J. Harries, The ancient heritage of water ice in the solar system. Science 345, 1590–1593 (2014) ADSCrossRefGoogle Scholar
  29. J.N. Connelly, M. Bizzarro, A.N. Krot, Å. Nordlund, D. Wielandt, M.A. Ivanova, The absolute chronology and thermal processing of solids in the solar protoplanetary disk. Science 338, 651 (2012) ADSCrossRefGoogle Scholar
  30. J.N. Cuzzi, K.J. Zahnle, Material enhancement in protoplanetary nebulae by particle drift through evaporation fronts. Astrophys. J. 614, 490–496 (2004) ADSCrossRefGoogle Scholar
  31. J.N. Cuzzi, A.R. Dobrovolskis, J.M. Champney, Particle-gas dynamics in the midplane of a protoplanetary nebula. Icarus 106, 102 (1993). doi: 10.1006/icar.1993.1161 ADSCrossRefGoogle Scholar
  32. K.E. Cyr, W.D. Sears, J.I. Lunine, Distribution and evolution of water ice in the solar nebula: implications for solar system body formation. Icarus 135, 537–548 (1998) ADSCrossRefGoogle Scholar
  33. K.E. Cyr, C.M. Sharp, J.I. Lunine, Effects of the redistribution of water in the solar nebula on nebular chemistry. J. Geophys. Res. 104, 19003–19014 (1999) ADSCrossRefGoogle Scholar
  34. P. D’Alessio, N. Calvet, L. Hartmann, Accretion disks around young objects. III. Grain growth. Astrophys. J. 553, 321–334 (2001) ADSCrossRefGoogle Scholar
  35. P. D’Alessio, J. Cantö, N. Calvet, S. Lizano, Accretion disks around young objects. I. The detailed vertical structure. Astrophys. J. 500, 411–427 (1998) ADSCrossRefGoogle Scholar
  36. S.J. Desch, Mass distribution and planet formation in the solar nebula. Astrophys. J. 671, 878–893 (2007) ADSCrossRefGoogle Scholar
  37. C.P. Dullemond, C. Dominik, Dust coagulation in protoplanetary disks: a rapid depletion of small grains. Astron. Astrophys. 434, 971–986 (2005) ADSzbMATHCrossRefGoogle Scholar
  38. C. Espaillat, N. Calvet, P. D’Alessio, J. Hernández, C. Qi, L. Hartmann, E. Furlan, D.M. Watson, On the diversity of the Taurus transitional disks: UX Tauri A and LkCa 15. Astrophys. J. Lett. 670, 135–138 (2007) ADSCrossRefGoogle Scholar
  39. C. Espaillat, J. Muzerolle, J. Najita, S. Andrews, Z. Zhu, N. Calvet, S. Kraus, J. Hashimoto, A. Kraus, P. D’Alessio, An observational perspective of transitional disks, in Protostars and Planets VI (2014), pp. 497–520 Google Scholar
  40. P.R. Estrada, J.N. Cuzzi, D.A. Morgan, Global modeling of nebulae with particle growth, drift, and evaporation fronts. I. Methodology and typical results. Astrophys. J. 818, 200 (2016) ADSCrossRefGoogle Scholar
  41. D. Fedele, M.E. van den Ancker, T. Henning, R. Jayawardhana, J.M. Oliveira, Timescale of mass accretion in pre-main-sequence stars. Astron. Astrophys. 510, 72 (2010) CrossRefGoogle Scholar
  42. A.V. Fedkin, L. Grossman, in The Fayalite Content of Chondritic Olivine: Obstacle to Understanding the Condensation of Rocky Material, ed. by D.S. Lauretta, H.Y. McSween (2006), pp. 279–294 Google Scholar
  43. K.M. Flaherty, A.M. Hughes, K.A. Rosenfeld, S.M. Andrews, E. Chiang, J.B. Simon, S. Kerzner, D.J. Wilner, Weak turbulence in the HD 163296 protoplanetary disk revealed by ALMA CO observations. Astrophys. J. 813, 99 (2015) ADSCrossRefGoogle Scholar
  44. S. Fromang, J. Papaloizou, Dust settling in local simulations of turbulent protoplanetary disks. Astron. Astrophys. 452, 751–762 (2006) ADSCrossRefGoogle Scholar
  45. S. Fromang, J.M. Stone, Turbulent resistivity driven by the magnetorotational instability. Astron. Astrophys. 507, 19–28 (2009) ADSzbMATHCrossRefGoogle Scholar
