Space Science Reviews

, Volume 212, Issue 1–2, pp 697–713 | Cite as

On the Specification of Upward-Propagating Tides for ICON Science Investigations

  • Jeffrey M. ForbesEmail author
  • Xiaoli Zhang
  • Maura E. Hagan
  • Scott L. England
  • Guiping Liu
  • Federico Gasperini
Part of the following topical collections:
  1. The Ionospheric Connection Explorer (ICON) mission


The National Center for Atmospheric Research (NCAR) Thermosphere Ionosphere Electrodynamics General Circulation Model (TIEGCM) will provide a physics-based context for the interpretation of ICON measurements. To optimize the realism of the model simulations, ICON wind and temperature measurements near the ∼97 km lower boundary of the TIEGCM will be used to specify the upward-propagating tidal spectrum at this altitude. This will be done by fitting a set of basis functions called Hough Mode Extensions (HMEs) to 27-day mean tidal winds and temperatures between 90 and 105 km altitude and between 12 °S and 42 °N latitude on a day-by-day basis. The current paper assesses the veracity of the HME fitting methodology given the restricted latitude sampling and the UT-longitude sampling afforded by the MIGHTI instrument viewing from the ICON satellite, which will be in a circular 27° inclination orbit. These issues are investigated using the output from a reanalysis-driven global circulation model, which contains realistic variability of the important tidal components, as a mock data set. ICON sampling of the model reveals that the 27-day mean diurnal and semidiurnal tidal components replicate well the 27-day mean tidal components obtained from full synoptic sampling of the model, but the terdiurnal tidal components are not faithfully reproduced. It is also demonstrated that reconstructed tidal components based on HME fitting to the model tides between 12 °S and 42 °N latitude provide good approximations to the major tidal components expected to be encountered during the ICON mission. This is because the constraints provided by fitting both winds and temperatures over the 90–105 km height range are adequate to offset the restricted sampling in latitude. The boundary conditions provided by the methodology described herein will greatly enhance the ability of the TIEGCM to provide a physical framework for interpreting atmosphere-ionosphere coupling in ICON observations due to atmospheric tides.


ICON Tides TIEGCM Boundary conditions 



This work was supported in part by NASA through the University of California at Berkeley under Award 00008209 to the University of Colorado. M.E. Hagan’s efforts were supported in part by the National Center for Atmospheric Research and by the NASA U.S. Participating Investigator Program through Grant NNXl2AD26G to University of Colorado and Subaward 75900816 to Utah State University.


