Skip to main content
Log in

On the Specification of Upward-Propagating Tides for ICON Science Investigations

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

The National Center for Atmospheric Research (NCAR) Thermosphere Ionosphere Electrodynamics General Circulation Model (TIEGCM) will provide a physics-based context for the interpretation of ICON measurements. To optimize the realism of the model simulations, ICON wind and temperature measurements near the ∼97 km lower boundary of the TIEGCM will be used to specify the upward-propagating tidal spectrum at this altitude. This will be done by fitting a set of basis functions called Hough Mode Extensions (HMEs) to 27-day mean tidal winds and temperatures between 90 and 105 km altitude and between 12 °S and 42 °N latitude on a day-by-day basis. The current paper assesses the veracity of the HME fitting methodology given the restricted latitude sampling and the UT-longitude sampling afforded by the MIGHTI instrument viewing from the ICON satellite, which will be in a circular 27° inclination orbit. These issues are investigated using the output from a reanalysis-driven global circulation model, which contains realistic variability of the important tidal components, as a mock data set. ICON sampling of the model reveals that the 27-day mean diurnal and semidiurnal tidal components replicate well the 27-day mean tidal components obtained from full synoptic sampling of the model, but the terdiurnal tidal components are not faithfully reproduced. It is also demonstrated that reconstructed tidal components based on HME fitting to the model tides between 12 °S and 42 °N latitude provide good approximations to the major tidal components expected to be encountered during the ICON mission. This is because the constraints provided by fitting both winds and temperatures over the 90–105 km height range are adequate to offset the restricted sampling in latitude. The boundary conditions provided by the methodology described herein will greatly enhance the ability of the TIEGCM to provide a physical framework for interpreting atmosphere-ionosphere coupling in ICON observations due to atmospheric tides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • D. Crary, J.M. Forbes, On the extraction of tidal information from observations covering a fraction of a day. Geophys. Res. Lett. 10, 580–582 (1983)

    Article  ADS  Google Scholar 

  • G. Crowley, Assimilative Mapping of Ionospheric Electrodynamics (AMIE) for the Ionospheric Connections (ICON) explorer. Space Sci. Rev. (2017), this issue

  • C.R. Englert, J.M. Harlander, C.M. Brown, K.D. Marr, I.J. Miller, J.E. Stump, J. Hancock, J. Peterson, J. Kumler, W.H. Morrow, T.A. Mooney, S. Ellis, S.B. Mende, S.E. Harris, M.H. Stevens, J.J. Makela, B.J. Harding, T.J. Immel, Michelson Interferometer for Global High-resolution Thermospheric Imaging (MIGHTI): Instrument design and calibration. Space Sci. Rev. (2017), this issue. doi:10.1007/s11214-017-0358-4

    Google Scholar 

  • J.M. Forbes, Atmospheric tides. I. Model description and results for the solar diurnal component. J. Geophys. Res. 87, 5222–5240 (1982)

    Article  ADS  Google Scholar 

  • J.M. Forbes, H.B. Garrett, Theoretical studies of atmospheric tides. Rev. Geophys. Space Phys. 17, 1951–1981 (1979)

    Article  ADS  Google Scholar 

  • J.M. Forbes, M.E. Hagan, Thermospheric extensions of the classical expansion functions for semidiurnal tides. J. Geophys. Res. 87, 5253–5259 (1982)

    Article  ADS  Google Scholar 

  • J.M. Forbes, R.G. Roble, C.G. Fesen, Acceleration, heating, and compositional mixing of the thermosphere due to upward propagating tides. J. Geophys. Res. 98(A1), 311–321 (1993). doi:10.1029/92JA00442

    Article  ADS  Google Scholar 

  • J.M. Forbes, A.H. Manson, R.A. Vincent, G.J. Fraser, F. Vial, R. Wand, S.K. Avery, R.R. Clark, R. Johnson, R. Roper, R. Schminder, T. Tsuda, E.S. Kazimirovsky, Semidiurnal tide in the 80–150 km region: An assimilative data analysis. J. Atmos. Terr. Phys. 56, 1237–1250 (1994)

    Article  ADS  Google Scholar 

  • J.M. Forbes, X. Zhang, M.E. Hagan, Simulations of diurnal tides due to tropospheric heating from the NCEP/NCAR reanalysis project. Geophys. Res. Lett. 28, 3851–3854 (2001)

    Article  ADS  Google Scholar 

  • J.M. Forbes, M.E. Hagan, S. Miyahara, Y. Miyoshi, X. Zhang, Diurnal nonmigrating tides in the tropical lower thermosphere. Earth Planets Space 55, 419–426 (2003a)

    Article  ADS  Google Scholar 

  • J.M. Forbes, X. Zhang, W. Ward, E. Talaat, Nonmigrating diurnal tides in the thermosphere. J. Geophys. Res. 108, 1033 (2003b). doi:10.1029/2002JA009262