  46. J. Fung, E. Chiang, Save the planet, feed the star: how super-earths survive migration and drive disk accretion. Astrophys. J. 839, 100 (2017). doi: 10.3847/1538-4357/aa6934 ADSCrossRefGoogle Scholar
  47. E. Furlan, L. Hartmann, N. Calvet, P. D’Alessio, R. Franco-Hernández, W.J. Forrest, D.M. Watson, K.I. Uchida, B. Sargent, J.D. Green, L.D. Keller, T.L. Herter, A survey and analysis of spitzer infrared spectrograph spectra of T Tauri stars in Taurus. Astrophys. J. Suppl. Ser. 165, 568–605 (2006) ADSCrossRefGoogle Scholar
  48. C.F. Gammie, Layered accretion in T Tauri disks. Astrophys. J. 457, 355 (1996) ADSCrossRefGoogle Scholar
  49. P. Garaud, D.N.C. Lin, The effect of internal dissipation and surface irradiation on the structure of disks and the location of the snow line around Sun-like stars. Astrophys. J. 654, 606–624 (2007) ADSCrossRefGoogle Scholar
  50. A.E. Glassgold, R. Meijerink, J.R. Najita, Formation of water in the warm atmospheres of protoplanetary disks. Astrophys. J. 701, 142–153 (2009) ADSCrossRefGoogle Scholar
  51. U. Gorti, R. Liseau, Z. Sándor, C. Clarke, Disk dispersal: theoretical understanding and observational constraints. Space Sci. Rev. 205(1–4), 125–152 (2016). doi: 10.1007/s11214-015-0228-x ADSCrossRefGoogle Scholar
  52. O. Gressel, N.J. Turner, R.P. Nelson, C.P. McNally, Global simulations of protoplanetary disks with ohmic resistivity and ambipolar diffusion. Astrophys. J. 801, 84 (2015) ADSCrossRefGoogle Scholar
  53. J. Guilet, G.I. Ogilvie, Global evolution of the magnetic field in a thin disc and its consequences for protoplanetary systems. Mon. Not. R. Astron. Soc. 441, 852–868 (2014) ADSCrossRefGoogle Scholar
  54. T. Guillot, R. Hueso, The composition of Jupiter: sign of a (relatively) late formation in a chemically evolved protosolar disc. Mon. Not. R. Astron. Soc. 367, 47–51 (2006) ADSCrossRefGoogle Scholar
  55. L. Hartmann, S.J. Kenyon, The FU Orionis phenomenon. Annu. Rev. Astron. Astrophys. 34, 207–240 (1996) ADSCrossRefGoogle Scholar
  56. L. Hartmann, G. Herczeg, N. Calvet, Accretion onto pre-main-sequence stars. Annu. Rev. Astron. Astrophys. 54, 135–180 (2016). doi: 10.1146/annurev-astro-081915-023347 ADSCrossRefGoogle Scholar
  57. L. Hartmann, K. Hinkle, N. Calvet, High-resolution near-infrared spectroscopy of FU Orionis objects. Astrophys. J. 609, 906–916 (2004) ADSCrossRefGoogle Scholar
  58. C. Hayashi, Structure of the solar nebula, growth and decay of magnetic fields and effects of magnetic and turbulent viscosities on the nebula. Prog. Theor. Phys. Suppl. 70, 35–53 (1981) ADSCrossRefGoogle Scholar
  59. J. Hernández, L. Hartmann, N. Calvet, R.D. Jeffries, R. Gutermuth, J. Muzerolle, J. Stauffer, A Spitzer view of protoplanetary disks in the \(\gamma\) Velorum cluster. Astrophys. J. 686, 1195–1208 (2008) ADSCrossRefGoogle Scholar
  60. I. Hubeny, Vertical structure of accretion disks—a simplified analytical model. Astrophys. J. 351, 632–641 (1990) ADSCrossRefGoogle Scholar
  61. M. Hutson, A. Ruzicka, A multi-step model for the origin of E3 (enstatite) chondrites. Meteorit. Planet. Sci. 35, 601–608 (2000) ADSCrossRefGoogle Scholar
  62. L. Ingleby, N. Calvet, E. Bergin, A. Yerasi, C. Espaillat, G. Herczeg, E. Roueff, H. Abgrall, J. Hernández, C. Briceño, I. Pascucci, J. Miller, J. Fogel, L. Hartmann, M. Meyer, J. Carpenter, N. Crockett, M. McClure, Far-ultraviolet \(\mbox{H}_{2}\) emission from circumstellar disks. Astrophys. J. Lett. 703, 137–141 (2009) ADSCrossRefGoogle Scholar
  63. L. Ingleby, N. Calvet, J. Hernández, L. Hartmann, C. Briceno, J. Miller, C. Espaillat, M. McClure, The evolution of accretion in young stellar objects: strong accretors at 3–10 Myr. Astrophys. J. 790, 47 (2014) ADSCrossRefGoogle Scholar