  1. D. Crary, J.M. Forbes, On the extraction of tidal information from observations covering a fraction of a day. Geophys. Res. Lett. 10, 580–582 (1983) ADSCrossRefGoogle Scholar
  2. G. Crowley, Assimilative Mapping of Ionospheric Electrodynamics (AMIE) for the Ionospheric Connections (ICON) explorer. Space Sci. Rev. (2017), this issue Google Scholar
  3. C.R. Englert, J.M. Harlander, C.M. Brown, K.D. Marr, I.J. Miller, J.E. Stump, J. Hancock, J. Peterson, J. Kumler, W.H. Morrow, T.A. Mooney, S. Ellis, S.B. Mende, S.E. Harris, M.H. Stevens, J.J. Makela, B.J. Harding, T.J. Immel, Michelson Interferometer for Global High-resolution Thermospheric Imaging (MIGHTI): Instrument design and calibration. Space Sci. Rev. (2017), this issue. doi: 10.1007/s11214-017-0358-4 Google Scholar
  4. J.M. Forbes, Atmospheric tides. I. Model description and results for the solar diurnal component. J. Geophys. Res. 87, 5222–5240 (1982) ADSCrossRefGoogle Scholar
  5. J.M. Forbes, H.B. Garrett, Theoretical studies of atmospheric tides. Rev. Geophys. Space Phys. 17, 1951–1981 (1979) ADSCrossRefGoogle Scholar
  6. J.M. Forbes, M.E. Hagan, Thermospheric extensions of the classical expansion functions for semidiurnal tides. J. Geophys. Res. 87, 5253–5259 (1982) ADSCrossRefGoogle Scholar
  7. J.M. Forbes, R.G. Roble, C.G. Fesen, Acceleration, heating, and compositional mixing of the thermosphere due to upward propagating tides. J. Geophys. Res. 98(A1), 311–321 (1993). doi: 10.1029/92JA00442 ADSCrossRefGoogle Scholar
  8. J.M. Forbes, A.H. Manson, R.A. Vincent, G.J. Fraser, F. Vial, R. Wand, S.K. Avery, R.R. Clark, R. Johnson, R. Roper, R. Schminder, T. Tsuda, E.S. Kazimirovsky, Semidiurnal tide in the 80–150 km region: An assimilative data analysis. J. Atmos. Terr. Phys. 56, 1237–1250 (1994) ADSCrossRefGoogle Scholar
  9. J.M. Forbes, X. Zhang, M.E. Hagan, Simulations of diurnal tides due to tropospheric heating from the NCEP/NCAR reanalysis project. Geophys. Res. Lett. 28, 3851–3854 (2001) ADSCrossRefGoogle Scholar
  10. J.M. Forbes, M.E. Hagan, S. Miyahara, Y. Miyoshi, X. Zhang, Diurnal nonmigrating tides in the tropical lower thermosphere. Earth Planets Space 55, 419–426 (2003a) ADSCrossRefGoogle Scholar
  11. J.M. Forbes, X. Zhang, W. Ward, E. Talaat, Nonmigrating diurnal tides in the thermosphere. J. Geophys. Res. 108, 1033 (2003b). doi: 10.1029/2002JA009262 CrossRefGoogle Scholar
  12. J.M. Forbes, J. Russell, S. Miyahara, X. Zhang, S. Palo, M. Mlynczak, C.J. Mertens, M.E. Hagan, Troposphere-thermosphere tidal coupling as measured by the SABER instrument on TIMED during July–September 2002. J. Geophys. Res. 111, A10S06 (2006). doi: 10.1029/2005JA011492 ADSCrossRefGoogle Scholar
  13. M.E. Hagan, Comparative effects of migrating solar sources on tides in the mesosphere and lower thermosphere. J. Geophys. Res. 101, 21213–21222 (1996) ADSCrossRefGoogle Scholar
  14. M.E. Hagan, J.M. Forbes, Migrating and nonmigrating diurnal tides in the middle and upper atmosphere excited by tropospheric latent heat release. J. Geophys. Res. 107(D24), 4754 (2002). doi: 10.1029/2001JD001236 CrossRefGoogle Scholar
  15. M.E. Hagan, J.M. Forbes, Migrating and nonmigrating semidiurnal tides in the upper atmosphere excited by tropospheric latent heat release. J. Geophys. Res. 108(A2), 1062 (2003). doi: 10.1029/2002JA009466 CrossRefGoogle Scholar