    Article  Google Scholar 

  • J.M. Forbes, J. Russell, S. Miyahara, X. Zhang, S. Palo, M. Mlynczak, C.J. Mertens, M.E. Hagan, Troposphere-thermosphere tidal coupling as measured by the SABER instrument on TIMED during July–September 2002. J. Geophys. Res. 111, A10S06 (2006). doi:10.1029/2005JA011492

    Article  ADS  Google Scholar 

  • M.E. Hagan, Comparative effects of migrating solar sources on tides in the mesosphere and lower thermosphere. J. Geophys. Res. 101, 21213–21222 (1996)

    Article  ADS  Google Scholar 

  • M.E. Hagan, J.M. Forbes, Migrating and nonmigrating diurnal tides in the middle and upper atmosphere excited by tropospheric latent heat release. J. Geophys. Res. 107(D24), 4754 (2002). doi:10.1029/2001JD001236

    Article  Google Scholar 

  • M.E. Hagan, J.M. Forbes, Migrating and nonmigrating semidiurnal tides in the upper atmosphere excited by tropospheric latent heat release. J. Geophys. Res. 108(A2), 1062 (2003). doi:10.1029/2002JA009466

    Article  Google Scholar 

  • M.E. Hagan, J.M. Forbes, F. Vial, On modeling migrating solar tides. Geophys. Res. Lett. 22, 893–896 (1995)

    Article  ADS  Google Scholar 

  • M.E. Hagan, M.D. Burrage, J.M. Forbes, J. Hackney, W.J. Randel, X. Zhang, GSWM-98: Results for migrating solar tides. J. Geophys. Res. 104, 6813–6827 (1999)

    Article  ADS  Google Scholar 

  • K. Häusler, M.E. Hagan, A.J.G. Baumgaertner, A. Maute, G. Lu, E. Doornbos, S. Bruinsma, J.M. Forbes, F. Gasperini, Improved short-term variability in the thermosphere-ionosphere-mesosphere-electrodynamics general circulation model. J. Geophys. Res. (2014). doi:10.1002/2014JA020006

    Google Scholar 

  • K. Häusler, M.E. Hagan, J.M. Forbes, X. Zhang, E. Doornbos, S. Bruinsma, G. Lu, Intra-annual variability of tides in the thermosphere from model simulations and in situ satellite observations. J. Geophys. Res. Space Phys. 120, 751–765 (2015). doi:10.1002/2014JA020579

    Article  ADS  Google Scholar 

  • M. Jones Jr., J.M. Forbes, M.E. Hagan, A. Maute, Impacts of vertically propagating tides on the mean state of the ionosphere-thermosphere system. J. Geophys. Res. Space Phys. 119, 2197–2213 (2014). doi:10.1002/2013JA019744

    Article  ADS  Google Scholar 

  • R. Lindsay, M. Wensnahan, A. Schweiger, J. Zhang, Evaluation of seven different atmospheric reanalysis products in the Arctic. J. Climate 27, 2588–2606 (2014). doi:10.1175/JCLI-D-13-00014.1

    Article  ADS  Google Scholar 

  • R.S. Lindzen, Turbulence and stress owing to gravity wave and tidal breakdown. J. Geophys. Res. 86, 9707–9714 (1981). doi:10.1029/JC086iC10p09707

    Article  ADS  Google Scholar 

  • R.S. Lindzen, S.-S. Hong, Effects of mean winds and meridional temperature gradients on solar and lunar semidiurnal tides in the atmosphere. J. Atmos. Sci. 31, 1421–1466 (1974)

    Article  ADS  Google Scholar 

  • R.S. Lindzen, S.-S. Hong, J.M. Forbes, Semidiurnal Hough mode extensions in the thermosphere and their application, Memo. Rept. 3442, 69 pp., Nav. Res. Lab., Washington, 1977

  • A. Maute, Thermosphere-ionosphere-electrodynamics general circulation model for the ionospheric connection explorer: TIEGCM-ICON. Space Sci. Rev. (2017), this issue. doi:10.1007/s11214-017-0330-3

    Google Scholar 

  • Y. Miyoshi, H. Fujiwara, H. Jin, H. Shinagawa, A global view of gravity waves in the thermosphere simulated by a general circulation model. J. Geophys. Res. Space Phys. 119, 5807–5820 (2014). doi:10.1002/2014JA019848

    Article  ADS  Google Scholar 

  • V. Nguyen, S.E. Palo, Transmission of planetary wave effects to the upper atmosphere through eddy diffusion modulation. J. Atmos. Solar-Terr. Phys. 117, 1–6 (2014)

    Article  ADS  Google Scholar 

  • J. Oberheide, M.E. Hagan, R.G. Roble, Tidal signatures and aliasing in temperature data from slowly precessing satellites. J. Geophys. Res. 108, 1055 (2003a). doi:10.1029/2002JA009585

