Advertisement

Space Science Reviews

, Volume 212, Issue 1–2, pp 743–810 | Cite as

Water in the Earth’s Interior: Distribution and Origin

  • Anne H. PeslierEmail author
  • Maria Schönbächler
  • Henner Busemann
  • Shun-Ichiro Karato
Article
Part of the following topical collections:
  1. The Delivery of Water to Protoplanets, Planets and Satellites

Abstract

The concentration and distribution of water in the Earth has influenced its evolution throughout its history. Even at the trace levels contained in the planet’s deep interior (mantle and core), water affects Earth’s thermal, deformational, melting, electrical and seismic properties, that control differentiation, plate tectonics and volcanism. These in turn influenced the development of Earth’s atmosphere, oceans, and life. In addition to the ubiquitous presence of water in the hydrosphere, most of Earth’s “water” actually occurs as trace amounts of hydrogen incorporated in the rock-forming silicate minerals that constitute the planet’s crust and mantle, and may also be stored in the metallic core. The heterogeneous distribution of water in the Earth is the result of early planetary differentiation into crust, mantle and core, followed by remixing of lithosphere into the mantle after plate-tectonics started. The Earth’s total water content is estimated at \(18_{-15}^{+81}\) times the equivalent mass of the oceans (or a concentration of \(3900_{-3300}^{+32700}~\mbox{ppm}\) weight H2O). Uncertainties in this estimate arise primarily from the less-well-known concentrations for the lower mantle and core, since samples for water analyses are only available from the crust, the upper mantle and very rarely from the mantle transition zone (410–670 km depth). For the lower mantle (670–2900 km) and core (2900–4500 km), the estimates rely on laboratory experiments and indirect geophysical techniques (electrical conductivity and seismology).

The Earth’s accretion likely started relatively dry because it mainly acquired material from the inner part of the proto-planetary disk, where temperatures were too high for the formation and accretion of water ice. Combined evidence from several radionuclide systems (Pd-Ag, Mn-Cr, Rb-Sr, U-Pb) suggests that water was not incorporated in the Earth in significant quantities until the planet had grown to \(\sim60\mbox{--}90\%\) of its current size, while core formation was still on-going. Dynamic models of planet formation provide additional evidence for water delivery to the Earth during the same period by water-rich planetesimals originating from the asteroid belt and possibly beyond. This early delivered water may have been partly lost during giant impacts, including the Moon forming event: magma oceans can form in their aftermath, degas and be followed by atmospheric loss. More water may have been delivered and/or lost after core formation during late accretion of extraterrestrial material (“late-veneer”). Stable isotopes of hydrogen, carbon, nitrogen and some noble gases in Earth’s materials show similar compositions to those in carbonaceous chondrites, implying a common origin for their water, and only allowing for minor water inputs from comets.

Keywords

Water Hydrogen Earth Crust Mantle Core Delivery Origin Solar system 

Notes

Acknowledgements

The authors are very grateful to Rosie Jones and an anonymous reviewer for careful detailed comments that greatly improved this manuscript. MS also thanks Hilke Schlichting for inspiring discussions that helped to improve the manuscript. Thanks to editor Michel Blanc and ISSI in Bern (Switzerland) for organizing in February 2016 the workshop on Water delivery to the Solar System from which this book originates. This work was supported by NSF grant #OCE1624310 to AHP and, in part (HB and MS), has been carried out within the frame of the National Centre for Competence in Research ‘PlanetS’ supported by the Swiss National Science Foundation (SNSF).

Supplementary material

11214_2017_387_MOESM1_ESM.xlsx (2.2 mb)
(XLSX 2.2 MB)
11214_2017_387_MOESM2_ESM.xlsx (42 kb)
(XLSX 42 kB)

