OSIRIS-REx: Sample Return from Asteroid (101955) Bennu


In May of 2011, NASA selected the Origins, Spectral Interpretation, Resource Identification, and Security–Regolith Explorer (OSIRIS-REx) asteroid sample return mission as the third mission in the New Frontiers program. The other two New Frontiers missions are New Horizons, which explored Pluto during a flyby in July 2015 and is on its way for a flyby of Kuiper Belt object 2014 MU69 on January 1, 2019, and Juno, an orbiting mission that is studying the origin, evolution, and internal structure of Jupiter. The spacecraft departed for near-Earth asteroid (101955) Bennu aboard an United Launch Alliance Atlas V 411 evolved expendable launch vehicle at 7:05 p.m. EDT on September 8, 2016, on a seven-year journey to return samples from Bennu. The spacecraft is on an outbound-cruise trajectory that will result in a rendezvous with Bennu in November 2018. The science instruments on the spacecraft will survey Bennu to measure its physical, geological, and chemical properties, and the team will use these data to select a site on the surface to collect at least 60 g of asteroid regolith. The team will also analyze the remote-sensing data to perform a detailed study of the sample site for context, assess Bennu’s resource potential, refine estimates of its impact probability with Earth, and provide ground-truth data for the extensive astronomical data set collected on this asteroid. The spacecraft will leave Bennu in 2021 and return the sample to the Utah Test and Training Range (UTTR) on September 24, 2023.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39



Asteroid Approach Maneuver


Application Process Identifier Definition


Advanced System for Integration and Spacecraft Test


Assembly, Test, and Launch Operations


Astronomical Unit: the average distance between the Earth and the Sun


Characteristic energy of launch


Delta-Differential One-way Ranging


Declination of the Launch Asymptote


Design Reference Asteroid


Design Reference Mission


Deep Space Maneuver


Deep Space Network


Eight-Color Asteroid Survey


Earth gravity assist


Flight Dynamics System


Front End Data System


Flight Operations Bucket


universal coefficient of gravity (G) multiplied by the mass of a planetary object (M)


Guidance, Navigation, and Control


Gravity Recovery and Interior Laboratory mission


Ratio of reflected energy to incoming energy (i.e. irradiance/solar flux)


Institute of Environmental Sciences and Technology


International Organization for Standardization


Integrated Global Science Value Map


Jet Propulsion Laboratory


NASA Johnson Space Center


Light Detection and Ranging


Lincoln Near-Earth Asteroid Research survey


Mars Atmosphere and Volatile EvolutioN mission


Microparticle Impact Collection


Mars Reconnaissance Orbiter


Mission Support Area


Mean Sea Level


National Aeronautics and Space Administration


Near-Earth asteroid


Near-Earth Asteroid Rendezvous mission


Natural Feature Tracking


OSIRIS-REx Camera Suite


OSIRIS-REx Laser Altimeter


Origins, Spectral Interpretation, Resource Identification, and Security–Regolith Explorer


OSIRIS-REx Thermal Emission Spectrometer


OSIRIS-REx Visible and Infrared Spectrometer


Planetary Data System


Preliminary-examination Team


Particle Size Frequency Distribution


Regolith X-ray Imaging Spectrometer


Red, Green, Blue


Right Ascension of the Launch Asymptote


Region of Interest


Sample Analysis Plan


Sample Acquisition and Return Assembly




S—Spacecraft ephemeris; P—Planet, satellite, comet, or asteroid ephemerides; I—Instrument description kernel; C—Pointing kernel; E—Events kernel


Spacecraft and Planet Kernel


Science Processing and Operations Center


Sample Return Capsule


Touch and Go


Touch and Go Camera System


Touch and Go Sample Acquisition Mechanism


Utah Test and Training Range


Visible and Near-Infrared


Yarkovsky–O’Keefe–Radzievskii–Paddack effect


  1. C. Allen, J. Allton, G. Lofgren, K. Righter, M. Zolensky, Curating NASA’s extraterrestrial samples—past, present, and future. Chem. Erde-Geochem. 71(1), 1–20 (2011)

    ADS  Article  Google Scholar 

  2. R.-L. Ballouz, Numerical Simulations of Granular Physics in the Solar System (University of Maryland, College Park, 2017), Doctoral dissertation

    Google Scholar 

  3. O.S. Barnouin-Jha, A.F. Cheng, T. Mukai, S. Abe, N. Hirata, R. Nakamura, R.W. Gaskell, J. Saito, B.E. Clark, Small-scale topography of 25143 Itokawa from the Hayabusa laser altimeter. Icarus 198(1), 108–124 (2008)