  16. M.E. Hagan, J.M. Forbes, F. Vial, On modeling migrating solar tides. Geophys. Res. Lett. 22, 893–896 (1995) ADSCrossRefGoogle Scholar
  17. M.E. Hagan, M.D. Burrage, J.M. Forbes, J. Hackney, W.J. Randel, X. Zhang, GSWM-98: Results for migrating solar tides. J. Geophys. Res. 104, 6813–6827 (1999) ADSCrossRefGoogle Scholar
  18. K. Häusler, M.E. Hagan, A.J.G. Baumgaertner, A. Maute, G. Lu, E. Doornbos, S. Bruinsma, J.M. Forbes, F. Gasperini, Improved short-term variability in the thermosphere-ionosphere-mesosphere-electrodynamics general circulation model. J. Geophys. Res. (2014). doi: 10.1002/2014JA020006 Google Scholar
  19. K. Häusler, M.E. Hagan, J.M. Forbes, X. Zhang, E. Doornbos, S. Bruinsma, G. Lu, Intra-annual variability of tides in the thermosphere from model simulations and in situ satellite observations. J. Geophys. Res. Space Phys. 120, 751–765 (2015). doi: 10.1002/2014JA020579 ADSCrossRefGoogle Scholar
  20. M. Jones Jr., J.M. Forbes, M.E. Hagan, A. Maute, Impacts of vertically propagating tides on the mean state of the ionosphere-thermosphere system. J. Geophys. Res. Space Phys. 119, 2197–2213 (2014). doi: 10.1002/2013JA019744 ADSCrossRefGoogle Scholar
  21. R. Lindsay, M. Wensnahan, A. Schweiger, J. Zhang, Evaluation of seven different atmospheric reanalysis products in the Arctic. J. Climate 27, 2588–2606 (2014). doi: 10.1175/JCLI-D-13-00014.1 ADSCrossRefGoogle Scholar
  22. R.S. Lindzen, Turbulence and stress owing to gravity wave and tidal breakdown. J. Geophys. Res. 86, 9707–9714 (1981). doi: 10.1029/JC086iC10p09707 ADSCrossRefGoogle Scholar
  23. R.S. Lindzen, S.-S. Hong, Effects of mean winds and meridional temperature gradients on solar and lunar semidiurnal tides in the atmosphere. J. Atmos. Sci. 31, 1421–1466 (1974) ADSCrossRefGoogle Scholar
  24. R.S. Lindzen, S.-S. Hong, J.M. Forbes, Semidiurnal Hough mode extensions in the thermosphere and their application, Memo. Rept. 3442, 69 pp., Nav. Res. Lab., Washington, 1977 Google Scholar
  25. A. Maute, Thermosphere-ionosphere-electrodynamics general circulation model for the ionospheric connection explorer: TIEGCM-ICON. Space Sci. Rev. (2017), this issue. doi: 10.1007/s11214-017-0330-3 Google Scholar
  26. Y. Miyoshi, H. Fujiwara, H. Jin, H. Shinagawa, A global view of gravity waves in the thermosphere simulated by a general circulation model. J. Geophys. Res. Space Phys. 119, 5807–5820 (2014). doi: 10.1002/2014JA019848 ADSCrossRefGoogle Scholar
  27. V. Nguyen, S.E. Palo, Transmission of planetary wave effects to the upper atmosphere through eddy diffusion modulation. J. Atmos. Solar-Terr. Phys. 117, 1–6 (2014) ADSCrossRefGoogle Scholar
  28. J. Oberheide, M.E. Hagan, R.G. Roble, Tidal signatures and aliasing in temperature data from slowly precessing satellites. J. Geophys. Res. 108, 1055 (2003a). doi: 10.1029/2002JA009585 Google Scholar
  29. J. Oberheide, M.E. Hagan, R.G. Roble, Correction to tidal signatures and aliasing in temperature data from slowly precessing satellites. J. Geophys. Res. 108, 1213 (2003b). doi: 10.1029/2003JA009967 Google Scholar
  30. J. Oberheide, J.M. Forbes, X. Zhang, S.L. Bruinsma, Climatology of upward propagating diurnal and semidiurnal tides in the thermosphere. J. Geophys. Res. 116, A11306 (2011). doi: 10.1029/2011JA016784 ADSGoogle Scholar