  64. A. Kalyaan, S.J. Desch, N. Monga, External photoevaporation of the solar nebula. II. Effects on disk structure and evolution with non-uniform turbulent viscosity due to the magnetorotational instability. Astrophys. J. 815, 112 (2015) ADSCrossRefGoogle Scholar
  65. G.M. Kennedy, S.J. Kenyon, Planet formation around stars of various masses: the snow line and the frequency of giant planets. Astrophys. J. 673, 502–512 (2008) ADSCrossRefGoogle Scholar
  66. S.J. Kenyon, L. Hartmann, Spectral energy distributions of T Tauri stars—disk flaring and limits on accretion. Astrophys. J. 323, 714–733 (1987) ADSCrossRefGoogle Scholar
  67. H. Klahr, A. Hubbard, Convective overstability in radially stratified accretion disks under thermal relaxation. Astrophys. J. 788, 21 (2014) ADSCrossRefGoogle Scholar
  68. A. Königl, Self-similar models of magnetized accretion disks. Astrophys. J. 342, 208–223 (1989) ADSCrossRefGoogle Scholar
  69. S. Krijt, F.J. Ciesla, E.A. Bergin, Tracing water vapor and ice during dust growth. Astrophys. J. 833, 285 (2016) ADSCrossRefGoogle Scholar
  70. T.S. Kruijer, M. Touboul, M. Fischer-Gödde, K.R. Bermingham, R.J. Walker, T. Kleine, Protracted core formation and rapid accretion of protoplanets. Science 344, 1150–1154 (2014) ADSCrossRefGoogle Scholar
  71. M.W. Kunz, On the linear stability of weakly ionized, magnetized planar shear flows. Mon. Not. R. Astron. Soc. 385, 1494–1510 (2008) ADSCrossRefGoogle Scholar
  72. M.W. Kunz, G. Lesur, Magnetic self-organization in Hall-dominated magnetorotational turbulence. Mon. Not. R. Astron. Soc. 434, 2295–2312 (2013) ADSCrossRefGoogle Scholar
  73. G. Lesur, M.W. Kunz, S. Fromang, Thanatology in protoplanetary discs. The combined influence of Ohmic, Hall, and ambipolar diffusion on dead zones. Astron. Astrophys. 566, 56 (2014) ADSCrossRefGoogle Scholar
  74. G.R.J. Lesur, H. Latter, On the survival of zombie vortices in protoplanetary discs. Mon. Not. R. Astron. Soc. 462, 4549–4554 (2016). doi: 10.1093/mnras/stw2172 ADSCrossRefGoogle Scholar
  75. K. Lodders, Solar system abundances and condensation temperatures of the elements. Astrophys. J. 591, 1220–1247 (2003) ADSCrossRefGoogle Scholar
  76. W. Lyra, Convective overstability in accretion disks: three-dimensional linear analysis and nonlinear saturation. Astrophys. J. 789, 77 (2014) ADSCrossRefGoogle Scholar
  77. M.G. Malygin, H. Klahr, D. Semenov, T. Henning, C.P. Dullemond, Efficiency of thermal relaxation by radiative processes in protoplanetary discs: constraints on hydrodynamic turbulence. ArXiv e-prints (2017) Google Scholar
  78. P.S. Marcus, S. Pei, C.-H. Jiang, J.A. Barranco, P. Hassanzadeh, D. Lecoanet, Zombie vortex instability. I. A purely hydrodynamic instability to resurrect the dead zones of protoplanetary disks. Astrophys. J. 808, 87 (2015). doi: 10.1088/0004-637X/808/1/87 ADSCrossRefGoogle Scholar
  79. M.K. McClure, C. Espaillat, N. Calvet, E. Bergin, P. D’Alessio, D.M. Watson, P. Manoj, B. Sargent, L.I. Cleeves, Detections of trans-Neptunian ice in protoplanetary disks. Astrophys. J. 799, 162 (2015) ADSCrossRefGoogle Scholar
  80. J.R. Najita, S.E. Strom, J. Muzerolle, Demographics of transition objects. Mon. Not. R. Astron. Soc. 378, 369–378 (2007) ADSCrossRefGoogle Scholar
  81. J.R. Najita, G.W. Doppmann, J.S. Carr, J.R. Graham, J.A. Eisner, High-resolution K-band spectroscopy of MWC 480 and V1331 Cyg. Astrophys. J. 691, 738–748 (2009) ADSCrossRefGoogle Scholar