    ADS  Article  Google Scholar 

  4. K. Berry, B. Sutter, A. May, K. Williams, B.W. Barbee, M. Beckman, B. Williams, Osiris-rex touch-and-go (tag) mission design and analysis. Adv. Astronaut. Sci. 149, 667–678 (2013)

    Google Scholar 

  5. Bierhaus et al., The OSIRIS-REx touch-and-go sample acquisition mechanism (TAGSAM) and flight system. Space Sci. Rev. (2017)

  6. R.P. Binzel, F.E. DeMeo, B.J. Burt, E.A. Cloutis, B. Rozitis, T.H. Burbine, H. Campins et al., Spectral slope variations for OSIRIS-REx target asteroid (101955) Bennu: possible evidence for a fine-grained regolith equatorial ridge. Icarus 256, 22–29 (2015)

    ADS  Article  Google Scholar 

  7. N. Borson, IEST-STD-CC1246D: Product Cleanliness Levels and Contamination Control Program. Clean Rooms (PennWell Corporation, Tulsa, 2005)

    Google Scholar 

  8. Bos et al., Touch and go camera system (TAGCAMS) for the OSIRIS-REx asteroid sample return mission. Space Sci. Rev. (2017)

  9. W.F. Bottke Jr., D. Vokrouhlický, D.P. Rubincam, D. Nesvorný, The Yarkovsky and YORP effects: implications for asteroid dynamics. Annu. Rev. Earth Planet. Sci. 34, 157–191 (2006)

    ADS  Article  Google Scholar 

  10. W.F. Bottke, D. Vokrouhlický, K.J. Walsh, M. Delbo, P. Michel, D.S. Lauretta, H. Campins, H.C. Connolly, D.J. Scheeres, S.R. Chelsey, In search of the source of asteroid (101955) Bennu: applications of the stochastic YORP model. Icarus 247, 191–217 (2015)

    ADS  Article  Google Scholar 

  11. H. Campins, A. Morbidelli, K. Tsiganis, J. De Leon, J. Licandro, D. Lauretta, The origin of asteroid 101955 (1999 RQ36). Astrophys. J. Lett. 721(1), L53 (2010)

    ADS  Article  Google Scholar 

  12. C.R. Chapman, S-type asteroids, ordinary chondrites, and space weathering: the evidence from Galileo’s fly-bys of Gaspra and Ida. Meteorit. Planet. Sci. 31(6), 699–725 (1996)

    ADS  Article  Google Scholar 

  13. A.F. Cheng, O. Barnouin-Jha, L. Prockter, M.T. Zuber, G. Neumann, D.E. Smith, J. Garvin, M. Robinson, J. Veverka, P. Thomas, Small-scale topography of 433 Eros from laser altimetry and imaging. Icarus 155(1), 51–74 (2002)

    ADS  Article  Google Scholar 

  14. S.R. Chesley, D. Farnocchia, M.C. Nolan, D. Vokrouhlický, P.W. Chodas, A. Milani, F. Spoto et al., Orbit and bulk density of the OSIRIS-REx target asteroid (101955) Bennu. Icarus 235, 5–22 (2014)

    ADS  Article  Google Scholar 

  15. Christensen et al., The OSIRIS-REx thermal emission spectrometer (OTES) instrument. Space Sci. Rev. (2017)

  16. B.E. Clark, R.P. Binzel, E.S. Howell, E.A. Cloutis, M. Ockert-Bell, P. Christensen, M.A. Barucci et al., Asteroid (101955) 1999 RQ36: spectroscopy from 0.4 to 2.4 \(\upmu\)m and meteorite analogs. Icarus 216(2), 462–475 (2011)

    ADS  Article  Google Scholar 

  17. Daly et al., The OSIRIS-REx laser altimeter (OLA) investigation and instrument. Space Sci. Rev. (2017). doi:10.1007/s11214-017-0375-3

    Google Scholar 

  18. W.A. Delamere, L.L. Tornabene, A.S. McEwen, K. Becker, J.W. Bergstrom, N.T. Bridges, E.M. Eliason et al., Color imaging of Mars by the high resolution imaging science experiment (HiRISE). Icarus 205(1), 38–52 (2010)

    ADS  Article  Google Scholar 

  19. M. Delbo, P. Michel, Temperature history and dynamical evolution of (101955) 1999 RQ 36: a potential target for sample return from a primitive asteroid. Astrophys. J. Lett. 728(2), L42 (2011)