References

  1. N. Abe, E. Ohtani, T. Okuchi, K. Righter, M.J. Drake, Water in the early Earth, in Origin of the Earth and Moon, ed. by R.M. Canup, K. Righter (University of Arizona Press, Tucson, 2000), pp. 413–433 Google Scholar
  2. G.A. Abers, P.E. van Keken, B.R. Hacker, The cold and relatively dry nature of mantle forearcs in subduction zones. Nat. Geosci. 10, 333–337 (2017) ADSCrossRefGoogle Scholar
  3. J. Adam, M. Turner, E.H. Hauri, S. Turner, Crystal/melt partitioning of water and other volatiles during the near-solidus melting of mantle peridotite: comparisons with non-volatile incompatible elements and implications for the generation of intraplate magmatism. Am. Mineral. 101, 876–888 (2016) ADSCrossRefGoogle Scholar
  4. Y. Aikawa, E. Herbst, Deuterium fractionation in protoplanetary disks. Astrophys. J. 526, 314–326 (1999) ADSCrossRefGoogle Scholar
  5. R.D. Aines, G.R. Rossman, The hydrous component in garnets: pyralspites. Am. Mineral. 69, 1116–1126 (1984) Google Scholar
  6. F. Albarède, Volatile accretion history of the terrestrial planets and dynamic implications. Nature 461, 1227–1233 (2009) ADSCrossRefGoogle Scholar
  7. F. Albarède, C. Ballhaus, J. Blichert-Toft, C.-T. Lee, B. Marty, F. Moynier, Q.-Z. Yin, Asteroidal impacts and the origin of terrestrial and lunar volatiles. Icarus 222, 44–52 (2013) ADSCrossRefGoogle Scholar
  8. C.M.O.D. Alexander, R. Bowden, M.L. Fogel, K.T. Howard, C.D.K. Herd, L.R. Nittler, The provenances of asteroids, and their contributions to the volatile inventories of the terrestrial planets. Science 337, 721–723 (2012) ADSCrossRefGoogle Scholar
  9. C.M.O.D. Alexander, M. Fogel, H. Yabuta, G.D. Cody, The origin and evolution of chondrites recorded in the elemental and isotopic compositions of their macromolecular organic matter. Geochim. Cosmochim. Acta 71, 4380–4403 (2007) ADSCrossRefGoogle Scholar
  10. C.M.O.D. Alexander, The origin of inner Solar System water. Philos. Trans. R. Soc. Lond. A 375, 20150384 (2017) ADSCrossRefGoogle Scholar
  11. C.J. Allègre, G. Manhès, C. Göpel, The age of the Earth. Geochim. Cosmochim. Acta 59, 1445–1456 (1995) ADSCrossRefGoogle Scholar
  12. K. Altwegg, H. Balsiger, A. Bar-Nun, J.J. Berthelier, A. Bieler, P. Bochsler, C. Briois, U. Calmonte, M. Combi, J. De Keyser, P. Eberhardt, B. Fiethe, S. Fuselier, S. Gasc, T.I. Gombosi, K.C. Hansen, M. Hässig, A. Jäckel, E. Kopp, A. Korth, L. LeRoy, U. Mall, B. Marty, O. Mousis, E. Neefs, T. Owen, H. Rème, M. Rubin, T. Sémon, C.-Y. Tzou, H. Waite, P. Wurz, 67P/Churyumov-Gerasimenko, a Jupiter family comet with a high D/H ratio. Science 347, 1261952 (2015) CrossRefGoogle Scholar
  13. Y. Amelin, U–Pb ages of angrites. Geochim. Cosmochim. Acta 72, 221–232 (2008) ADSCrossRefGoogle Scholar
  14. T. Andersen, E.-R. Neumann, Fluid inclusions in mantle xenoliths. Lithos 55, 301–320 (2001) ADSCrossRefGoogle Scholar
  15. M. Andrut, M. Wildner, J. Ingrin, A. Beran, Mechanisms of OH defect incorporation in naturally occurring, hydrothermally formed diopside and jadeite. Phys. Chem. Miner. 34, 543–549 (2007) ADSCrossRefGoogle Scholar
  16. P. Ardia, M.M. Hirschmann, A.C. Withers, T.J. Tenner, H2O storage capacity of olivine at 5–8 GPa and consequences for dehydration partial melting of the upper mantle. Earth Planet. Sci. Lett. 345–348, 104–116 (2012) CrossRefGoogle Scholar
  17. L.S. Armstrong, M.M. Hirschmann, B.D. Stanley, E.G. Falksen, S.D. Jacobsen, Speciation and solubility of reduced C-O-H-N volatiles in mafic melt: implications for volcanism, atmospheric evolution, and deep volatile cycles in terrestrial planets. Geochim. Cosmochim. Acta 171, 283–302 (2015) ADSCrossRefGoogle Scholar
  18. I.M. Artemieva, W.D. Mooney, Thermal thickness and evolution of Precambrian lithosphere: a global study. J. Geophys. Res. 106, 16387–16414 (2001) ADSCrossRefGoogle Scholar
  19. A. Asaduzzaman, K. Muralidharan, J. Ganguly, Incorporation of water into olivine during nebular condensation: insights from density functional theory and thermodynamics, and implications for phyllosilicate formation and terrestrial water inventory. Meteorit. Planet. Sci. 50, 578–589 (2015) ADSCrossRefGoogle Scholar
  20. C. Aubaud, E. Hauri, M.M. Hirschmann, Hydrogen partition coefficients between nominally anhydrous minerals and basaltic melts. Geophys. Res. Lett. 31, L20611 (2004). doi: 10.1029/2004GL021341 ADSCrossRefGoogle Scholar
  21. C. Aubaud, M.M. Hirschmann, A.C. Withers, R.L. Hervig, Hydrogen partitioning between melt, clinopyroxene, and garnet at 3 GPa in a hydrous MORB with 6 wt.% H2O. Contrib. Mineral. Petrol. 156, 607–625 (2008) ADSCrossRefGoogle Scholar
  22. C. Aubaud, A.C. Withers, M.M. Hirschmann, Y. Guan, L.A. Leshin, S.J. Mackwell, D.R. Bell, Intercalibration of FTIR and SIMS for hydrogen measurements in glasses and nominally anhydrous minerals. Am. Mineral. 92, 811–828 (2007) ADSCrossRefGoogle Scholar
  23. S. Aulbach, R.L. Rudnick, W.F. McDonough, Li-Sr-Nd isotope signatures of the plume and cratonic lithospheric mantle beneath the margin of the rifted Tanzanian craton (Labait). Contrib. Mineral. Petrol. 155, 79–92 (2008) ADSCrossRefGoogle Scholar
  24. K. Baba, A. Chave, R.L. Evans, G. Hirth, R.L. Mackie, Mantle dynamics beneath the East Pacific Rise at 17 S: insights from the Mantle Electromagnetic and Tomography (MELT) experiment. J. Geophys. Res. 111, B02101 (2006) ADSGoogle Scholar
  25. J. Badro, A.S. Côté, J.P. Brodholt, A seismologically consistent compositional model of Earth’s core. Proc. Natl. Acad. Sci. 111, 7542–7545 (2014) ADSCrossRefGoogle Scholar
  26. E. Bali, A. Audédat, H. Keppler, Water and hydrogen are immiscible in Earth’s mantle. Nature 495, 220–222 (2013) ADSCrossRefGoogle Scholar
  27. E. Bali, N. Bolfan-Casanova, K.T. Koga, Pressure and temperature dependence of H solubility in forsterite: an implication to water activity in the Earth interior. Earth Planet. Sci. Lett. 268, 354–363 (2008) ADSCrossRefGoogle Scholar
  28. C. Ballhaus, V. Laurenz, C. Münker, R.O.C. Fonseca, F. Albarède, A. Rohrbach, M. Lagos, M.W. Schmidt, K.-P. Jochum, B. Stoll, U. Weis, H.M. Helmy, The U/Pb ratio of the Earth’s mantle—a signature of late volatile addition. Earth Planet. Sci. Lett. 362, 237–245 (2013) ADSCrossRefGoogle Scholar
  29. H. Balsiger, K. Altwegg, J. Geiss, D/H and 18O/16O ratio in the hydronium ion and in neutral water from in situ ion measurements in comet Halley. J. Geophys. Res. 100, 5827–5834 (1995) ADSCrossRefGoogle Scholar
  30. H. Balsiger, K. Altwegg, A. Bar-Nun, J.-J. Berthelier, A. Bieler, P. Bochsler, C. Briois, U. Calmonte, M. Combi, J. De Keyser, P. Eberhardt, B. Fiethe, S.A. Fuselier, S. Gasc, T.I. Gombosi, K.C. Hansen, M. Hässig, A. Jäckel, E. Kopp, A. Korth, L. Le Roy, U. Mall, B. Marty, O. Mousis, T. Owen, H. Rème, M. Rubin, T. Sémon, C.-Y. Tzou, J.H. Waite, P. Wurz, Detection of argon in the coma of comet 67P/Churyumov–Gerasimenko. Sci. Adv. 1 (2015) Google Scholar
  31. V. Baptiste, S. Demouchy, S. Keshav, F. Parat, N. Bolfan-Casanova, P. Condamine, P. Cordier, Decrease of hydrogen incorporation in forsterite from CO2-H2O-rich kimberlitic liquid. Am. Mineral. 100, 1912–1920 (2015) ADSCrossRefGoogle Scholar
  32. V. Baptiste, A. Tommasi, Petrophysical constraints on the seismic properties of the Kaapvaal craton mantle root. Solid Earth 5, 1–19 (2014) CrossRefGoogle Scholar
  33. V. Baptiste, A. Tommasi, S. Demouchy, Deformation and hydration of the lithospheric mantle beneath the Kaapvaal craton, South Africa. Lithos 149, 31–50 (2012) ADSCrossRefGoogle Scholar
  34. A. Bar-Nun, T. Owen, Trapping of gases in water ice and consequences to comets and the atmospheres of the inner planets, in Solar System Ices, ed. by B. Schmitt, C. De Bergh, M. Festou (Springer, Dordrecht, 1998), pp. 353–366 CrossRefGoogle Scholar
  35. J.J. Barnes, D.A. Kring, R. Tartèse, I.A. Franchi, M. Anand, S.S. Russell, An asteroidal origin for water in the Moon. Nat. Commun. 7, 11684 (2016) ADSCrossRefGoogle Scholar
  36. J.J. Barnes, R. Tartèse, M. Anand, F.M. McCubbin, I.A. Franchi, N.A. Starkey, S.S. Russell, The origin of water in the primitive Moon as revealed by the lunar highlands samples. Earth Planet. Sci. Lett. 390, 244–252 (2014) ADSCrossRefGoogle Scholar
  37. T.J. Barrett, J.J. Barnes, R. Tartèse, M. Anand, I.A. Franchi, R.C. Greenwood, B.L.A. Charlier, M.M. Grady, The abundance and isotopic composition of water in eucrites. Meteorit. Planet. Sci. 51, 1110–1124 (2016) ADSCrossRefGoogle Scholar
  38. G.E. Bebout, Volatile transfer and recycling at convergent margins: mass-balance and insights from high-P/T metamorphic rocks, in Subduction Top to Bottom, ed. by G.E. Bebout, D.W. Scholl, S.H. Kirby, J.P. Platt (American Geophysical Union, Washington, 1996), pp. 179–193 CrossRefGoogle Scholar
  39. W. Behr, D. Smith, Deformation in the mantle wedge associated with Laramide flat-slab subduction. Geochem. Geophys. Geosyst. 17, 1–18 (2016) CrossRefGoogle Scholar
  40. D.R. Bell, Water in mantle minerals. Nature 357, 646–647 (1992) ADSCrossRefGoogle Scholar
  41. D.R. Bell, M. Grégoire, T.L. Grove, N. Chatterjee, R.W. Carlson, P.R. Buseck, Silica and volatile-element metasomatism of Archean mantle: a xenolith-scale example from the Kaapvaal craton. Contrib. Mineral. Petrol. 150, 251–267 (2005) ADSCrossRefGoogle Scholar
  42. D.R. Bell, P.D. Ihinger, The isotopic composition of hydrogen in nominally anhydrous mantle minerals. Geochim. Cosmochim. Acta 64, 2109–2118 (2000) ADSCrossRefGoogle Scholar
  43. D.R. Bell, P.D. Ihinger, G.R. Rossman, Quantitative analysis of trace OH in garnet and pyroxenes. Am. Mineral. 80, 465–474 (1995) ADSCrossRefGoogle Scholar
  44. D.R. Bell, R.O. Moore, Deep chemical structure of the southern African mantle from kimberlite megacrysts. S. Afr. J. Geol. 107, 59–80 (2004) CrossRefGoogle Scholar
  45. D.R. Bell, G.R. Rossman, The distribution of hydroxyl in garnets from the subcontinental mantle in southern Africa. Contrib. Mineral. Petrol. 111, 161–178 (1992a) ADSCrossRefGoogle Scholar
  46. D.R. Bell, G.R. Rossman, Water in Earth’s mantle: the role of nominally anhydrous minerals. Science 255, 1391–1397 (1992b) ADSCrossRefGoogle Scholar
  47. D.R. Bell, G.R. Rossman, J. Maldener, D. Endisch, F. Rauch, Hydroxide in olivine: a quantitative determination of the absolute amount and calibration of the IR spectrum. J. Geophys. Res. 108(B2), 2105 (2003a) ADSCrossRefGoogle Scholar
  48. D.R. Bell, M.D. Schmitz, P.E. Janney, Mesozoic thermal evolution of the southern African mantle lithosphere. Lithos 71, 273–287 (2003b) ADSCrossRefGoogle Scholar
  49. D.R. Bell, G.R. Rossman, J. Maldener, D. Endisch, F. Rauch, Hydroxide in kyanite; a quantitative determination of the absolute amount and calibration of the IR spectrum. Am. Mineral. 89, 998–1003 (2004a) ADSCrossRefGoogle Scholar
  50. D.R. Bell, G.R. Rossman, R.O. Moore, Abundance and partitioning of OH in a high pressure magmatic system: megacrysts from the Monastery kimberlite, South Africa. J. Petrol. 45, 1539–1564 (2004b) ADSCrossRefGoogle Scholar
  51. W. Ben-Ismail, G. Barruol, D. Mainprice, The Kaapvaal craton seismic anisotropy: petrophysical analyses of upper mantle kimberlite nodules. Geophys. Res. Lett. 28, 2497–2500 (2001) ADSCrossRefGoogle Scholar
  52. A. Bénard, K.T. Koga, N. Shimizu, M.A. Kendrick, D.A. Ionov, O. Nebel, R.J. Arculus, Chlorine and fluorine partition coefficients and abundances in sub-arc mantle xenoliths (Kamchatka, Russia): implications for melt generation and volatile recycling processes in subduction zones. Geochim. Cosmochim. Acta 199, 324–350 (2017) ADSCrossRefGoogle Scholar
  53. W. Benz, W.L. Slattery, A.G.W. Cameron, The origin of the moon and the single-impact hypothesis I. Icarus 66, 515–535 (1986) ADSCrossRefGoogle Scholar
  54. A. Beran, Messung des Ultrarot-Pleochroismus von Mineralen. XIV. Der Pleochroismus der OH-Streckfrequenz in Diopsid. Tschermak’s Mineral. Petrogr. Mitt. 23, 79–85 (1976) CrossRefGoogle Scholar
  55. A. Beran, E. Libowitzky, Water in natural mantle minerals II: olivine, garnet and accessory minerals, in Water in Nominally Anhydrous Minerals, ed. by H. Keppler, J.R. Smyth (Mineralogical Society of America, Chantilly, 2006), pp. 169–191 Google Scholar