  31. L. Qian, A.G. Burns, B.A. Emery, B. Foster, G. Lu, A. Maute, A.D. Richmond, R.G. Roble, S.C. Solomon, W. Wang, The NCAR TIE-GCM: A community model of the coupled thermosphere/ionosphere system, in Modeling the Ionosphere-Thermosphere System. AGU Geophysical Monograph Series (2014) Google Scholar
  32. A.D. Richmond, E.C. Ridley, R.G. Roble, A thermosphere/ionosphere general circulation model with coupled electrodynamics. Geophys. Res. Lett. 6, 601–604 (1992) ADSCrossRefGoogle Scholar
  33. M.M. Rienecker, M.J. Suarez, R. Gelaro, R. Todling, J. Bacmeister, E. Liu, M.G. Bosilovich, S.D. Schubert, L. Takacs, G.-K. Kim, S. Bloom, J. Chen, D. Collins, A. Conaty, A. da Silva, W. Gu, J. Joiner, R.D. Koster, R. Lucchesi, A. Molod, T. Owens, S. Pawson, P. Pegion, C.R. Redder, R. Reichle, F.R. Robertson, A.G. Ruddick, M. Sienkiewicz, J. Woollen, MERRA: NASA’s modern-era retrospective analysis for research and applications. J. Climate 24, 3624–3648 (2011). doi: 10.1175/JCLI-D-11-00015.1 ADSCrossRefGoogle Scholar
  34. R.G. Roble, The NCAR Thermosphere-Ionosphere-Mesosphere-Electrodynamics General Circulation Model (TIME-GCM), ionosphere models, in STEP Handbook on Ionospheric Models, ed. by R.W. Schunk (Utah State University, Logan, 1995) Google Scholar
  35. R.G. Roble, E.C. Ridley, A thermosphere-ionosphere-mesosphere-electrodynamics general circulation model (TIME-GCM): Equinox solar cycle minimum simulations (30–500 km). Geophys. Res. Lett. 21, 417–420 (1994) ADSCrossRefGoogle Scholar
  36. A.A. Svoboda, J.M. Forbes, S. Miyahara, A space-based climatology of temperatures and densities from diurnal MLT tidal winds, UARS wind measurements. J. Atmos. Sol.-Terr. Phys. 67(16), 1533–1543 (2005) ADSCrossRefGoogle Scholar
  37. S.L. Vadas, H. Liu, Generation of large-scale gravity waves and neutral winds in the thermosphere from the dissipation of convectively generated gravity waves. J. Geophys. Res. 114, A10310 (2009). doi: 10.1029/2009JA014108 ADSCrossRefGoogle Scholar
  38. S.L. Vadas, H. Liu, Numerical modeling of the large-scale neutral and plasma responses to the body forces created by the dissipation of gravity waves from 6 h of deep convection in Brazil. J. Geophys. Res. Space Phys. 118, 2593–2617 (2013). doi: 10.1002/jgra.50249 ADSCrossRefGoogle Scholar
  39. E. Yiğit, A.S. Medvedev, Internal gravity waves in the thermosphere during low and high solar activity: Simulation study. J. Geophys. Res. 115, A00G02 (2010). doi: 10.1029/2009JA015106 Google Scholar
  40. E. Yiğit, A.S. Medvedev, Internal wave coupling processes in Earth’s atmosphere. Adv. Space Res. 55(4), 983–1003 (2015). ISSN 0273-1177. doi: 10.1016/j.asr.2014.11.020 ADSCrossRefGoogle Scholar
  41. J. Yue, W. Wang, Changes of thermospheric composition and ionospheric density caused by quasi-2-day wave dissipation. J. Geophys. Res. Space Phys. 119, 2069–2078 (2014). doi: 10.1002/2013JA019725 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Jeffrey M. Forbes
    • 1
    Email author
  • Xiaoli Zhang
    • 1
  • Maura E. Hagan
    • 2
  • Scott L. England
    • 3
  • Guiping Liu
    • 3
  • Federico Gasperini
    • 1
  1. 1.Department of Aerospace Engineering SciencesUniversity of ColoradoBoulderUSA
  2. 2.Department of PhysicsUtah State UniversityLoganUSA
  3. 3.Space Sciences LaboratoryUniversity of CaliforniaBerkeleyUSA

Personalised recommendations