    ADS  Article  Google Scholar 

  20. Dworkin et al., OSIRIS-REx contamination control strategy and implementation. Space Sci. Rev. (2017)

  21. J.P. Emery, Y.R. Fernández, M.S.P. Kelley, K.T. Warden, C. Hergenrother, D.S. Lauretta, M.J. Drake, H. Campins, J. Ziffer, Thermal infrared observations and thermophysical characterization of OSIRIS-REx target asteroid (101955) Bennu. Icarus 234, 17–35 (2014)

    ADS  Article  Google Scholar 

  22. C.N. Foley, L.R. Nittler, T.J. McCoy, L.F. Lim, M.R.M. Brown, R.D. Starr, J.I. Trombka, Minor element evidence that asteroid 433 Eros is a space-weathered ordinary chondrite parent body. Icarus 184(2), 338–343 (2006)

    ADS  Article  Google Scholar 

  23. R.W. Gaskell, O.S. Barnouin-Jha, D.J. Scheeres, A.S. Konopliv, T. Mukai, S. Abe, J. Saito et al., Characterizing and navigating small bodies with imaging data. Meteorit. Planet. Sci. 43(6), 1049–1061 (2008)

    ADS  Article  Google Scholar 

  24. B. Gundlach, J. Blum, A new method to determine the grain size of planetary regolith. Icarus 223(1), 479–492 (2013)

    ADS  Article  Google Scholar 

  25. C.W. Hergenrother, M.C. Nolan, R.P. Binzel, E.A. Cloutis, M.A. Barucci, P. Michel, D.J. Scheeres et al., Lightcurve, color and phase function photometry of the OSIRIS-REx target asteroid (101955) Bennu. Icarus 226(1), 663–670 (2013)

    ADS  Article  Google Scholar 

  26. C.W. Hergenrother, M.A. Barucci, O. Barnouin, B. Bierhaus, R.P. Binzel, W.F. Bottke, S. Chesley et al., The design reference asteroid for the OSIRIS-REx mission target (101955) Bennu. arXiv:1409.4704 (2014)

  27. R. Jaumann, K. Stephan, K. Krohn, K.D. Matz, K. Otto, W. Neumann et al., Age-dependent morphological and compositional variations on Ceres. Lunar Planet. Sci. Conf. Abstr. 47, 455 (2016)

    Google Scholar 

  28. T.V. Johnson, F.P. Fanale, Optical properties of carbonaceous chondrites and their relationship to asteroids. J. Geophys. Res. 78(35), 8507–8518 (1973)

    ADS  Article  Google Scholar 

  29. L. Jorda, P.L. Lamy, R.W. Gaskell, M. Kaasalainen, O. Groussin, S. Besse, G. Faury, Asteroid (2867) Steins: shape, topography and global physical properties from OSIRIS observations. Icarus 221(2), 1089–1100 (2012)

    ADS  Article  Google Scholar 

  30. T.V. King, R.N. Clark, Spectral characteristics of chlorites and Mg-serpentines using high-resolution reflectance spectroscopy. J. Geophys. Res., Solid Earth 94(B10), 13997–14008 (1989)

    Article  Google Scholar 

  31. D.S. Lauretta, A.E. Bartels, M.A. Barucci, E.B. Bierhaus, R.P. Binzel, W.F. Bottke, H. Campins et al., The OSIRIS-REx target asteroid (101955) Bennu: constraints on its physical, geological, and dynamical nature from astronomical observations. Meteorit. Planet. Sci. 50(4), 834–849 (2015)

    ADS  Article  Google Scholar 

  32. D.S. Lauretta, H.Y. McSween (eds.), Meteorites and the Early Solar System II (Univ. of Arizona Press, Tucson, 2006)

    Google Scholar 

  33. L. Le Corre, V. Reddy, N. Schmedemann, K.J. Becker, D.P. O’Brien, N. Yamashita, P.N. Peplowski et al., Olivine or impact melt: nature of the “orange” material on Vesta from Dawn. Icarus 226(2), 1568–1594 (2013)

    ADS  Article  Google Scholar 

  34. S. Marchi, C.R. Chapman, O.S. Barnouin, J.E. Richardson, J.B. Vincent, Cratering on Asteroids, in Asteroids IV, ed. by P. Michel, F.E. DeMeo, W.F. Bottke (University of Arizona Press, Tucson, 2015), pp. 725–744

    Google Scholar 

  35. C. Mario, C. Debrunner, Robustness and performance impacts of optical-based feature tracking to OSIRIS-REx asteroid sample collection mission, in 39th Annual AAS Guidance and Control Conference, Breckenridge, CO, February 6–February 10 (2016)

    Google Scholar 

  36. Masterson et al., Regolith X-ray imaging spectrometer (REXIS) aboard the OSIRIS-REx asteroid sample return mission. Space Sci. Rev. (2017)