  56. D. Bercovici, S.-I. Karato, Whole-mantle convection and the transition-zone water filter. Nature 425, 39–44 (2003) ADSCrossRefGoogle Scholar
  57. M.I. Billen, M. Gurnis, A low viscosity wedge in subduction zones. Earth Planet. Sci. Lett. 193, 227–236 (2001) ADSCrossRefGoogle Scholar
  58. F. Birch, Elasticity and constitution of the Earth’s interior. J. Geophys. Res. 57, 227–286 (1952) ADSCrossRefGoogle Scholar
  59. M. Bizimis, A.H. Peslier, Water in Hawaiian garnet pyroxenites: implications for water heterogeneity in the mantle. Chem. Geol. 397, 61–75 (2015) ADSCrossRefGoogle Scholar
  60. M. Bizimis, G. Sen, V.J.M. Salters, Hf-Nd isotope decoupling in the oceanic lithosphere: constraints from spinel peridotites from Oahu, Hawaii. Earth Planet. Sci. Lett. 217, 43–58 (2004) ADSCrossRefGoogle Scholar
  61. D. Bockelée-Morvan, U. Calmonte, S. Charnley, J. Duprat, C. Engrand, A. Gicquel, M. Hässig, E. Jehin, H. Kawakita, B. Marty, S. Milam, A.D. Morse, P. Rousselot, S. Sheridan, E. Wirström, Cometary isotopic measurements. Space Sci. Rev. 197, 47–83 (2015) ADSCrossRefGoogle Scholar
  62. J.-L. Bodinier, M. Godard, Orogenic, ophiolitic, and abyssal peridotites, in Treatise on Geochemistry, ed. by R. Carlson (Elsevier, Oxford, 2003), pp. 103–170 Google Scholar
  63. R.J. Bodnar, T. Azbej, S.P. Becker, C. Cannatelli, A. Fall, M. Severs, Whole Earth geohydrologic cycle, from the clouds to the core: the distribution of water in the dynamic Earth system. Spec. Pap., Geol. Soc. Am. 500, 431–461 (2013) Google Scholar
  64. D.D. Bogard, R.N. Clayton, K. Marti, T. Owen, G. Turner, Martian volatiles: isotopic composition, origin, and evolution. Space Sci. Rev. 96, 425–458 (2001) ADSCrossRefGoogle Scholar
  65. N. Bolfan-Casanova, Water in the Earth’s mantle. Mineral. Mag. 69, 229–257 (2005) CrossRefGoogle Scholar
  66. N. Bolfan-Casanova, H. Keppler, D.C. Rubie, Water partitioning between nominally anhydrous minerals in the MgO-SiO2-H2O system up to 24 GPa: implications for the distribution of water in the Earth’s mantle. Earth Planet. Sci. Lett. 182, 209–221 (2000) ADSCrossRefGoogle Scholar
  67. F.R. Boyd, Compositional distinction between oceanic and cratonic lithosphere. Earth Planet. Sci. Lett. 96, 15–26 (1989) ADSCrossRefGoogle Scholar
  68. F.R. Boyd, J.J. Gurney, S.H. Richardson, Evidence for a 150–200 km thick Archean lithosphere from diamond inclusion thermobarometry. Nature 315, 387–389 (1985) ADSCrossRefGoogle Scholar
  69. F.R. Boyd, N.P. Pokhilenko, D.G. Pearson, S.A. Mertzman, N.V. Sobolev, L.W. Finger, Composition of the Siberian cratonic mantle: evidence from Udachnaya peridotite xenoliths. Contrib. Mineral. Petrol. 128, 228–246 (1997) ADSCrossRefGoogle Scholar
  70. J.P. Bradley, Water and organics in interplanetary dust particles (American Astronomical Society Assembly, Honolulu, 2015) Google Scholar
  71. J.P. Bradley, H.A. Ishii, J.J. Gillis-Davis, J. Ciston, M.H. Nielsen, H.A. Bechtel, M.C. Martin, Detection of solar wind-produced water in irradiated rims on silicate minerals. Proc. Natl. Acad. Sci. 111, 1732–1735 (2014) ADSCrossRefGoogle Scholar
  72. A.D. Brandon, D.S. Draper, Constraints on the origin of the oxidation state of mantle overlying subduction zones: an example from Simcoe, Washington, USA. Geochim. Cosmochim. Acta 60, 1739–1749 (1996) ADSCrossRefGoogle Scholar
  73. A.D. Brandon, R.J. Walker, J.W. Morgan, M.D. Norman, H.M. Prichard, Coupled 186Os and 187Os evidence for core-mantle interaction. Science 280, 1570–1573 (1998) ADSCrossRefGoogle Scholar
  74. J. Braunmiller, S. van der Lee, L. Doermann, Mantle transition zone thickness in the central South-American subduction zone, in Earth’s Deep Water Cycle, ed. by S. Jacobsen, S. Lee (AGU Geophysical Monograph, Washington D.C., 2006), pp. 215–224 CrossRefGoogle Scholar
  75. G.P. Brey, T. Köhler, Geothermobarometry in four-phase lherzolites II. New thermobarometers, and practical assessment of existing thermobarometers. J. Petrol. 31, 1353–1378 (1990) ADSCrossRefGoogle Scholar
  76. G.P. Brey, T. Köhler, K.G. Nickel, Geothermobarometry in four-phase lherzolites I. Experimental results from 10 to 60 kb. J. Petrol. 31, 1313–1352 (1990) ADSCrossRefGoogle Scholar
  77. D.E. Brownlee, Comets, in Treatise on Geochemistry, ed. by A.S. Davis 2nd edn. (Elsevier, Amsterdam, 2014), pp. 335–363 CrossRefGoogle Scholar
  78. H. Bureau, H. Keppler, Complete miscibility between silicate melts and hydrous fluids in the upper mantle: experimental evidence and geochemical implication. Earth Planet. Sci. Lett. 165, 187–196 (1999) ADSCrossRefGoogle Scholar
  79. S.R. Burgess, B. Harte, Tracing lithosphere evolution through the analysis of heterogeneous G9–G10 garnets in peridotite xenoliths, II: REE chemistry. J. Petrol. 43, 609–634 (2004) ADSCrossRefGoogle Scholar
  80. K. Burke, B. Steinberger, T.H. Torsvik, M.A. Smethurst, Plume generation zones at the margins of Large Low Shear Velocity Provinces on the core-mantle boundary. Earth Planet. Sci. Lett. 265, 49–60 (2008) ADSCrossRefGoogle Scholar
  81. H. Busemann, H. Baur, R. Wieler, Primordial noble gases in “phase Q” in carbonaceous and ordinary chondrites studied by closed-system stepped etching. Meteorit. Planet. Sci. 35, 949–973 (2000) ADSCrossRefGoogle Scholar
  82. H. Busemann, H. Baur, R. Wieler, Helium isotopic ratios in carbonaceous chondrites: significant for the early solar nebula and circumstellar diamonds? in 32nd Lunar and Planetary Science Conference, The Woodlands, TX (2001) Google Scholar
  83. H. Busemann, O. Eugster, The trapped noble gas component in achondrites. Meteorit. Planet. Sci. 37, 1865–1891 (2002) ADSCrossRefGoogle Scholar
  84. H. Busemann, A.N. Nguyen, G.D. Cody, P. Hoppe, A.L.D. Kilcoyne, R.M. Stroud, T.J. Zega, L.R. Nittler, Ultra-primitive interplanetary dust particles from the comet 26P/Grigg-Skjellerup dust stream collection. Earth Planet. Sci. Lett. 288, 44–57 (2009) ADSCrossRefGoogle Scholar
  85. H. Busemann, N. Spring, S. Crowther, J. Claydon, J. Gilmour, L. Nittler, Abundant primordial xenon in interplanetary dust particles from the comet Grigg-Skjellerup collection, in Lunar Planet. Sci. Conf., The Woodlands, TX (2010), p. 1947 Google Scholar
  86. H. Busemann, A.F. Young, C.M.O.D. Alexander, P. Hoppe, S. Mukhopadhyay, L.R. Nittler, Interstellar chemistry recorded in organic matter from primitive meteorites. Science 312, 727–730 (2006) ADSCrossRefGoogle Scholar
  87. J.A. Cabato, C.J. Stefano, S.B. Mukasa, Volatile concentrations in olivine-hosted melt inclusions from the Columbia River flood basalts and associated lavas of the Oregon Plateau: implications for magma genesis. Chem. Geol. 392, 59–73 (2015) ADSCrossRefGoogle Scholar
  88. R.A. Cabral, M.G. Jackson, K.T. Koga, E.F. Rose-Koga, E.H. Hauri, M.J. Whitehouse, A.A. Price, J.M.D. Day, N. Shimizu, K.A. Kelley, Volatile cycling of H2O, CO2, F, and Cl in the HIMU mantle: a new window provided by melt inclusions from oceanic hot spot lavas at Mangaia, Cook Islands. Geochem. Geophys. Geosyst. 15, 4445–4467 (2014). doi: 10.1002/2014GC005473 ADSCrossRefGoogle Scholar
  89. R.M. Canup, Forming a Moon with an Earth-like composition via a giant impact. Science 338, 1052–1055 (2012) ADSCrossRefGoogle Scholar
  90. Y. Cao, H. Jung, S. Song, M. Park, S. Jung, J. Lee, Plastic deformation and seismic properties in fore-arc mantles: a petrofabric analysis of the Yushigou harzburgites, North Qilian Suture Zone, NW China. J. Petrol. 56, 1897–1944 (2015) ADSCrossRefGoogle Scholar
  91. R. Caracas, The influence of hydrogen on the seismic properties of solid iron. Geophys. Res. Lett. 42, 3780–3785 (2015) ADSCrossRefGoogle Scholar
  92. A. Caracausi, G. Avice, P.G. Burnard, E. Füri, B. Marty, Chondritic xenon in the Earth’s mantle. Nature 533, 82–85 (2016) ADSCrossRefGoogle Scholar
  93. R.W. Carlson, M. Boyet, H. Rizo, R.J. Walker, Early differentiation and its long-term consequences for Earth evolution, in The Early Earth: Accretion and Differentiation, ed. by J. Badro, M.J. Walter (Wiley, New Jersey, 2015), pp. 143–172 CrossRefGoogle Scholar
  94. R.W. Carlson, D.G. Pearson, F.R. Boyd, S.B. Shirey, G. Irvine, A.H. Menzies, J.J. Gurney, Re-Os systematics of lithospheric peridotites: implications for lithosphere formation and preservation, in Proc. VIIth International Kimberlite Conference, B.J. Dawson Volume, ed. by J.J. Gurney, J.L. Gurney, M.D. Pascoe, S.R. Richardson (1999), pp. 99–108 Google Scholar
  95. M.R. Carroll, J.D. Webster, Solubilities of sulfur, noble gases, nitrogen, chlorine, and fluorine in magmas, in Volatiles in Magmas, ed. by M.R. Carroll, J.R. Holloway (Mineralogical Society of America, Washington D.C., 1994), pp. 231–279 Google Scholar
  96. P. Cartigny, B. Marty, Nitrogen isotopes and mantle geodynamics: the emergence of life and the atmosphere-crust-mantle connection. Elements 9, 359–366 (2013) CrossRefGoogle Scholar
  97. N.L. Chabot, E.A. Wollack, M. Humayun, E.M. Shank, The effect of oxygen as a light element in metallic liquids on partitioning behavior. Meteorit. Planet. Sci. 50, 530–546 (2015) ADSCrossRefGoogle Scholar
  98. Y.-Y. Chang, W.-P. Hsieh, E. Tan, J. Chen, Hydration-reduced lattice thermal conductivity of olivine in Earth’s upper mantle. Proc. Natl. Acad. Sci. 114, 4078–4081 (2017) CrossRefGoogle Scholar
  99. Y. Chen, A. Provost, P. Schiano, N. Cluzel, Magma ascent rate and initial water concentration inferred from diffusive water loss from olivine-hosted melt inclusions. Contrib. Mineral. Petrol. 165, 525–541 (2013) ADSCrossRefGoogle Scholar
  100. E.J. Chin, V. Soustelle, G. Hirth, A.E. Saal, S.C. Kruckenberg, J.M. Eiler, Microstructural and geochemical constraints on the evolution of deep arc lithosphere. Geochem. Geophys. Geosyst. 17, 2497–2521 (2016) ADSCrossRefGoogle Scholar
  101. C.-L. Chou, Fractionation of siderophile elements in the Earth’s upper mantle, in Proc. Lunar Planet. Sci. Conf, vol. 9 (1978), pp. 219–230 Google Scholar
  102. P.L. Clay, H. Busemann, S.C. Sherlock, T.L. Barry, S.P. Kelley, D.W. McGarvie, 40Ar/39Ar ages and residual volatile contents in degassed subaerial and subglacial glassy volcanic rocks from Iceland. Chem. Geol. 403, 99–110 (2015) ADSCrossRefGoogle Scholar
  103. L.I. Cleeves, E.A. Bergin, C.M.O.D. Alexander, F. Du, D. Graninger, K.I. Öberg, T.J. Harries, The ancient heritage of water ice in the solar system. Science 345, 1590–1593 (2014) ADSCrossRefGoogle Scholar
  104. M. Clog, C. Aubaud, P. Cartigny, L. Dosso, The hydrogen isotopic composition and water content of southern Pacific MORB: a reassessment of the D/H ratio of the depleted mantle reservoir. Earth Planet. Sci. Lett. 381, 156–165 (2013) ADSCrossRefGoogle Scholar
  105. J.N. Connelly, M. Bizzarro, Lead isotope evidence for a young formation age of the Earth-Moon system. Earth Planet. Sci. Lett. 452, 36–43 (2016) ADSCrossRefGoogle Scholar
  106. A.M. Courtier, J. Revenaugh, A water-rich transition zone beneath the Eastern United States and Gulf of Mexico from multiple ScS reverberations, in Earth’s Deep Water Cycle, ed. by S. Jacobsen, S. Lee (AGU Geophysical Monograph, Washington D.C., 2006), pp. 181–194 CrossRefGoogle Scholar
  107. S. Creighton, T. Stachel, S. Matveev, H. Höfer, C.A. McCammon, R.W. Luth, Oxidation of the Kaapvaal lithospheric mantle derived by metasomatism. Contrib. Mineral. Petrol. 157, 491–504 (2009) ADSCrossRefGoogle Scholar
  108. L. Dai, S.-I. Karato, Electrical conductivity of orthopyroxene: implications for the water content of the asthenosphere. Proc. Jpn. Acad. Ser. B, Phys. Biol. Sci. 85, 466–475 (2009) CrossRefGoogle Scholar
  109. L.V. Danyushevsky, Experimental and petrological studies of melt inclusions in phenocrysts from mantle-derived magmas: an overview of techniques, advantages and complications. Chem. Geol. 183, 5–24 (2002) ADSCrossRefGoogle Scholar
  110. L.V. Danyushevsky, T.J. Fallon, A.V. Sobolev, A.J. Crawford, M. Carroll, R.C. Price, The H2O content of basalt glasses from southwest Pacific back-arc basins. Earth Planet. Sci. Lett. 117, 347–362 (1993) ADSCrossRefGoogle Scholar