  82. J. Najita, J.S. Carr, A.E. Glassgold, F.H. Shu, A.T. Tokunaga, Kinematic diagnostics of disks around young stars: CO overtone emission from WL 16 and 1548C27. Astrophys. J. 462, 919 (1996) ADSCrossRefGoogle Scholar
  83. R.P. Nelson, O. Gressel, O.M. Umurhan, Linear and non-linear evolution of the vertical shear instability in accretion discs. Mon. Not. R. Astron. Soc. 435, 2610–2632 (2013) ADSCrossRefGoogle Scholar
  84. W. O’Keeffe, T.P. Downes, Multifluid simulations of the magnetorotational instability in protostellar discs. Mon. Not. R. Astron. Soc. 441, 571–581 (2014) ADSCrossRefGoogle Scholar
  85. S. Okuzumi, T. Takeuchi, T. Muto, Radial transport of large-scale magnetic fields in accretion disks. I. Steady solutions and an upper limit on the vertical field strength. Astrophys. J. 785, 127 (2014) ADSCrossRefGoogle Scholar
  86. J.E. Owen, B. Ercolano, C.J. Clarke, Protoplanetary disc evolution and dispersal: the implications of X-ray photoevaporation. Mon. Not. R. Astron. Soc. 412, 13–25 (2011) ADSCrossRefGoogle Scholar
  87. I. Pascucci, M. Sterzik, Evidence for disk photoevaporation driven by the Central Star. Astrophys. J. 702, 724–732 (2009) ADSCrossRefGoogle Scholar
  88. L.M. Pérez, J.M. Carpenter, C.J. Chandler, A. Isella, S.M. Andrews, L. Ricci, N. Calvet, S.A. Corder, A.T. Deller, C.P. Dullemond, J.S. Greaves, R.J. Harris, T. Henning, W. Kwon, J. Lazio, H. Linz, L.G. Mundy, A.I. Sargent, S. Storm, L. Testi, D.J. Wilner, Constraints on the radial variation of grain growth in the AS 209 circumstellar disk. Astrophys. J. Lett. 760, 17 (2012) ADSzbMATHCrossRefGoogle Scholar
  89. L.M. Pérez, C.J. Chandler, A. Isella, J.M. Carpenter, S.M. Andrews, N. Calvet, S.A. Corder, A.T. Deller, C.P. Dullemond, J.S. Greaves, R.J. Harris, T. Henning, W. Kwon, J. Lazio, H. Linz, L.G. Mundy, L. Ricci, A.I. Sargent, S. Storm, M. Tazzari, L. Testi, D.J. Wilner, Grain growth in the circumstellar disks of the young stars CY Tau and DoAr 25. Astrophys. J. 813, 41 (2015) ADSzbMATHCrossRefGoogle Scholar
  90. D. Perez-Becker, E. Chiang, Surface layer accretion in conventional and transitional disks driven by far-ultraviolet ionization. Astrophys. J. 735, 8 (2011) ADSCrossRefGoogle Scholar
  91. A.-M.A. Piso, K.I. Öberg, T. Birnstiel, R.A. Murray-Clay, C/O and snowline locations in protoplanetary disks: the effect of radial drift and viscous gas accretion. Astrophys. J. 815, 109 (2015) ADSCrossRefGoogle Scholar
  92. C. Qi, K.I. Öberg, D.J. Wilner, P. D’Alessio, E. Bergin, S.M. Andrews, G.A. Blake, M.R. Hogerheijde, E.F. van Dishoeck, Imaging of the CO snow line in a solar nebula analog. Science 341, 630–632 (2013) ADSCrossRefGoogle Scholar
  93. G.G. Sacco, E. Flaccomio, I. Pascucci, F. Lahuis, B. Ercolano, J.H. Kastner, G. Micela, B. Stelzer, M. Sterzik, High-resolution Spectroscopy of Ne II emission from young stellar objects. Astrophys. J. 747, 142 (2012) ADSCrossRefGoogle Scholar
  94. R. Salmeron, M. Wardle, Magnetorotational instability in stratified, weakly ionized accretion discs. Mon. Not. R. Astron. Soc. 345, 992–1008 (2003) ADSCrossRefGoogle Scholar
  95. T. Sano, J.M. Stone, The effect of the Hall term on the nonlinear evolution of the magnetorotational instability. II. Saturation level and critical magnetic Reynolds number. Astrophys. J. 577, 534–553 (2002) ADSCrossRefGoogle Scholar
  96. J.B. Simon, X.-N. Bai, J.M. Stone, P.J. Armitage, K. Beckwith, Turbulence in the outer regions of protoplanetary disks. I. Weak accretion with no vertical magnetic flux. Astrophys. J. 764, 66 (2013a) ADSCrossRefGoogle Scholar