    Google Scholar 

  • J. Oberheide, M.E. Hagan, R.G. Roble, Correction to tidal signatures and aliasing in temperature data from slowly precessing satellites. J. Geophys. Res. 108, 1213 (2003b). doi:10.1029/2003JA009967

    Google Scholar 

  • J. Oberheide, J.M. Forbes, X. Zhang, S.L. Bruinsma, Climatology of upward propagating diurnal and semidiurnal tides in the thermosphere. J. Geophys. Res. 116, A11306 (2011). doi:10.1029/2011JA016784

    ADS  Google Scholar 

  • L. Qian, A.G. Burns, B.A. Emery, B. Foster, G. Lu, A. Maute, A.D. Richmond, R.G. Roble, S.C. Solomon, W. Wang, The NCAR TIE-GCM: A community model of the coupled thermosphere/ionosphere system, in Modeling the Ionosphere-Thermosphere System. AGU Geophysical Monograph Series (2014)

    Google Scholar 

  • A.D. Richmond, E.C. Ridley, R.G. Roble, A thermosphere/ionosphere general circulation model with coupled electrodynamics. Geophys. Res. Lett. 6, 601–604 (1992)

    Article  ADS  Google Scholar 

  • M.M. Rienecker, M.J. Suarez, R. Gelaro, R. Todling, J. Bacmeister, E. Liu, M.G. Bosilovich, S.D. Schubert, L. Takacs, G.-K. Kim, S. Bloom, J. Chen, D. Collins, A. Conaty, A. da Silva, W. Gu, J. Joiner, R.D. Koster, R. Lucchesi, A. Molod, T. Owens, S. Pawson, P. Pegion, C.R. Redder, R. Reichle, F.R. Robertson, A.G. Ruddick, M. Sienkiewicz, J. Woollen, MERRA: NASA’s modern-era retrospective analysis for research and applications. J. Climate 24, 3624–3648 (2011). doi:10.1175/JCLI-D-11-00015.1

    Article  ADS  Google Scholar 

  • R.G. Roble, The NCAR Thermosphere-Ionosphere-Mesosphere-Electrodynamics General Circulation Model (TIME-GCM), ionosphere models, in STEP Handbook on Ionospheric Models, ed. by R.W. Schunk (Utah State University, Logan, 1995)

    Google Scholar 

  • R.G. Roble, E.C. Ridley, A thermosphere-ionosphere-mesosphere-electrodynamics general circulation model (TIME-GCM): Equinox solar cycle minimum simulations (30–500 km). Geophys. Res. Lett. 21, 417–420 (1994)

    Article  ADS  Google Scholar 

  • A.A. Svoboda, J.M. Forbes, S. Miyahara, A space-based climatology of temperatures and densities from diurnal MLT tidal winds, UARS wind measurements. J. Atmos. Sol.-Terr. Phys. 67(16), 1533–1543 (2005)

    Article  ADS  Google Scholar 

  • S.L. Vadas, H. Liu, Generation of large-scale gravity waves and neutral winds in the thermosphere from the dissipation of convectively generated gravity waves. J. Geophys. Res. 114, A10310 (2009). doi:10.1029/2009JA014108

    Article  ADS  Google Scholar 

  • S.L. Vadas, H. Liu, Numerical modeling of the large-scale neutral and plasma responses to the body forces created by the dissipation of gravity waves from 6 h of deep convection in Brazil. J. Geophys. Res. Space Phys. 118, 2593–2617 (2013). doi:10.1002/jgra.50249

    Article  ADS  Google Scholar 

  • E. Yiğit, A.S. Medvedev, Internal gravity waves in the thermosphere during low and high solar activity: Simulation study. J. Geophys. Res. 115, A00G02 (2010). doi:10.1029/2009JA015106

    Google Scholar 

  • E. Yiğit, A.S. Medvedev, Internal wave coupling processes in Earth’s atmosphere. Adv. Space Res. 55(4), 983–1003 (2015). ISSN 0273-1177. doi:10.1016/j.asr.2014.11.020

    Article  ADS  Google Scholar 

  • J. Yue, W. Wang, Changes of thermospheric composition and ionospheric density caused by quasi-2-day wave dissipation. J. Geophys. Res. Space Phys. 119, 2069–2078 (2014). doi:10.1002/2013JA019725

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by NASA through the University of California at Berkeley under Award 00008209 to the University of Colorado. M.E. Hagan’s efforts were supported in part by the National Center for Atmospheric Research and by the NASA U.S. Participating Investigator Program through Grant NNXl2AD26G to University of Colorado and Subaward 75900816 to Utah State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey M. Forbes.

Additional information

The Ionospheric Connection Explorer (ICON) mission

Edited by Doug Rowland and Thomas J. Immel

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Forbes, J.M., Zhang, X., Hagan, M.E. et al. On the Specification of Upward-Propagating Tides for ICON Science Investigations. Space Sci Rev 212, 697–713 (2017). https://doi.org/10.1007/s11214-017-0401-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-017-0401-5

Keywords

Navigation