  111. N. Dauphas, The dual origin of the terrestrial atmosphere. Icarus 165, 326–339 (2003) ADSCrossRefGoogle Scholar
  112. N. Dauphas, A. Morbidelli, Geochemical and planetary dynamical views on the origin of Earth’s atmosphere and oceans, in Treatise on Geochemistry, ed. by A.S. Davis 2nd edn. (Elsevier, Amsterdam, 2014), pp. 1–35 Google Scholar
  113. N. Dauphas, The isotopic nature of the Earth’s accreting material through time. Nature 541, 521–524 (2017) ADSCrossRefGoogle Scholar
  114. J.B. Dawson, J.V. Smith, The MARID (mica-amphibole-rutile-ilmenite-diopside) suite of xenoliths in kimberlite. Geochim. Cosmochim. Acta 41, 309–323 (1977) ADSCrossRefGoogle Scholar
  115. J.C.M. De Hoog, C.J. Lissenberg, R.A. Brooker, R. Hinton, D. Trail, E. Hellebrand, Hydrogen incorporation and charge balance in natural zircon. Geochim. Cosmochim. Acta 141, 472–486 (2014) ADSCrossRefGoogle Scholar
  116. V. Debaille, C. O’Neill, A.D. Brandon, P. Haenecour, Q.-Z. Yin, N. Mattielli, A.H. Treiman, Stagnant-lid tectonics in early Earth revealed by 142Nd variations in late Archean rocks. Earth Planet. Sci. Lett. 373, 83–92 (2013) ADSCrossRefGoogle Scholar
  117. B. Debret, N. Bolfan-Casanova, J.A. Padrón-Navarta, F. Martin-Hernandez, M. Andreani, C.J. Garrido, V. López Sánchez-Vizcaíno, M.T. Gómez-Pugnaire, M. Muñoz, N. Trcera, Redox state of iron during high-pressure serpentinite dehydration. Contrib. Mineral. Petrol. 169, 1–18 (2015) CrossRefGoogle Scholar
  118. H. Delavault, C. Chauvel, E. Thomassot, C. Devey, B. Dazas, Relicts of Archean Sediment in the Present Earth Mantle (Goldschmidt, Yokohama, 2016), p. 633 Google Scholar
  119. E. Deloule, F. Albarède, S.M.F. Sheppard, Hydrogen isotope heterogeneities in the mantle from ion probe analysis of amphibole from ultramafic rocks. Earth Planet. Sci. Lett. 105, 543–553 (1991) ADSCrossRefGoogle Scholar
  120. S. Demouchy, N. Bolfan-Casanova, Distribution and transport of hydrogen in the lithospheric mantle: a review. Lithos 240–243, 402–425 (2016) CrossRefGoogle Scholar
  121. S. Demouchy, E. Deloule, D.J. Frost, H. Keppler, Pressure and temperature dependence of water solubility in Fe-free wadsleyite. Am. Mineral. 90, 1084–1091 (2005) ADSCrossRefGoogle Scholar
  122. S. Demouchy, A. Ishikawa, A. Tommasi, O. Alard, S. Keshav, Characterization of hydration in the mantle lithosphere: peridotite xenoliths from the Ontong Java Plateau as an example. Lithos 212–215, 189–201 (2015) CrossRefGoogle Scholar
  123. S. Demouchy, S.D. Jacobsen, F. Gaillard, C.R. Stern, Rapid magma ascent recorded by water diffusion profiles in olivine from Earth’s mantle. Geology 34, 429–432 (2006) ADSCrossRefGoogle Scholar
  124. S. Demouchy, S. Mackwell, Mechanisms of hydrogen incorporation and diffusion in iron-bearing olivine. Phys. Chem. Miner. 33, 347 (2006) ADSCrossRefGoogle Scholar
  125. S. Demouchy, A. Tommasi, F. Barou, D. Mainprice, P. Cordier, Deformation of olivine in torsion under hydrous conditions. Phys. Earth Planet. Inter. 202–203, 56–70 (2012) CrossRefGoogle Scholar
  126. C.M.M. Denis, O. Alard, S. Demouchy, Water content and hydrogen behaviour during metasomatism in the uppermost mantle beneath Ray Pic volcano (Massif Central France). Lithos 236–237, 256–274 (2015) CrossRefGoogle Scholar
  127. C.M.M. Denis, S. Demouchy, C.S.J. Shaw, Evidence of dehydration in peridotites from Eifel volcanic field and estimates of the rate of magma ascent. J. Volcanol. Geotherm. Res. 258, 85–99 (2013) ADSCrossRefGoogle Scholar
  128. J.E. Dixon, Degassing of alkalic basalts. Am. Mineral. 82, 368–378 (1997) ADSCrossRefGoogle Scholar
  129. J.E. Dixon, D.A. Clague, Volatiles in basaltic glasses from Loihi seamount, Hawaii: evidence for a relatively dry plume component. J. Petrol. 42, 627–634 (2001) ADSCrossRefGoogle Scholar
  130. J.E. Dixon, D.A. Clague, B. Cousens, M.L. Monsalve, J. Uhl, Carbonatite and silicate melt metasomatism of the mantle surrounding the Hawaiian plume: evidence from volatiles, trace elements, and radiogenic isotopes in rejuvenated-stage lavas from Niihau, Hawaii. Geochem. Geophys. Geosyst. 9, 1–34 (2008) CrossRefGoogle Scholar
  131. J.E. Dixon, D.A. Clague, E.M. Stolper, Degassing history of water, sulfur, and carbon in submarine lavas from Kilauea volcano, Hawaii. J. Geol. 99, 371–394 (1991) ADSGoogle Scholar
  132. J.E. Dixon, T.H. Dixon, D.R. Bell, R. Malservisi, Lateral variation in upper mantle viscosity: role of water. Earth Planet. Sci. Lett. 222, 451–467 (2004) ADSCrossRefGoogle Scholar
  133. J.E. Dixon, L. Leist, C. Langmuir, J.-G. Schilling, Recycled dehydrated lithosphere observed in plume-influenced mid-ocean-ridge basalt. Nature 420, 385–389 (2002) ADSCrossRefGoogle Scholar
  134. J.E. Dixon, E. Stolper, J.R. Delaney, Infrared spectroscopic measurements of CO2 and H2O in Juan de Fuca basaltic glasses. Earth Planet. Sci. Lett. 90, 87–104 (1988) ADSCrossRefGoogle Scholar
  135. J.E. Dixon, E.M. Stolper, An experimental study of water and carbon dioxide solubilities in mid-ocean ridge basaltic liquids. Part II: application to degassing. J. Petrol. 36, 1633–1646 (1995) Google Scholar
  136. L.S. Doucet, D.A. Ionov, A.V. Golovin, The origin of coarse garnet peridotites in cratonic lithosphere: new data on xenoliths from the Udachnaya kimberlite, central Siberia. Contrib. Mineral. Petrol. 165, 1225–1242 (2013) ADSCrossRefGoogle Scholar
  137. L.S. Doucet, D.A. Ionov, A.V. Golovin, Paleoproterozoic formation age for the Siberian cratonic mantle: Hf and Nd isotope data on refractory peridotite xenoliths from the Udachnaya kimberlite. Chem. Geol. 391, 42–55 (2015) ADSCrossRefGoogle Scholar
  138. L.S. Doucet, A.H. Peslier, D.A. Ionov, A.D. Brandon, A.V. Golovin, A.G. Goncharov, I.V. Ashchepkov, High water contents in the Siberian cratonic mantle linked to metasomatism: an FTIR study of Udachnaya peridotite xenoliths. Geochim. Cosmochim. Acta 137, 159–187 (2014) ADSCrossRefGoogle Scholar
  139. M.J. Drake, Origin of water in the terrestrial planets. Meteorit. Planet. Sci. 40, 519–527 (2005). doi: 10.1111/j.1945-5100.2005.tb00960.x ADSCrossRefGoogle Scholar
  140. A.M. Dziewonski, D.L. Anderson, Preliminary reference Earth model. Phys. Earth Planet. Inter. 25, 297–356 (1981) ADSCrossRefGoogle Scholar
  141. D.W. Eaton, F. Darbyshire, R.L. Evans, H. Grütter, A.G. Jones, X. Yuan, The elusive lithosphere-asthenosphere boundary (LAB) beneath cratons. Lithos 109, 1–22 (2008) ADSCrossRefGoogle Scholar
  142. P. Eberhardt, M. Reber, D. Krankowsky, R.R. Hodges, The D/H and 18O/16O ratios in water from comet P/Halley. Astron. Astrophys. 302, 301–316 (1995) ADSGoogle Scholar
  143. M. Edmonds, S.C. Kohn, E.H. Hauri, M.C.S. Humphreys, M. Cassidy, Extensive, water-rich magma reservoir beneath southern Montserrat. Lithos 252–253, 216–233 (2016) CrossRefGoogle Scholar
  144. R.A. Eggleton, J.N. Boland, A.E. Ringwood, High pressure synthesis of a new aluminium silicate: Al5Si5O17(OH). Geochem. J. 12, 191–194 (1978) CrossRefGoogle Scholar
  145. L.T. Elkins-Tanton, Linked magma ocean solidification and atmospheric growth for Earth and Mars. Earth Planet. Sci. Lett. 271, 181–191 (2008) ADSCrossRefGoogle Scholar
  146. L.T. Elkins-Tanton, T.L. Grove, Water (hydrogen) in the lunar mantle: results from petrology and magma ocean modeling. Earth Planet. Sci. Lett. 307, 173–179 (2011) ADSCrossRefGoogle Scholar
  147. R.L. Evans, G. Hirth, K. Baba, D.W. Forsyth, A. Chave, R. Mackie, Geophysical evidence from the MELT area for compositional controls on oceanic plates. Nature 437, 249–252 (2005) ADSCrossRefGoogle Scholar
  148. M. Faccenda, Water in the slab: a trilogy. Tectonophysics 614, 1–30 (2014) ADSCrossRefGoogle Scholar
  149. M. Faccenda, T.V. Gerya, N.S. Mancktelow, L. Moresi, Fluid flow during slab unbending and dehydration: implications for intermediate-depth seismicity, slab weakening and deep water recycling. Geochem. Geophys. Geosyst. 13, 1–23 (2012) CrossRefGoogle Scholar
  150. J. Farquhar, B. Wing, K.D. McKeegan, J.W. Harris, P. Cartigny, M.H. Thiemens, Mass-independent sulfur of inclusions in diamond and sulfur recycling on early Earth. Science 298, 2369–2372 (2002) ADSCrossRefGoogle Scholar
  151. J.R. Farver, Oxygen and hydrogen diffusion in minerals, in Diffusion in Minerals and Melts, ed. by Y. Zhang, D.J. Cherniak (Mineralogical Society of America, Geochemical Society, Chantilly, 2010), pp. 447–507 Google Scholar
  152. U.H. Faul, C.J. Cline Ii, E.C. David, A.J. Berry, I. Jackson, Titanium-hydroxyl defect-controlled rheology of the Earth’s upper mantle. Earth Planet. Sci. Lett. 452, 227–237 (2016) ADSCrossRefGoogle Scholar
  153. A. Férot, N. Bolfan-Casanova, Water storage capacity in olivine and pyroxene to 14 GPa: implications for the water content of the Earth’s upper mantle and nature of seismic discontinuities. Earth Planet. Sci. Lett. 349–350, 218–230 (2012) CrossRefGoogle Scholar
  154. E. Ferriss, T. Plank, D. Walker, Site-specific hydrogen diffusion rates during clinopyroxene dehydration. Contrib. Mineral. Petrol. 171, 1–24 (2016) CrossRefGoogle Scholar
  155. H. Feuchtgruber, E. Lellouch, B. Bézard, T. Encrenaz, T. de Graauw, G. Davis, Detection of HD in the atmospheres of Uranus and Neptune: a new determination of the D/H ratio. Astron. Astrophys. 341, L17–L21 (1999) ADSGoogle Scholar
  156. J. Filip, M. Novák, A. Beran, R. Zbořil, Crystal chemistry and OH defect concentrations in spodumene from different granitic pegmatites. Phys. Chem. Miner. 32, 733–746 (2006) ADSCrossRefGoogle Scholar
  157. G. Fiquet, F. Guyot, J. Badro, The Earth’s lower mantle and core. Elements 4, 177–182 (2008) CrossRefGoogle Scholar
  158. M. Fischer-Gödde, T. Kleine, Ruthenium isotopic evidence for an inner Solar System origin of the late veneer. Nature 541, 525–527 (2017) ADSCrossRefGoogle Scholar
  159. K.M. Fisher, H.A. Ford, D.L. Abt, C.A. Rychert, The lithosphere-asthenosphere boundary. Annu. Rev. Earth Planet. Sci. 38, 551–575 (2010) ADSCrossRefGoogle Scholar
  160. C. Fitoussi, B. Bourdon, Silicon isotope evidence against an enstatite chondrite Earth. Science 335, 1477–1480 (2012) ADSCrossRefGoogle Scholar
  161. K. Fleming, Z. Martinec, D. Wolf, Glacial-isostatic adjustment and the viscosity structure underlying the Vatnajökull ice cap, Iceland. Pure Appl. Geophys. 164, 751–768 (2007) ADSCrossRefGoogle Scholar
  162. S.F. Foley, S. Buhre, D.E. Jacob, Evolution of the Archaean crust by delamination and shallow subduction. Nature 421, 249–252 (2003) ADSGoogle Scholar
  163. T. Fouchet, P.G.J. Irwin, P. Parrish, S.B. Calcutt, F.W. Taylor, C.A. Nixon, T. Owen, Search for spatial variation in the jovian 15N/14N ratio from Cassini/CIRS observations. Icarus 172, 50–58 (2004) ADSCrossRefGoogle Scholar
  164. M.L. Frezzotti, S. Ferrando, The chemical behavior of fluids released during deep subduction based on fluid inclusions. Am. Mineral. 100, 352–377 (2015) ADSCrossRefGoogle Scholar
  165. M.L. Frezzotti, S. Ferrando, F. Tecce, D. Castelli, Water content and nature of solutes in shallow-mantle fluids from fluid inclusions. Earth Planet. Sci. Lett. 351–352, 70–83 (2012) CrossRefGoogle Scholar
  166. I. Friedman, R.L. Smith, W.D. Long, Hydration of natural glass and formation of perlite. Geol. Soc. Am. Bull. 77, 323–328 (1966) ADSCrossRefGoogle Scholar
  167. D.J. Frost, The stability of hydrous mantle phases, in Water in Nominally Anhydrous Minerals, ed. by H. Keppler, J.R. Smyth (Mineralogical Society of America, Chantilly, 2006), pp. 243–271 Google Scholar
  168. D.J. Frost, The upper mantle and transition zone. Elements 4, 171–176 (2008) CrossRefGoogle Scholar
  169. D.J. Frost, D. Dolejš, Experimental determination of the effect of H2O on the 410-km seismic discontinuity. Earth Planet. Sci. Lett. 256, 182–195 (2007) ADSCrossRefGoogle Scholar
  170. D.J. Frost, C.A. McCammon, The redox state of the Earth’s mantle. Annu. Rev. Earth Planet. Sci. 36, 389–420 (2008) ADSCrossRefGoogle Scholar
  171. Y. Fukai, The iron-water reaction and the evolution of the Earth. Nature 308, 174–175 (1984) ADSCrossRefGoogle Scholar