  97. J.B. Simon, X.-N. Bai, P.J. Armitage, J.M. Stone, K. Beckwith, Turbulence in the outer regions of protoplanetary disks. II. Strong accretion driven by a vertical magnetic field. Astrophys. J. 775, 73 (2013b) ADSCrossRefGoogle Scholar
  98. J.B. Simon, G. Lesur, M.W. Kunz, P.J. Armitage, Magnetically driven accretion in protoplanetary discs. Mon. Not. R. Astron. Soc. 454, 1117–1131 (2015) ADSCrossRefGoogle Scholar
  99. D.R. Soderblom, L.A. Hillenbrand, R.D. Jeffries, E.E. Mamajek, T. Naylor, Ages of young stars, in Protostars and Planets VI (2014), pp. 219–241 Google Scholar
  100. D.J. Stevenson, J.I. Lunine, Rapid formation of Jupiter by diffuse redistribution of water vapor in the solar nebula. Icarus 75, 146–155 (1988) ADSCrossRefGoogle Scholar
  101. M.H.R. Stoll, W. Kley, Particle dynamics in discs with turbulence generated by the vertical shear instability. Astron. Astrophys. 594, 57 (2016). doi: 10.1051/0004-6361/201527716 ADSCrossRefGoogle Scholar
  102. T. Takeuchi, C.J. Clarke, D.N.C. Lin, The differential lifetimes of protostellar gas and dust disks. Astrophys. J. 627, 286–292 (2005) ADSCrossRefGoogle Scholar
  103. M. Tazzari, L. Testi, B. Ercolano, A. Natta, A. Isella, C.J. Chandler, L.M. Pérez, S. Andrews, D.J. Wilner, L. Ricci, T. Henning, H. Linz, W. Kwon, S.A. Corder, C.P. Dullemond, J.M. Carpenter, A.I. Sargent, L. Mundy, S. Storm, N. Calvet, J.A. Greaves, J. Lazio, A.T. Deller, A multi-wavelength analysis for interferometric (sub-)mm observations of protoplanetary disks: radial constraints on the dust properties and the disk structure. ArXiv e-prints (2015) Google Scholar
  104. N.J. Turner, S. Fromang, C. Gammie, H. Klahr, G. Lesur, M. Wardle, X.-N. Bai, Transport and accretion in planet-forming disks, in Protostars and Planets VI (2014), pp. 411–432 Google Scholar
  105. N. van der Marel, E.F. van Dishoeck, S. Bruderer, S.M. Andrews, K.M. Pontoppidan, G.J. Herczeg, T. van Kempen, A. Miotello, Resolved gas cavities in transitional disks inferred from CO isotopologs with ALMA. Astron. Astrophys. 585, 58 (2016) CrossRefGoogle Scholar
  106. K.J. Walsh, A. Morbidelli, S.N. Raymond, D.P. O’Brien, A.M. Mandell, A low mass for Mars from Jupiter’s early gas-driven migration. Nature 475, 206–209 (2011) ADSCrossRefGoogle Scholar
  107. M. Wardle, A. Königl, The structure of protostellar accretion disks and the origin of bipolar flows. Astrophys. J. 410, 218–238 (1993) ADSCrossRefGoogle Scholar
  108. S.J. Weidenschilling, The distribution of mass in the planetary system and solar nebula. Astrophys. Space Sci. 51, 153–158 (1977) ADSCrossRefGoogle Scholar
  109. J.P. Williams, W.M.J. Best, A parametric modeling approach to measuring the gas masses of circumstellar disks. Astrophys. J. 788, 59 (2014) ADSCrossRefGoogle Scholar
  110. R. Xu, X.-N. Bai, On the grain-modified magnetic diffusivities in protoplanetary disks. Astrophys. J. 819, 68 (2016) ADSCrossRefGoogle Scholar
  111. A.N. Youdin, Y. Lithwick, Particle stirring in turbulent gas disks: including orbital oscillations. Icarus 192, 588–604 (2007) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Lee Hartmann
    • 1
    Email author
  • Fred Ciesla
    • 2
  • Oliver Gressel
    • 3
  • Richard Alexander
    • 4
  1. 1.Dept. of AstronomyUniversity of MichiganAnn ArborUSA
  2. 2.Dept. Geophysical SciencesUniversity of ChicagoChicagoUSA
  3. 3.The Niels Bohr InstituteCopenhagen ØDenmark
  4. 4.Dept. of Physics & AstronomyUniversity of LeicesterLeicesterUK

Personalised recommendations