  37. A. May, B. Sutter, T. Linn, B. Bierhaus, K. Berry, R. Mink, OSIRIS-REx touch-and-go (TAG) mission design for asteroid sample collection, in 65th International Astronautical Congress, IAC-14-A3.4.8 (2014)

    Google Scholar 

  38. S. Mazrouei, M.G. Daly, O.S. Barnouin, C.M. Ernst, I. DeSouza, Block distributions on Itokawa. Icarus 229, 181–189 (2014)

    ADS  Article  Google Scholar 

  39. T.J. McCoy, M.S. Robinson, L.R. Nittler, T.H. Burbine, The Near Earth Asteroid Rendezvous Mission to asteroid 433 Eros: a milestone in the study of asteroids and their relationship to meteorites. Chem. Erde-Geochem. 62(2), 89–121 (2002)

    ADS  Article  Google Scholar 

  40. McMahon et al., The OSIRIS-REx radio science experiment at Bennu. Space Sci. Rev. (2017)

  41. J. Miller, P. Antreasian, R. Gaskell, J. Giorgini, C. Helfrich, W. Owen, B. Williams, D. Yeomans, Determination of Eros physical parameters for near earth asteroid rendezvous orbit phase navigation. Icarus (1999). doi:10.1006/icar.2001.6753

    Google Scholar 

  42. H. Miyamoto, H. Yano, D.J. Scheeres, S. Abe, O. Barnouin-Jha, A.F. Cheng, H. Demura, R.W. Gaskell, N. Hirata, M. Ishiguro, T. Michikami, Regolith migration and sorting on asteroid Itokawa. Science 316(5827), 1011–1014 (2007)

    ADS  Article  Google Scholar 

  43. T.G. Müller, L. O’Rourke, A.M. Barucci, A. Pál, C. Kiss, P. Zeidler, B. Altieri, B.M. González-García, M. Küppers, Physical properties of OSIRIS-REx target asteroid (101955) 1999 RQ36: derived from Herschel, VLT/VISIR, and Spitzer observations. Astron. Astrophys. 548, A36 (2012)

    Article  Google Scholar 

  44. T. Nakamura, T. Noguchi, M. Tanaka, M.E. Zolensky, M. Kimura, A. Tsuchiyama, A. Nakato et al., Itokawa dust particles: a direct link between S-type asteroids and ordinary chondrites. Science 333(6046), 1113–1116 (2011)

    ADS  Article  Google Scholar 

  45. K. Nakamura-Messenger, H.C. Connolly Jr., D.S. Lauretta, Strategy for ranking the science value of the surface of asteroid 101955 Bennu for sample site selection for OSIRIS-REx, in 45th Lunar and Planetary Science Conference. LPI Contribution, vol. 1777 (2014), p. 2023

    Google Scholar 

  46. M.C. Nolan, C. Magri, E.S. Howell, L.A.M. Benner, J.D. Giorgini, C.W. Hergenrother, R.S. Hudson et al., Shape model and surface properties of the OSIRIS-REx target asteroid (101955) Bennu from radar and lightcurve observations. Icarus 226(1), 629–640 (2013)

    ADS  Article  Google Scholar 

  47. R. Olds, A. May, C. Mario, R. Hamilton, C. Debrunner, K. Anderson, The application of optical based feature tracking to OSIRIS-REx asteroid sample collection, in American Astronautical Society Meeting, contribution 15-114 (2015)

  48. W.M. Owen Jr., T.C. Wang, A. Harch, M. Bell, C. Peterson, NEAR Optical Navigation at Eros (2001)

    Google Scholar 

  49. Reuter et al., The OSIRIS-REx visible and infrared spectrometer (OVIRS): spectral maps of the asteroid Bennu. Space Sci. Rev. (2017)

  50. Rizk et al., OCAMS: the OSIRIS-REx camera suite. Space Sci. Rev. (2017)

  51. B. Rozitis, E. MacLennan, J.P. Emery, Cohesive forces prevent the rotational breakup of rubble-pile asteroid (29075) 1950 DA. Nature 512(7513), 174–176 (2014)

    ADS  Article  Google Scholar 

  52. S.W. Ruff, P.R. Christensen, Bright and dark regions on Mars: particle size and mineralogical characteristics based on thermal emission spectrometer data. J. Geophys. Res., Planets 107, E12 (2002)

    Article  Google Scholar 

  53. P. Sánchez, D.J. Scheeres, The strength of regolith and rubble pile asteroids. Meteorit. Planet. Sci. 49(5), 788–811 (2014)