  172. Y. Fukao, M. Obayashi, T. Nakakuki, Stagnat slab: a review. Annu. Rev. Earth Planet. Sci. 37, 19–46 (2009) ADSCrossRefGoogle Scholar
  173. E. Füri, E. Deloule, A.A. Gurenko, B. Marty, New evidence for chondritic lunar water from combined D/H and noble gas analyses of single Apollo 17 volcanic glasses. Icarus 229, 109–120 (2014) ADSCrossRefGoogle Scholar
  174. E. Füri, P.H. Barry, L.A. Taylor, B. Marty, Indigenous nitrogen in the Moon: constraints from coupled nitrogen–noble gas analyses of mare basalts. Earth Planet. Sci. Lett. 431, 195–205 (2015) ADSCrossRefGoogle Scholar
  175. G.A. Gaetani, J.A. O’Leary, K.T. Koga, E.H. Hauri, E.F. Rose-Koga, B.D. Monteleone, Hydration of mantle olivine under variable water and oxygen fugacity conditions. Contrib. Mineral. Petrol. 167, 965–979 (2014) ADSCrossRefGoogle Scholar
  176. J. Ganguly, A. Asaduzzaman, K. Muralidharan, Origin of water in Earth with high D/H ratio relative to protosolar nebula, and an explanation of its similarity with the isotopic ratios of carbonaceous chondrites and asteroid Vesta, in 79th Meteoritical Society Meeting, Berlin, Germany (2016), p. 6055 Google Scholar
  177. E. Gardés, F. Gaillard, P. Tarits, Toward a unified hydrous olivine electrical conductivity law. Geochem. Geophys. Geosyst. 15, 4984–5000 (2014) ADSCrossRefGoogle Scholar
  178. E.J. Garnero, A.K. McNamara, Structure and dynamics of Earth’s lower mantle. Science 320, 626–628 (2008) ADSCrossRefGoogle Scholar
  179. E.J. Garnero, A.K. McNamara, S.-H. Shim, Continent-sized anomalous zones with low seismic velocity at the base of Earth’s mantle. Nat. Geosci. 9, 481–489 (2016) ADSCrossRefGoogle Scholar
  180. T. Garth, A. Rietbrock, Order of magnitude increase in subducted H2O due to hydrated normal faults within the Wadati-Benioff zone. Geology 42, 207–210 (2014) ADSCrossRefGoogle Scholar
  181. P. Gavrilenko, T. Boffa Ballaran, H. Keppler, The effect of Al and water on the compressibility of diopside. Am. Mineral. 95, 608–616 (2010) ADSCrossRefGoogle Scholar
  182. J. Geiss, G. Gloeckler, Isotopic composition of H, He and Ne in the protosolar cloud, in Solar System History from Isotopic Signatures of Volatile Elements, ed. by R. Kallenbach, T. Encrenaz, J. Geiss, K. Mauersberger, T.C. Owen, F. Robert (Springer, Dordrecht, 2003), pp. 3–18 CrossRefGoogle Scholar
  183. H. Genda, Origin of Earth’s oceans: an assessment of the total amount, history and supply of water. Geochem. J. 50, 27–42 (2016) CrossRefGoogle Scholar
  184. H. Genda, M. Ikoma, Origin of the ocean on the Earth: early evolution of water D/H in a hydrogen-rich atmosphere. Icarus 194, 42–52 (2008) ADSCrossRefGoogle Scholar
  185. S. Ghosh, M.W. Schmidt, Melting of Phase D in the lower mantle and implications for recycling and storage of H2O in the deep mantle. Geochim. Cosmochim. Acta 145, 72–88 (2014) ADSCrossRefGoogle Scholar
  186. J. Girard, J. Chen, P.C. Raterron, C.W. Holyoke, Hydrolytic weakening of olivine at mantle pressure: evidence of \([1\ 0\ 0](0\ 1\ 0)\) slip system softening from single-crystal deformation experiments. Phys. Earth Planet. Inter. 216, 12–20 (2013) ADSCrossRefGoogle Scholar
  187. A. Giuliani, D. Phillips, V.S. Kamenetsky, M.L. Fiorentini, J. Farquhar, M.A. Kendrick, Stable isotope (C, O, S) compositions of volatile-rich minerals in kimberlites: a review. Chem. Geol. 374–375, 61–83 (2014) CrossRefGoogle Scholar
  188. J. Gose, E. Schmädicke, A. Beran, Water in enstatite from Mid-Atlantic Ridge peridotite: evidence for water content of suboceanic mantle? Geology 37, 543–546 (2009) ADSCrossRefGoogle Scholar
  189. J. Gose, E. Schmädicke, R. Stalder, Water in mantle orthopyroxene—no visible change in defect water during serpentinization. Eur. J. Mineral. 23, 529–536 (2011) ADSCrossRefGoogle Scholar
  190. K. Grant, J. Ingrin, J.P. Lorand, P. Dumas, Water partitioning between mantle minerals from peridotite xenoliths. Contrib. Mineral. Petrol. 154, 15–34 (2007a) ADSCrossRefGoogle Scholar
  191. K.J. Grant, S.C. Kohn, R.A. Brooker, The partitioning of water between olivine, orthopyroxene and melt synthesised in the system albite-forsterite-H2O. Earth Planet. Sci. Lett. 260, 227–241 (2007b) ADSCrossRefGoogle Scholar
  192. D.H. Green, Experimental melting studies on a model upper mantle composition at high pressure under H2O-saturated and H2O undersaturated conditions. Earth Planet. Sci. Lett. 19, 37–45 (1973) ADSCrossRefGoogle Scholar
  193. M. Grégoire, D.R. Bell, A.P. Le Roex, Trace element geochemistry of phlogopite-rich mafic mantle xenoliths: their classification and relationship to phlogopite-bearing peridotites and to kimberlites revisited. Contrib. Mineral. Petrol. 142, 603–625 (2002) ADSCrossRefGoogle Scholar
  194. M. Grégoire, D.R. Bell, A.P. Le Roex, Garnet lherzolites from the Kaapvaal craton (South Africa): trace element evidence for a metasomatic history. J. Petrol. 44, 629–657 (2003) ADSCrossRefGoogle Scholar
  195. W.L. Griffin, S. Graham, S.Y. O’Reilly, N.J. Pearson, Lithosphere evolution beneath the Kaapvaal craton: Re-Os systematics of sulfides in mantle-derived peridotites. Chem. Geol. 208, 89–118 (2004) ADSCrossRefGoogle Scholar
  196. W.L. Griffin, S.Y. O’Reilly, J.C. Afonso, G.C. Begg, The composition and evolution of lithospheric mantle: a re-evaluation and its tectonic implications. J. Petrol. 50, 1185–1204 (2009) ADSCrossRefGoogle Scholar
  197. W.L. Griffin, S.R. Shee, C.G. Ryan, T.T. Win, B.A. Wyatt, Harzburgite to lherzolite and back again: metasomatic processes in ultramafic xenoliths from the Wesselton kimberlite, Kimberley, South Africa. Contrib. Mineral. Petrol. 134, 232–250 (1999) ADSCrossRefGoogle Scholar
  198. T.L. Grove, C.B. Till, M.J. Krawczynski, The role of H2O in subduction zone magmatism. Annu. Rev. Earth Planet. Sci. 40, 413–439 (2012) ADSCrossRefGoogle Scholar
  199. Y. Guan, Y. Wang, W. Hsu, J.M. Eiler, Analysis of OH and D/H of Apatites from Eucrites, in 79th Meteoritical Society Meeting, Berlin, Germany (2016) Google Scholar
  200. Y. Gung, M. Panning, B. Romanowicz, Global anisotropy and the thickness of continents. Nature 422, 707–711 (2003) ADSCrossRefGoogle Scholar
  201. A.A. Gurenko, V.S. Kamenetsky, A.C. Kerr, Oxygen isotopes and volatile contents of the Gorgona komatiites, Colombia: a confirmation of the deep mantle origin of H2O. Earth Planet. Sci. Lett. 454, 154–165 (2016) ADSCrossRefGoogle Scholar
  202. B.R. Hacker, H2O subduction beyond arcs. Geochem. Geophys. Geosyst. 9, 1–24 (2008) CrossRefGoogle Scholar
  203. A.N. Halliday, Mixing, volatile loss and compositional change during impact-driven accretion of the Earth. Nature 427, 505–509 (2004) ADSCrossRefGoogle Scholar
  204. A.N. Halliday, The origins of volatiles in the terrestrial planets. Geochim. Cosmochim. Acta 105, 146–171 (2013) ADSCrossRefGoogle Scholar
  205. A.N. Halliday, D. Porcelli, In search of lost planets—the paleocosmochemistry of the inner solar system. Earth Planet. Sci. Lett. 192, 545–559 (2001) ADSCrossRefGoogle Scholar
  206. L.J. Hallis, G.R. Huss, K. Nagashima, G.J. Taylor, S.A. Halldórsson, D.R. Hilton, M.J. Motti, K.J. Meech, Evidence for primordial water in Earth’s deep mantle. Science 350, 795–797 (2015) ADSCrossRefGoogle Scholar
  207. L.J. Hallis, G.J. Taylor, K. Nagashima, G.R. Huss, Magmatic water in the martian meteorite Nakhla. Earth Planet. Sci. Lett. 359–360, 84–92 (2012) CrossRefGoogle Scholar
  208. L.J. Hallis, D/H ratios of the inner Solar System. Philos. Trans. R. Soc. Lond. A 375, 20150390 (2017) ADSCrossRefGoogle Scholar
  209. M. Hamada, T. Kawamoto, E. Takahashi, T. Fujii, Polybaric degassing of island arc low-K tholeiitic basalt magma recorded by OH concentrations in Ca-rich plagioclase. Earth Planet. Sci. Lett. 308, 259–266 (2011) ADSCrossRefGoogle Scholar
  210. M. Hamada, M. Ushioda, T. Fujii, E. Takahashi, Hydrogen concentration in plagioclase as a hygrometer of arc basaltic melts: approaches from melt inclusion analyses and hydrous melting experiments. Earth Planet. Sci. Lett. 365, 253–262 (2013) ADSCrossRefGoogle Scholar
  211. U. Hans, T. Kleine, B. Bourdon, Rb–Sr chronology of volatile depletion in differentiated protoplanets: BABI, ADOR and ALL revisited. Earth Planet. Sci. Lett. 374, 204–214 (2013) ADSCrossRefGoogle Scholar
  212. Y. Hao, Q.-K. Xia, Q. Li, H. Chen, M. Feng, Partial melting control of water contents in the Cenozoic lithospheric mantle of the Cathaysia block of South China. Chem. Geol. 380, 7–19 (2014) ADSCrossRefGoogle Scholar
  213. Y.-T. Hao, Q.-K. Xia, Z.-B. Jia, Q.-C. Zhao, P. Li, M. Feng, S.-C. Liu, Regional heterogeneity in the water content of the Cenozoic lithospheric mantle of Eastern China. J. Geophys. Res. 121, 517–537 (2016) ADSCrossRefGoogle Scholar
  214. S.H. Hart, E.H. Hauri, L.A. Oschmann, J.A. Whitehead, Mantle plumes and entrainment: isotopic evidence. Science 256, 517–519 (1992) ADSCrossRefGoogle Scholar
  215. B. Harte, Mantle peridotites and processes—the kimberlite sample, in Continental Basalts and Mantle Xenoliths, ed. by C.J. Hawkesworth, M.J. Norry (Shiva Publishing Limited, Cambridge, 1983), p. 272 Google Scholar
  216. M.E. Hartley, D.A. Neave, J. MacLennan, M. Edmonds, Diffusive over-hydration of olivine-hosted melt inclusions. Earth Planet. Sci. Lett. 425, 168–178 (2015) ADSCrossRefGoogle Scholar
  217. P. Hartogh, D.C. Lis, D. Bockelee-Morvan, M. de Val-Borro, N. Biver, M. Kuppers, M. Emprechtinger, E.A. Bergin, J. Crovisier, M. Rengel, R. Moreno, S. Szutowicz, G.A. Blake, Ocean-like water in the Jupiter-family comet 103P/Hartley 2. Nature 478, 218–220 (2011) ADSCrossRefGoogle Scholar
  218. E. Hauri, SIMS analysis of volatiles in silicate glasses, 2: isotopes and abundances in Hawaiian melt inclusions. Chem. Geol. 183, 115–141 (2002) ADSCrossRefGoogle Scholar
  219. E. Hauri, J. Wang, J.E. Dixon, P.L. King, C. Mandeville, S. Newman, SIMS analysis of volatiles in silicate glasses 1. Calibration, matrix effects and comparison with FTIR. Chem. Geol. 183, 99–114 (2002) ADSCrossRefGoogle Scholar
  220. E.H. Hauri, G.A. Gaetani, T.H. Green, Partitioning of water during melting of the Earth’s upper mantle at H2O-undersaturated conditions. Earth Planet. Sci. Lett. 248, 715–734 (2006) ADSCrossRefGoogle Scholar
  221. E.H. Hauri, A.E. Saal, M.C. Rutherford, J.A. Van Orman, Water in the Moon’s interior: truth and consequences. Earth Planet. Sci. Lett. 409, 252–264 (2015) ADSCrossRefGoogle Scholar
  222. E.H. Hauri, T. Weinreich, A.E. Saal, M.C. Rutherford, J.A. Van Orman, High pre-eruptive water contents preserved in lunar melt inclusions. Science 333, 213–215 (2011) ADSCrossRefGoogle Scholar
  223. C. Hayashi, Structure of the solar nebula, growth and decay of magnetic fields and effects of magnetic and turbulent viscosities on the nebula. Prog. Theor. Phys. Suppl. 70, 35–53 (1981) ADSCrossRefGoogle Scholar
  224. C. Hayashi, K. Nakazawa, H. Mizuno, Earth’s melting due to the blanketing effect of the primordial dense atmosphere. Earth Planet. Sci. Lett. 43, 22–28 (1979) ADSCrossRefGoogle Scholar
  225. V.S. Heber, R. Wieler, H. Baur, C. Olinger, T.A. Friedmann, D.S. Burnett, Noble gas composition of the solar wind as collected by the Genesis mission. Geochim. Cosmochim. Acta 73, 7414–7432 (2009) ADSCrossRefGoogle Scholar
  226. C.D.K. Herd, R.C. Peterson, G.R. Rossman, Violet-colored diopside from southern Baffin island, Nunavut, Canada. Can. Mineral. 38, 1193–1199 (2000) CrossRefGoogle Scholar
  227. D.R. Hilton, T.P. Fischer, B. Marty, Noble gases and volatile recycling at subduction zones. Rev. Mineral. Geochem. 47, 319–370 (2002) CrossRefGoogle Scholar
  228. K. Hirose, T. Kawamoto, Hydrous partial melting of lherzolite at 1 GPa: the effect of H2O on the genesis of basaltic magmas. Earth Planet. Sci. Lett. 133, 463–473 (1995) ADSCrossRefGoogle Scholar
  229. M.M. Hirschmann, Water, melting, and the deep Earth H2O cycle. Annu. Rev. Earth Planet. Sci. 34, 629–653 (2006) ADSCrossRefGoogle Scholar
  230. M.M. Hirschmann, Constraints on the early delivery and fractionation of Earth’s major volatiles from C/H, C/N, and C/S ratios. Am. Mineral. 101, 540–553 (2016) ADSCrossRefGoogle Scholar
  231. M.M. Hirschmann, C. Aubaud, A.C. Withers, Storage capacity of H2O in nominally anhydrous minerals in the upper mantle. Earth Planet. Sci. Lett. 236, 167–181 (2005) ADSCrossRefGoogle Scholar
  232. M.M. Hirschmann, T.J. Tenner, C. Aubaud, A.C. Withers, Dehydration melting of nominally anhydrous mantle: the primacy of partitioning. Phys. Chem. Earth 176, 54–68 (2009) Google Scholar
  233. M.M. Hirschmann, A.C. Withers, P. Ardia, N.T. Foley, Solubility of molecular hydrogen in silicate melts and consequences for volatile evolution of terrestrial planets. Earth Planet. Sci. Lett. 345–348, 38–48 (2012) CrossRefGoogle Scholar
  234. G. Hirth, R.L. Evans, A.D. Chave, Comparison of continental and oceanic mantle electrical conductivity: is the Archean lithosphere dry? Geochem. Geophys. Geosyst. 1, 1030 (2000) ADSCrossRefGoogle Scholar
  235. G. Hirth, D.L. Kohlstedt, Water in the oceanic upper mantle; implications for rheology, melt extraction and the evolution of the lithosphere. Earth Planet. Sci. Lett. 144, 93–108 (1996) ADSCrossRefGoogle Scholar
  236. G. Hirth, D.L. Kohlstedt, Rheology of the upper mantle and the mantle wedge: a view from the experimentalists, in Inside the Subduction Factory, ed. by J. Eiler (American Geophysical Union, Washington, 2004), pp. 83–106 Google Scholar
  237. A.W. Hofmann, Lead isotopes and the age of the Earth—a geochemical accident. Geol. Soc. (Lond.) Spec. Publ. 190, 223–236 (2001) ADSCrossRefGoogle Scholar
  238. A.W. Hofmann, Sampling mantle heterogeneity through oceanic basalts: isotopes and trace elements, in The Mantle and Core, ed. by H.D. Holland, K.K. Turekian (Elsevier, Oxford, 2003), pp. 1–44 Google Scholar
  239. G. Holland, M. Cassidy, C.J. Ballentine, Meteorite Kr in Earth’s mantle suggests a late accretionary source for the atmosphere. Science 326, 1522–1525 (2009) ADSCrossRefGoogle Scholar
  240. D. Holloway, J.G. Blank, Application of experimental results to C-O-H species in natural melts, in Volatiles in Magmas, ed. by M.R. Carroll, J.R. Holloway (Mineralogical Society of America, Washington D.C., 1994), pp. 187–230 Google Scholar
  241. M.D. Hopkins, S.J. Mojzsis, W.F. Bottke, O. Abramov, Micrometer-scale U–Pb age domains in eucrite zircons, impact re-setting, and the thermal history of the HED parent body. Icarus 245, 367–378 (2015) ADSCrossRefGoogle Scholar
  242. C. Houser, Global seismic data reveal little water in the mantle transition zone. Earth Planet. Sci. Lett. 448, 94–101 (2016) ADSCrossRefGoogle Scholar
  243. Q. Hu, D.Y. Kim, J. Liu, Y. Meng, L. Yang, D. Zhang, W.L. Mao, H-k. Mao, Dehydrogenation of goethite in Earth’s deep lower mantle. Proc. Natl. Acad. Sci. 114, 1498–1501 (2017) ADSCrossRefGoogle Scholar
  244. Q. Hu, D.Y. Kim, W. Yang, L. Yang, Y. Meng, L. Zhang, H.-K. Mao, FeO2 and FeOOH under deep lower-mantle conditions and Earth’s oxygen–hydrogen cycles. Nature 534, 241–244 (2016) ADSCrossRefGoogle Scholar
  245. S. Hu, Y. Lin, J. Zhang, J. Hao, L. Feng, L. Xu, W. Yang, J. Yang, NanoSIMS analyses of apatite and melt inclusions in the GRV 020090 Martian meteorite: hydrogen isotope evidence for recent past underground hydrothermal activity on Mars. Geochim. Cosmochim. Acta 140, 321–333 (2014) ADSCrossRefGoogle Scholar
  246. J.-X. Huang, P. Li, W.L. Griffin, Q.-K. Xia, Y. Gréau, N.J. Pearson, S.Y. O’Reilly, Water contents of Roberts Victor xenolithic eclogites: primary and metasomatic controls. Contrib. Mineral. Petrol. 168, 1–13 (2014) CrossRefGoogle Scholar
  247. X. Huang, Y. Xu, S.-I. Karato, Water content in the transition zone from electrical conductivity of wadsleyite and ringwoodite. Nature 434, 746–749 (2005) ADSCrossRefGoogle Scholar
  248. H. Hui, Y. Guan, Y. Chen, A.H. Peslier, Y. Zhang, Y. Liu, R.L. Flemming, G.R. Rossman, J.M. Eiler, C.R. Neal, G.R. Osinsky, A heterogeneous lunar interior for hydrogen isotopes as revealed by the lunar highlands samples. Earth Planet. Sci. Lett. 473, 14–23 (2017). doi: 10.1016/j.epsl.2017.05.029 ADSCrossRefGoogle Scholar
  249. H. Hui, A.H. Peslier, R.L. Rudnick, A. Simonetti, C.R. Neal, Plume-cratonic lithosphere interaction recorded by water and other trace elements in peridotite xenoliths from the Labait volcano, Tanzania. Geochem. Geophys. Geosyst. 16, 1–24 (2015) CrossRefGoogle Scholar
  250. M. Ichiki, K. Baba, H. Toh, K. Fuji-ta, An overview of electrical conductivity structures of the crust and upper mantle beneath the northwestern Pacific, the Japanese Islands, and continental East Asia. Gondwana Res. 16, 545–562 (2009) ADSCrossRefGoogle Scholar
  251. R. Iizuka-Oku, T. Yagi, H. Gotou, T. Okuchi, T. Hattori, A. Sano-Furukawa, Hydrogenation of iron in the early stage of Earth’s evolution. Nat. Commun. 8, 14096 (2017) ADSCrossRefGoogle Scholar
  252. N.K. Inamdar, H.E. Schlichting, The formation of super-Earths and mini-Neptunes with giant impacts. Mon. Not. R. Astron. Soc. 448, 1751–1760 (2015) ADSCrossRefGoogle Scholar
  253. J. Ingrin, M. Blanchard, Diffusion of hydrogen in minerals, in Water in Nominally Anhydrous Minerals, ed. by H. Keppler, J.R. Smyth (Mineralogical Society of America, Chantilly, 2006), pp. 291–320 Google Scholar
  254. T. Inoue, H. Yurimoto, Y. Kudoh, Hydrous modified spinel, Mg1.75SiH0.5O4: a new water reservoir in the mantle transition region. J. Geophys. Res. 22, 117–120 (1995) Google Scholar
  255. D.A. Ionov, L.S. Doucet, I.V. Ashchepkov, Composition of the lithospheric mantle in the Siberian craton: new constraints from fresh peridotites in the Udachnaya-East kimberlite. J. Petrol. 51, 2177–2210 (2010) ADSCrossRefGoogle Scholar
  256. Y. Ito, S. Nakashima, Water distribution in low-grade siliceous metamorphic rocks by micro-FTIR and its relation to grain size: a case from the Kanto Mountain region, Japan. Chem. Geol. 189, 1–18 (2002) ADSCrossRefGoogle Scholar
  257. M.G. Jackson, S.R. Hart, J.G. Konter, M.D. Kurz, J. Blusztajn, K.A. Farley, Helium and lead isotopes reveal the geochemical geometry of the Samoan plume. Nature 514, 355–358 (2014) ADSCrossRefGoogle Scholar
  258. M.G. Jackson, S.R. Hart, A.A.P. Koppers, H. Staudigel, J. Konter, J. Blusztajn, M.D. Kurz, J.A. Russell, The return of subducted continental crust in Samoan lavas. Nature 448, 684–687 (2007) ADSCrossRefGoogle Scholar
  259. M.G. Jackson, K.T. Koga, A. Price, J.G. Konter, A.A.P. Koppers, V.A. Finlayson, K. Konrad, E.H. Hauri, A. Kylander-Clark, K.A. Kelley, M.A. Kendrick, Deeply dredged submarine HIMU glasses from the Tuvalu Islands, Polynesia: implications for volatile budgets of recycled oceanic crust. Geochem. Geophys. Geosyst. 16, 3210–3234 (2015) ADSCrossRefGoogle Scholar
  260. D.E. Jacob, Nature and origin of eclogite xenoliths from kimberlites. Lithos 77, 295–316 (2004) ADSCrossRefGoogle Scholar
  261. S.D. Jacobsen, Effect of water on the equation of state of nominally anhydrous minerals, in Water in Nominally Anhydrous Minerals, ed. by H. Keppler, J.R. Smyth (Mineralogical Society of America, Chantilly, 2006), pp. 321–342 Google Scholar
  262. A. Jambon, J.L. Zimmermann, Major volatiles from a North Atlantic MORB glass and calibration to He: a size fraction analysis. Chem. Geol. 62, 177–189 (1987) ADSCrossRefGoogle Scholar
  263. B. Jamtveit, R. Brooker, K. Brooks, L.M. Larsen, T. Pedersen, The water content of olivines from the North Atlantic volcanic province. Earth Planet. Sci. Lett. 186, 401–415 (2001) ADSCrossRefGoogle Scholar
  264. E. Jarosewich, Chemical analyses of meteorites: a compilation of stony and iron meteorite analyses. Meteoritics 25, 323–337 (1990) ADSCrossRefGoogle Scholar
  265. R.D. Jarrard, Subduction fluxes of water, carbon dioxide, chlorine, and potassium. Geochem. Geophys. Geosyst. 4, 1–50 (2003) CrossRefGoogle Scholar
  266. C. Jaupart, J.C. Mareschal, The thermal structure and thickness of continental roots. Lithos 48, 93–114 (1999) ADSCrossRefGoogle Scholar
  267. M. Javoy, E. Kaminski, F. Guyot, D. Andrault, C. Sanloup, M. Moreira, S. Labrosse, A. Jambon, P. Agrinier, A. Davaille, C. Jaupart, The chemical composition of the Earth: enstatite chondrite models. Earth Planet. Sci. Lett. 293, 259–268 (2010) ADSCrossRefGoogle Scholar
  268. M.M. Jean, L.A. Taylor, G.H. Howarth, A.H. Peslier, L. Fedele, R.J. Bodnar, Y. Guan, L.S. Doucet, D.A. Ionov, A.M. Logvinova, A.V. Golovin, N.V. Sobolev, Contrasting water and trace elements in olivines from Siberian diamonds versus mantle xenoliths. Lithos 265, 31–41 (2016). doi: 10.1016/j.lithos.2016.07.023 ADSCrossRefGoogle Scholar
  269. B. Johnson, C. Goldblatt, The nitrogen budget of Earth. Earth-Sci. Rev. 148, 150–173 (2015) CrossRefGoogle Scholar
  270. E.A. Johnson, G.R. Rossman, The concentration and speciation of hydrogen in feldspars using FTIR and 1H MAS NMR spectroscopy. Am. Mineral. 88, 901–911 (2003) ADSCrossRefGoogle Scholar
  271. E.A. Johnson, G.R. Rossman, A survey of hydrous species and concentrations in igneous feldspars. Am. Mineral. 89, 586–600 (2004) ADSCrossRefGoogle Scholar
  272. E.A. Johnson, G.R. Rossman, The diffusion behavior of hydrogen in plagioclase feldspar at 800–1000 °C: implications for re-equilibration of hydroxyl in volcanic phenocrysts. Am. Mineral. 98, 1779–1787 (2013) ADSCrossRefGoogle Scholar
  273. A.G. Jones, J. Ledo, I.J. Ferguson, J.A. Craven, M.J. Unsworth, M. Chouteau, J.E. Spratt, The electrical resistivity of Canada’s lithosphere and correlation with other parameters: contributions from LITHOPROBE and other programmes. Can. J. Earth Sci. 51, 573–617 (2013a) CrossRefGoogle Scholar
  274. A.G. Jones, M.R. Muller, S. Fishwick, R.L. Evans, J. Fullea, Velocity-conductivity relations for cratonic lithosphere and their application: example of southern Africa. Geochem. Geophys. Geosyst. 14, 806–827 (2013b) ADSCrossRefGoogle Scholar
  275. R.H. Jones, F.M. McCubbin, L. Dreeland, Y. Guan, P.V. Burger, C.K. Shearer, Phosphate minerals in LL chondrites: a record of the action of fluids during metamorphism on ordinary chondrite parent bodies. Geochim. Cosmochim. Acta 132, 120–140 (2014) ADSCrossRefGoogle Scholar
  276. R.H. Jones, F.M. McCubbin, Y. Guan, Phosphate minerals in the H group of ordinary chondrites, and fluid activity recorded by apatite heterogeneity in the Zag H3-6 regolith breccia. Am. Mineral. 101, 2452–2467 (2016) ADSCrossRefGoogle Scholar
  277. T.H. Jordan, Composition and development of the continental tectosphere. Nature 274, 544–548 (1978) ADSCrossRefGoogle Scholar
  278. H. Jung, S. Karato, Effects of water on dynamically recrystallized grain-size of olivine. J. Struct. Geol. 23, 1337–1344 (2001a) ADSCrossRefGoogle Scholar
  279. H. Jung, S. Karato, Water-induced fabric transitions in olivine. Science 293, 1460–1463 (2001b) ADSCrossRefGoogle Scholar
  280. V.S. Kamenetsky, A.V. Golovin, R. Maas, A. Giuliani, M.B. Kamenetsky, Y. Weiss, Towards a new model for kimberlite petrogenesis: evidence from unaltered kimberlites and mantle minerals. Earth-Sci. Rev. 139, 145–167 (2014) CrossRefGoogle Scholar
  281. F. Kaminsky, O. Zakharchenko, R. Davies, W. Griffin, G. Khachatryan-Blinova, A. Shiryaev, Superdeep diamonds from the Juina area, Mato Grosso State, Brazil. Contrib. Mineral. Petrol. 140, 734–753 (2001) ADSCrossRefGoogle Scholar
  282. S. Karato, Does partial melting reduce the creep strength of the upper mantle? Nature 319, 309–310 (1986) ADSCrossRefGoogle Scholar
  283. S. Karato, The role of hydrogen in the electrical conductivity of the upper mantle. Nature 347, 272–273 (1990) ADSCrossRefGoogle Scholar
  284. S. Karato, Rheology of the upper mantle: a synthesis. Science 260, 771–778 (1993) ADSCrossRefGoogle Scholar
  285. S. Karato, Influence of hydrogen-related defects on the electrical conductivity and plastic deformation of mantle minerals: a critical review, in Earth’s Deep Water Cycle, ed. by S.D. Jacobsen, S. van der Lee (American Geophysical Union, Washington, 2006a), pp. 113–130 CrossRefGoogle Scholar
  286. S. Karato, Remote sensing of hydrogen in Earth’s mantle, in Water in Nominally Anhydrous Minerals, ed. by H. Keppler, J.R. Smyth (Mineralogical Society of America, Chantilly, 2006b), pp. 343–375 Google Scholar