    ADS  Article  Google Scholar 

  54. D.J. Scheeres, S.G. Hesar, S. Tardivel, M. Hirabayashi, D. Farnocchia, J.W. McMahon, S.R. Chesley, O. Barnouin, R.P. Binzel, W.F. Bottke, M.G. Daly, The geophysical environment of Bennu. Icarus 276, 116–140 (2016)

    ADS  Article  Google Scholar 

  55. H. Sierks, P. Lamy, C. Barbieri, D. Koschny, H. Rickman, R. Rodrigo, M.F. A’Hearn, F. Angrilli, M.A. Barucci, J.L. Bertaux, I. Bertini, Images of asteroid 21 Lutetia: a remnant planetesimal from the early solar system. Science 334(6055), 487–490 (2011)

    ADS  Article  Google Scholar 

  56. T.S. Statler, Obliquities of “top-shaped” asteroids may not imply reshaping by YORP spin-up. Icarus 248, 313–317 (2015)

    ADS  Article  Google Scholar 

  57. G.H. Stokes, J.B. Evans, H.E.M. Viggh, F.C. Shelly, E.C. Pearce, Lincoln near-Earth asteroid program (LINEAR). Icarus 148(1), 21–28 (2000)

    ADS  Article  Google Scholar 

  58. D. Takir, B.E. Clark, C. Drouet d’Aubigny, C.W. Hergenrother, J.-Y. Li, D.S. Lauretta, R.P. Binzel, Photometric models of disk-integrated observations of the OSIRIS-REx target asteroid (101955) Bennu. Icarus 252, 393–399 (2015)

    ADS  Article  Google Scholar 

  59. F. Vilas, A cheaper, faster, better way to detect water of hydration on Solar System bodies. Icarus 111(2), 456–467 (1994)

    ADS  Article  Google Scholar 

  60. D. Vokrouhlický, W.F. Bottke, S.R. Chesley, D.J. Scheeres, T.S. Statler, in Asteroids IV, ed. by P. Michel, F.E. DeMeo, W.F. Bottke (Univ. of Arizona Press, Tucson, 2015), pp. 509–531. ISBN 978-0-816-53213-1

    Google Scholar 

  61. K.J. Walsh, D.C. Richardson, Binary near-Earth asteroid formation: rubble pile model of tidal disruptions. Icarus 180(1), 201–216 (2006)

    ADS  Article  Google Scholar 

  62. K.J. Walsh, D.C. Richardson, P. Michel, Spin-up of rubble-pile asteroids: disruption, satellite formation, and equilibrium shapes. Icarus 220(2), 514–529 (2012)

    ADS  Article  Google Scholar 

  63. K.J. Walsh, M. Delbó, W.F. Bottke, D. Vokrouhlický, D.S. Lauretta, Introducing the Eulalia and new Polana asteroid families: re-assessing primitive asteroid families in the inner Main Belt. Icarus 225(1), 283–297 (2013)

    ADS  Article  Google Scholar 

  64. G.V. Williams, 1999 RQ36. Minor planet electronic circular 1999-R44 (1999)

  65. Williams et al., OSIRIS-REx flight dynamics and navigation design. Space Sci. Rev. (2017)

  66. D.K. Yeomans, P.G. Antreasian, A. Cheng, D.W. Dunham, R.W. Farquhar, R.W. Gaskell, J.D. Giorgini et al., Estimating the mass of asteroid 433 Eros during the NEAR spacecraft flyby. Science 285(5427), 560–561 (1999)

    ADS  Article  Google Scholar 

  67. L. Yu, J. Ji, Surface thermophysical properties determination of OSIRIS-REx target asteroid (101955) Bennu. Mon. Not. R. Astron. Soc. 452(1), 368–375 (2015)

    ADS  Article  Google Scholar 

Download references


The launch of OSIRIS-REx was the culmination of over a decade of hard work by thousands of people across the globe. This event marked the beginning of one of the greatest scientific expeditions of all time—sample return from asteroid Bennu. We thank the multitude of team members and their families for the dedication and support of this mission. This material is based upon work supported by NASA under Contracts NNM10AA11C, NNG12FD66C, and NNG13FC02C issued through the New Frontiers Program. Copy editing and indexing provided by Mamassian Editorial Services.

Author information



Corresponding author

Correspondence to D. S. Lauretta.

Additional information


Edited by Dante Lauretta and Christopher T. Russell

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lauretta, D.S., Balram-Knutson, S.S., Beshore, E. et al. OSIRIS-REx: Sample Return from Asteroid (101955) Bennu. Space Sci Rev 212, 925–984 (2017). https://doi.org/10.1007/s11214-017-0405-1

Download citation


  • Bennu
  • Asteroid
  • Sample return