  287. S. Karato, Rheology of the deep upper mantle and its implications for the preservation of the continental roots: a review. Tectonophysics 481, 82–98 (2010) ADSCrossRefGoogle Scholar
  288. S. Karato, Water distribution across the mantle transition zone and its implications for global material circulation. Earth Planet. Sci. Lett. 301, 413–423 (2011) ADSCrossRefGoogle Scholar
  289. S. Karato, M.R. Riedel, D.A. Yuen, Rheological structure and deformation of subducted slabs in the mantle transition zone: implications for mantle circulation and deep earthquakes. Phys. Earth Planet. Inter. 127, 83–108 (2001) ADSCrossRefGoogle Scholar
  290. S.-I. Karato, Microscopic models for the effects of hydrogen on physical and chemical properties of Earth materials, in Superplumes: Beyond Plate Tectonics, ed. by D.A. Yuen, S. Maruyama, S.-I. Karato, B.F. Windley (Springer, Dordrecht, 2007), pp. 321–356 CrossRefGoogle Scholar
  291. S.-I. Karato, Water in the evolution of Earth and other terrestrial planets, in Treatise on Geophysics, ed. by G. Schubert (Elsevier, Amsterdam, 2015), pp. 105–144 CrossRefGoogle Scholar
  292. S.-I. Karato, Physical basis of trace element partitioning: a review. Am. Mineral. 101, 2577–2593 (2016) ADSCrossRefGoogle Scholar
  293. S.-I. Karato, H. Jung, I. Katayama, P. Skemer, Geodynamic significance of seismic anisotropy of the upper mantle: new insights from laboratory studies. Annu. Rev. Earth Planet. Sci. 36, 59–95 (2008) ADSCrossRefGoogle Scholar
  294. S.-I. Karato, D. Wang, Electrical conductivity of minerals and rocks, in Physics and Chemistry of the Deep Earth, ed. by S.-I. Karato (Wiley, New York, 2013), pp. 145–182 CrossRefGoogle Scholar
  295. I. Katayama, K. Hirose, H. Yurimoto, S. Nakashima, Water solubility in majoritic garnet in subducting oceanic crust. Geophys. Res. Lett. 30, 2155 (2003) ADSCrossRefGoogle Scholar
  296. I. Katayama, S. Nakashima, Hydroxyl in clinopyroxene from the deep subducted crust: evidence for H2O transport into the mantle. Am. Mineral. 88, 229–234 (2003) ADSCrossRefGoogle Scholar
  297. I. Katayama, S. Nakashima, H. Yurimoto, Water content in natural eclogite and implication for water transport into the deep upper mantle. Lithos 86, 245–259 (2006) ADSCrossRefGoogle Scholar
  298. H. Kawakatsu, S. Watada, Seismic evidence for deep-water transportation in the mantle. Science 316, 1468–1471 (2007) ADSCrossRefGoogle Scholar
  299. T. Kawamoto, Hydrous phases and water transport in the subducting slab, in Water in Nominally Anhydrous Minerals, ed. by H. Keppler, J.R. Smyth (Mineralogical Society of America, Chantilly, 2006), pp. 273–289 Google Scholar
  300. K. Kehm, S. Crowther, J.D. Gilmour, R.K. Mohapatra, C.M. Hohenberg, Upper limit concentrations of trapped xenon in individual interplanetary dust particles from the stratosphere. Meteorit. Planet. Sci. 44, 249–259 (2009) ADSCrossRefGoogle Scholar
  301. P.B. Kelemen, S.R. Hart, S. Bernstein, Silica enrichment in the continental upper mantle via melt/rock reaction. Earth Planet. Sci. Lett. 164, 387–406 (1998) ADSCrossRefGoogle Scholar
  302. M.A. Kendrick, M. Jackson, E.H. Hauri, D. Phillips, The halogen (F, Cl, Br, I) and H2O systematics of Samoan lavas: assimilated-seawater, EM2 and high-3He/4He components. Earth Planet. Sci. Lett. 410, 197–2069 (2015) ADSCrossRefGoogle Scholar
  303. M.A. Kendrick, M.G. Jackson, A.J.R. Kent, E.H. Hauri, P.J. Wallace, J. Woodhead, Contrasting behaviours of CO2, S, H2O and halogens (F, Cl, Br and I) in enriched-mantle melts from Pitcairn and Society seamounts. Chem. Geol. 370, 69–81 (2014) ADSCrossRefGoogle Scholar
  304. G.C. Kennedy, G.J. Wasserburg, H.C. Heard, R.C. Newton, The upper-three phase region in the system SiO2-H2O. Am. J. Sci. 260, 501–521 (1962) ADSCrossRefGoogle Scholar
  305. A.J.R. Kent, Melt inclusions in basaltic and related volcanic rocks, in Minerals, Inclusions and Volcanic Processes, ed. by K.D. Purtika, F.J. Tepley III. (Mineralogical Society of America, Chantilly, 2008), pp. 273–331 Google Scholar
  306. H. Keppler, Fluids and trace element transport in subduction zones. Am. Mineral. 102, 5–20 (2017) ADSCrossRefGoogle Scholar
  307. S.E. Kesson, A.E. Ringwood, Slab-mantle interactions: 2. The formation of diamonds. Chem. Geol. 78, 97–118 (1989) ADSCrossRefGoogle Scholar
  308. A. Khan, On Earth’s mantle constitution and structure from joint analysis of geophysical and laboratory-based data: an example. Surv. Geophys. 37, 149–189 (2016) ADSCrossRefGoogle Scholar
  309. A. Khan, A. Kushinov, A. Semenov, On the heterogeneous electrical conductivity structure of the Earth’s mantle with implications for transition zone water content. J. Geophys. Res. 116, B01103 (2011) ADSGoogle Scholar
  310. A. Khan, T.J. Shankland, A geophysical perspective on mantle water content and melting: inverting electromagnetic sounding data using laboratory-based electrical conductivity profiles. Earth Planet. Sci. Lett. 317–318, 27–43 (2012) CrossRefGoogle Scholar
  311. A.J. King, J.R. Solomon, P.F. Schofield, S.S. Russell, Characterising the CI and CI-like carbonaceous chondrites using thermogravimetric analysis and infrared spectroscopy. Earth Planets Space 67, 198 (2015) ADSCrossRefGoogle Scholar
  312. P.L. King, P.F. McMillan, G.M. Moore, Infrared spectroscopy of silicate glasses with application to natural systems, in Infrared Spectroscopy in Geochemistry, Exploration Geochemistry, and Remote Sensing, ed. by P.L. King, M.S. Ramsey, G.A. Swayze (Mineralogical Association of Canada, London, 2004), pp. 92–133 Google Scholar
  313. E.S. Kiseeva, B.J. Wood, A simple model for chalcophile element partitioning between sulphide and silicate liquids with geochemical applications. Earth Planet. Sci. Lett. 383, 68–81 (2013) ADSCrossRefGoogle Scholar
  314. M. Koch-Müller, I. Abs-Wurmbach, D. Rhede, V. Kahlenberg, S. Matsyuk, Dehydration experiments on natural omphacites: qualitative and quantitative characterization by various spectroscopic methods. Phys. Chem. Miner. 34, 663–678 (2007) ADSCrossRefGoogle Scholar
  315. M. Koch-Müller, S.S. Matsyuk, R. Wirth, Hydroxyl in omphacite and omphacitic clinopyroxenes of upper mantle to lower crustal origin beneath the Siberian platform. Am. Mineral. 89, 921–931 (2004) ADSCrossRefGoogle Scholar
  316. M. Koch-Müller, D. Rhede, IR absorption coefficients for water in nominally anhydrous high-pressure minerals. Am. Mineral. 95, 770–775 (2010) ADSCrossRefGoogle Scholar
  317. K.T. Koga, E. Hauri, M.M. Hirschmann, D. Bell, Hydrogen concentration analyses using SIMS and FTIR: comparison and calibration for nominally anhydrous minerals. Geochem. Geophys. Geosyst. 4, 1019 (2003). doi: 10.1029/2002GC000378 ADSCrossRefGoogle Scholar
  318. D.L. Kohlstedt, H. Keppler, D.C. Rubie, Solubility of water in the \(\alpha\), \(\beta\) and \(\gamma\) phases of (Mg, Fe)2SiO4. Contrib. Mineral. Petrol. 123, 345–357 (1996) ADSCrossRefGoogle Scholar
  319. D.L. Kohlstedt, S.J. Mackwell, Diffusion of hydrogen and intrinsic point defects in olivine. Z. Phys. Chem. 207, 147–162 (1998) CrossRefGoogle Scholar
  320. S.C. Kohn, The dissolution mechanism of water in silicate melts; a synthesis of recent data. Mineral. Mag. 64, 389–408 (2000) CrossRefGoogle Scholar
  321. M.V. Kolesnichenko, D.A. Zedgenizov, K.D. Litasov, I.Y. Safonova, A.L. Ragozin, Heterogeneous distribution of water in the mantle beneath the central Siberian Craton: implications from the Udachnaya Kimberlite Pipe. Gondwana Res. 47, 249–266 (2016) ADSCrossRefGoogle Scholar
  322. T. Komabayashi, Phase relations of hydrous peridotite: implications for water circulation in the Earth’s mantle, in Earth’s Deep Water Cycle, ed. by S. Jacobsen, S. Lee (AGU Geophysical Monograph, Washington D.C., 2006), pp. 29–43 CrossRefGoogle Scholar
  323. J. Konzett, R.A. Armstrong, R.J. Sweeney, W. Compston, The timing of MARID metasomatism in the Kaapvaal mantle: an ion probe study of zircons from MARID xenoliths. Earth Planet. Sci. Lett. 160, 133–145 (1998) ADSCrossRefGoogle Scholar
  324. J. Konzett, K. Krenn, D. Rubatto, C. Hauzenberger, R. Stalder, The formation of saline mantle fluids by open-system crystallization of hydrous silicate-rich vein assemblages—evidence from fluid inclusions and their host phases in MARID xenoliths from the central Kaapvaal Craton, South Africa. Geochim. Cosmochim. Acta 147, 1–25 (2014) ADSCrossRefGoogle Scholar
  325. T. Koyama, H. Shimizu, H. Utada, M. Ichiki, E. Ohtani, R. Hae, Water content in the mantle transition zone beneath the North Pacific derived from the electrical conductivity anomaly, in Earth’s Deep Water Cycle (American Geophysical Union, Washington, 2013), pp. 171–179 Google Scholar
  326. A.K. Kronenberg, R.A. Yund, G.R. Rossman, Stationary and mobile hydrogen defects in potassium feldspar. Geochim. Cosmochim. Acta 60, 4075–4094 (1996) ADSCrossRefGoogle Scholar
  327. K. Kuramoto, T. Matsui, Partitioning of H and C between the mantle and core during the core formation in the Earth: its implications for the atmospheric evolution and redox state of early mantle. J. Geophys. Res. 101, 14909–14932 (1996) ADSCrossRefGoogle Scholar
  328. M. Kurosawa, H. Yurimoto, S. Sueno, Patterns in the hydrogen and trace element compositions of mantle olivines. Phys. Chem. Miner. 24, 385–395 (1997) ADSCrossRefGoogle Scholar
  329. S. Labrosse, J.W. Hernlund, N. Coltice, A crystallizing dense magma ocean at the base of the Earth’s mantle. Nature 450, 866–869 (2007) ADSCrossRefGoogle Scholar
  330. C.F. Larsen, R.J. Motyka, J.T. Freymueller, K.A. Echelmeyer, E.R. Ivins, Rapid viscoelastic uplift in southeast Alaska caused by post-Little Ice Age glacial retreat. Earth Planet. Sci. Lett. 237, 548–560 (2005) ADSCrossRefGoogle Scholar
  331. J.F. Lawrence, M.E. Wysession, Seismic evidence for subduction-transported water in the lower mantle, in Earth’s Deep Water Cycle, ed. by S. Jacobsen, S. Lee (AGU Geophysical Monograph, Washington D.C., 2006), pp. 251–262 CrossRefGoogle Scholar
  332. M. Le Voyer, P.D. Asimow, J.L. Mosenfelder, Y. Guan, P.J. Wallace, P. Schiano, E.M. Stolper, J.M. Eiler, Zonation of H2O and F concentrations around melt inclusions in olivines. J. Petrol. 55, 685–707 (2014) ADSCrossRefGoogle Scholar
  333. C. Lécuyer, P. Gillet, F. Robert, The hydrogen isotope composition of seawater and the global water cycle. Chem. Geol. 145, 249–261 (1998) ADSCrossRefGoogle Scholar
  334. C.-T. Lee, P. Luffi, E.J. Chin, Building and destroying continental mantle. Annu. Rev. Earth Planet. Sci. 39, 59–90 (2010) ADSCrossRefGoogle Scholar
  335. C.-T. Lee, R.L. Rudnick, Compositionally stratified cratonic lithosphere: petrology and geochemistry of peridotite xenoliths from the Labait Volcano, Tanzania, in Proc. VIIth International Kimberlite Conference, B.J. Dawson volume, ed. by J.J. Gurney, J.L. Gurney, M.D. Pascoe, S.R. Richardson (1999), pp. 503–521 Google Scholar
  336. E. Lellouch, B. Bézard, T. Fouchet, H. Feuchtgruber, T. Encrenaz, T. de Graauw, The deuterium abundance in Jupiter and Saturn from ISO-SWS observations. Astron. Astrophys. 370, 610–622 (2001) ADSCrossRefGoogle Scholar
  337. Y. Li, Immiscible C-H-O fluids formed at subduction zone conditions. Geochem. Perspect. Lett. 3, 12–21 (2017) ADSCrossRefGoogle Scholar
  338. Z.-X.A. Li, C.-T. Lee, A.H. Peslier, A. Lenardic, S.J. Mackwell, Water contents in mantle xenoliths from the Colorado Plateau and vicinity: implications for the mantle rheology and hydration-induced thinning of continental lithosphere. J. Geophys. Res. 113, 1–22 (2008) CrossRefGoogle Scholar
  339. E. Libowitzky, A. Beran, IR spectroscopic characterization of hydrous species in minerals, in Spectroscopic Methods in Mineralogy. European Mineralogical Union, ed. by A. Beran, E. Libowitzky (2004), pp. 227–279 Google Scholar
  340. J. Liu, Q.-K. Xia, E. Deloule, J. Ingrin, H. Chen, M. Feng, Water content and oxygen isotopic composition of alkali basalts from the Taihang Mountains, China: recycled oceanic components in the mantle source. J. Petrol. 56, 681–702 (2015) ADSCrossRefGoogle Scholar
  341. A.S. Lloyd, T. Plank, P. Ruprecht, E.H. Hauri, W. Rose, Volatile loss from melt inclusions in pyroclasts of differing sizes. Contrib. Mineral. Petrol. 165, 129–153 (2013) ADSCrossRefGoogle Scholar
  342. A.S. Lloyd, P. Ruprecht, E.H. Hauri, W. Rose, H.M. Gonnerman, T. Plank, NanoSIMS results from olivine-hosted melt embayments: magma ascent rate during explosive basaltic eruptions. J. Volcanol. Geotherm. Res. 283, 1–18 (2014) ADSCrossRefGoogle Scholar
  343. K. Lodders, Solar system abundances and condensation temperatures of the elements. Astrophys. J. 591, 1220–1247 (2003) ADSCrossRefGoogle Scholar
  344. F. Lucassen, M. Koch-Müller, M. Taran, G. Franz, Coupled H and Nb, Cr, and V trace element behavior in synthetic rutile at 600 °C, 400 MPa and possible geological application. Am. Mineral. 98, 7–18 (2013) ADSCrossRefGoogle Scholar
  345. R.W. Luth, Mantle volatiles—distribution and consequences, in Treatise on Geochemistry, ed. by R.W. Carlson (Elsevier, Amsterdam, 2003), pp. 319–361 CrossRefGoogle Scholar
  346. I.D. MacGregor, W.I. Manton, Roberts Victor eclogites: ancient oceanic crust. J. Geophys. Res. 91, 14063–14079 (1986) ADSCrossRefGoogle Scholar
  347. S.J. Mackwell, D.L. Kohlstedt, M.S. Paterson, The role of water in the deformation of olivine single crystals. J. Geophys. Res. 90, 11319–11333 (1985) ADSCrossRefGoogle Scholar
  348. V. Magni, P. Bouilhol, J. van Hunen, Deep water recycling through time. Geochem. Geophys. Geosyst. 15, 4203–4216 (2014) ADSCrossRefGoogle Scholar
  349. P.R. Mahaffy, T.M. Donahue, S.K. Atreya, T.C. Owen, H.B. Niemann, Galileo probe measurements of D/H and 3He/4He in Jupiter’s atmosphere. Space Sci. Rev. 84, 251–263 (1998) ADSCrossRefGoogle Scholar
  350. D. Mainprice, P.G. Silver, Interpretation of SKS-waves using samples from the subcontinental lithosphere. Phys. Earth Planet. Inter. 78, 257–280 (1993) ADSCrossRefGoogle Scholar
  351. B. Marty, The origins and concentrations of water, carbon, nitrogen and noble gases on Earth. Earth Planet. Sci. Lett. 313–314, 56–66 (2012) CrossRefGoogle Scholar
  352. B. Marty, C.M.O.D. Alexander, S.N. Raymond, Primordial Origins of Earth’s Carbon. Rev. Mineral. Geochem. 75, 149–181 (2013) CrossRefGoogle Scholar
  353. B. Marty, G. Avice, Y. Sano, K. Altwegg, H. Balsiger, M. Hässig, A. Morbidelli, O. Mousis, M. Rubie, Origins of volatile elements (H, C, N, noble gases) on Earth and Mars in light of recent results from the ROSETTA cometary mission. Earth Planet. Sci. Lett. 441, 91–102 (2016) ADSCrossRefGoogle Scholar
  354. B. Marty, R.L. Palma, R.O. Pepin, L. Zimmermann, D.J. Schlutter, P.G. Burnard, A.J. Westphal, C.J. Snead, S. Bajt, R.H. Becker, J.E. Simones, Helium and neon abundances and compositions in cometary matter. Science 319, 75–78 (2008) ADSCrossRefGoogle Scholar
  355. B. Marty, R. Yokochi, Water in the early Earth. Rev. Mineral. Geochem. 62, 421–450 (2006) CrossRefGoogle Scholar
  356. S. Masuti, S.D. Barbot, S.-I. Karato, L. Feng, P. Banerjee, Upper-mantle water stratification inferred from observations of the 2012 Indian Ocean earthquake. Nature 538, 373–377 (2016) ADSCrossRefGoogle Scholar
  357. S.S. Matsyuk, K. Langer, Hydroxyl in olivines from mantle xenoliths in kimberlites of the Siberian platform. Contrib. Mineral. Petrol. 147, 413–437 (2004) ADSCrossRefGoogle Scholar
  358. S.S. Matsyuk, K. Langer, A. Hösch, Hydroxyl defects in garnets from mantle xenoliths in kimberlites of the Siberian platform. Contrib. Mineral. Petrol. 132, 163–179 (1998) ADSCrossRefGoogle Scholar
  359. S. Matveev, C. Ballhaus, K. Fricke, J. Truckenbrodt, D. Ziegenbein, Volatiles in the Earth’s mantle: synthesis of CHO fluids at 1273 K and 2.4 GPa. Geochim. Cosmochim. Acta 61, 3081–3088 (1997) ADSCrossRefGoogle Scholar
  360. C.A. McCammon, M.G. Kopylova, A redox profile of the Slave mantle and oxygen fugacity control in the cratonic mantle. Contrib. Mineral. Petrol. 148, 55–68 (2004) ADSCrossRefGoogle Scholar
  361. W.F. McDonough, Compositional model for the Earth’s core, in Treatise on Geochemistry; The Mantle and Core, ed. by R.W. Carlson (Elsevier, Amsterdam, 2005), pp. 547–568 Google Scholar
  362. R.S. McGary, R.L. Evans, P.E. Wannamaker, J. Elsenbeck, S. Rondenay, Pathway from subducting slab to surface for melt and fluids beneath Mount Rainier. Nature 511, 338–340 (2014) ADSCrossRefGoogle Scholar
  363. B.I.A. McInnes, M. Gregoire, R.A. Binns, P.M. Herzig, M.D. Hannington, Hydrous metasomatism of oceanic sub-arc mantle, Lihir, Papua New Guinea: petrology and geochemistry of fluid-metasomatised mantle wedge xenoliths. Earth Planet. Sci. Lett. 188, 169–183 (2001) ADSCrossRefGoogle Scholar
  364. K.D. McKeegan, J. Aléon, J.P. Bradley, D.E. Brownlee, H. Busemann, A. Butterworth, M. Chaussidon, S. Fallon, C. Floss, J. Gilmour, M. Gounelle, G. Graham, Y.N. Guan, P.R. Heck, P. Hoppe, I.D. Hutcheon, J. Huth, H.A. Ishii, M. Ito, S.B. Jacobsen, A. Kearsley, L.A. Leshin, M.-C. Liu, I.C. Lyon, K. Marhas, B. Marty, G. Matrajt, A. Meibom, S.M. Messenger, S. Mostefaoui, S. Mukhopadhyay, K. Nakamura-Messenger, L.R. Nittler, R.L. Palma, R.O. Pepin, D.A. Papanastassiou, F. Robert, D.J. Schlutter, C.J. Snead, F.J. Stadermann, R.M. Stroud, P. Tsou, A. Westphal, E.D. Young, K. Ziegler, L. Zimmermann, E. Zinner, Isotopic compositions of cometary matter returned by Stardust. Science 314, 1724–1728 (2006) ADSCrossRefGoogle Scholar
  365. D. McKenzie, The extraction of magma from the crust and mantle. Earth Planet. Sci. Lett. 74, 81–91 (1985) ADSCrossRefGoogle Scholar
  366. E. Médard, T.L. Grove, The effect of H2O on the olivine liquidus of basaltic melts: experiments and thermodynamic models. Contrib. Mineral. Petrol. 155, 417–432 (2008) ADSCrossRefGoogle Scholar
  367. M.A. Menzies, C.J. Hawkesworth (eds.), Mantle Metasomatism (Academic Press Inc., London, 1987). 472 pp. Google Scholar
  368. A. Meshik, C.M. Hohenberg, D.S. Burnett, O. Pravdivtseva, Measuring the isotopic composition of solar wind noble gases, in Exploring the Solar Wind, ed. by M. Lazar (INTECH Open Access Publisher, Winchester, 2012), pp. 93–120 Google Scholar
  369. K. Mibe, M. Kanzaki, T. Kawamoto, K.N. Matsukage, Y. Fei, S. Ono, Second critical endpoint in the peridotite-H2O system. J. Geophys. Res. 112, 1–8 (2007) CrossRefGoogle Scholar
  370. P. Michael, Regionally distinctive sources of depleted MORB: evidence from trace elements and H2O. Earth Planet. Sci. Lett. 131, 301–320 (1995) ADSCrossRefGoogle Scholar
  371. P.J. Michael, The concentration, behavior and storage of H2O in the suboceanic upper mantle: implications for mantle metasomatism. Geochim. Cosmochim. Acta 52, 555–566 (1988) ADSCrossRefGoogle Scholar
  372. C. Michaut, C. Jaupart, J.-C. Mareshal, Thermal evolution of cratonic roots. Lithos 109, 47–60 (2009) ADSCrossRefGoogle Scholar
  373. K. Mierdel, H. Keppler, J.R. Smyth, F. Langenhorst, Water solubility in aluminous orthopyroxene and the origin of Earth’s asthenosphere. Science 315, 364–368 (2007) ADSCrossRefGoogle Scholar
  374. R.H. Mitchell, Kimberlites. Mineralogy, Geochemistry, and Petrology (Springer, New York, 1986) Google Scholar
  375. M. Mookherjee, L. Stixrude, B. Karki, Hydrous silicate melt at high pressure. Nature 452, 983–986 (2008) ADSCrossRefGoogle Scholar
  376. J.G. Moore, Water content of basalt erupted on the ocean floor. Contrib. Mineral. Petrol. 28, 272–279 (1970) ADSCrossRefGoogle Scholar
  377. J.G. Moore, J.-G. Schilling, Vesicles, water, and sulfur in Reykjanes Ridge basalts. Contrib. Mineral. Petrol. 41, 105–118 (1973) ADSCrossRefGoogle Scholar
  378. M. Moreira, S. Charnoz, The origin of the neon isotopes in chondrites and on Earth. Earth Planet. Sci. Lett. 433, 249–256 (2016) ADSCrossRefGoogle Scholar
  379. J.L. Mosenfelder, M. Le Voyer, G.R. Rossman, Y. Guan, D.R. Bell, P.D. Asimow, J.M. Eiler, Analysis of hydrogen in olivine by SIMS: evaluation of standards and protocol. Am. Mineral. 96, 1725–1741 (2011) ADSCrossRefGoogle Scholar
  380. J.L. Mosenfelder, G.R. Rossman, E.A. Johnson, Hydrous species in feldspars: a reassessment based on FTIR and SIMS. Am. Mineral. 100, 1209–1221 (2015) ADSCrossRefGoogle Scholar
  381. S. Mukhopadhyay, Early differentiation and volatile accretion recorded in deep-mantle neon and xenon. Nature 486, 101–104 (2012) ADSCrossRefGoogle Scholar
  382. S. Mukhopadhyay, L. Nittler, D-rich water in interplanetary dust particles, in Lunar Planet. Sci. Conf., League City, TX (2003), p. 1941 Google Scholar
  383. A. Müller, M. Koch-Müller, Hydrogen speciation and trace element contents of igneous, hydrothermal and metamorphic quartz from Norway. Mineral. Mag. 73, 569–583 (2009) CrossRefGoogle Scholar
  384. A. Mundl, M. Touboul, M.G. Jackson, J.M.D. Day, M.D. Kurz, V. Lekic, R.T. Helz, R.J. Walker, Tungsten-182 heterogeneity in modern ocean island basalts. Science 356, 66–69 (2017) ADSCrossRefGoogle Scholar
  385. B.O. Mysen, M.L. Fogel, P.L. Morril, G.D. Cody, Solution behavior of reduced C-O-H volatiles in silicate melts at high pressure and temperature. Geochim. Cosmochim. Acta 73, 1696–1710 (2009) ADSCrossRefGoogle Scholar
  386. S. Naif, K. Key, S. Constable, R.L. Evans, Melt-rich channel observed at the lithosphere-asthenosphere boundary. Nature 495, 356–359 (2013) ADSCrossRefGoogle Scholar
  387. S. Nakashima, H. Matayoshi, T. Yuko, K. Michibayashi, T. Masuda, N. Kuroki, H. Yamagishi, Y. Ito, A. Nakamura, Infrared microspectroscopy analysis of water distribution in deformed and metamorphosed rocks. Tectonophysics 245, 263–276 (1995) ADSCrossRefGoogle Scholar
  388. S. Nazzareni, H. Skogby, P.F. Zanazzi, Hydrogen content in clinopyroxene phenocrysts from Salina mafic lavas (Aeolian arc, Italy). Contrib. Mineral. Petrol. 162, 275–288 (2011) ADSCrossRefGoogle Scholar
  389. O. Nebel, K. Mezger, W. van Westrenen, Rubidium isotopes in primitive chondrites: constraints on Earth’s volatile element depletion and lead isotope evolution. Earth Planet. Sci. Lett. 305, 309–316 (2011) ADSCrossRefGoogle Scholar
  390. F. Nestola, P. Nimis, L. Ziberna, M. Longo, A. Marzoli, J.W. Harris, M.H. Manghnani, Y. Fedortchouk, First crystal-structure determination of olivine in diamond: composition and implications for provenance in the Earth’s mantle. Earth Planet. Sci. Lett. 305, 249–255 (2011) ADSCrossRefGoogle Scholar
  391. F. Nestola, J.R. Smyth, Diamonds and water in the deep Earth: a new scenario. Int. Geol. Rev. 58, 1–14 (2015). doi: 10.1080/00206814.2015.1056758 Google Scholar
  392. A.O. Nier, D.J. Schlutter, Extraction of helium from individual interplanetary dust particles by step-heating. Meteoritics 27, 166–173 (1992) ADSCrossRefGoogle Scholar
  393. F. Nimmo, T. Kleine, Early differentiation and core formation: processes and timescales, in The Early Earth: Accretion and Differentiation, ed. by J. Badro, A.M. Walker (Wiley, New York, 2015), pp. 83–102 CrossRefGoogle Scholar
  394. Y. Nishihara, K.N. Matsukage, Iron-titanium oxyhydroxides as water carriers in the Earth’s deep mantle. Am. Mineral. 101, 919–927 (2016) ADSCrossRefGoogle Scholar
  395. R. Nomura, K. Hirose, K. Uesugi, Y. Ohishi, A. Tsuchiyama, A. Miyake, Y. Ueno, Low core-mantle boundary temperature inferred from the solidus of pyrolite. Science 343, 522–525 (2014) ADSCrossRefGoogle Scholar
  396. D. Novella, N. Bolfan-Casanova, F. Nestola, J.W. Harris, H2O in olivine and garnet inclusions still trapped in diamonds from the Siberian craton: implications for the water content of cratonic lithosphere peridotites. Lithos 230, 180–183 (2015) ADSCrossRefGoogle Scholar
  397. D. Novella, D.J. Frost, E.H. Hauri, H. Bureau, C. Raepsaet, M. Roberge, The distribution of H2O between silicate melt and nominally anhydrous peridotite and the onset of hydrous melting in the deep upper mantle. Earth Planet. Sci. Lett. 400, 1–13 (2014) ADSCrossRefGoogle Scholar
  398. D.P. O’Brien, A. Morbidelli, H.F. Levison, Terrestrial planet formation with strong dynamical friction. Icarus 184, 39–58 (2006) ADSCrossRefGoogle Scholar
  399. D.P. O’Brien, K.J. Walsh, A. Morbidelli, S.N. Raymond, A.V. Mandell, Water delivery and giant impacts in the ‘Grand Tack’ scenario. Icarus 239, 74–84 (2014) ADSCrossRefGoogle Scholar
  400. J.A. O’Leary, G.A. Gaetani, E.H. Hauri, The effect of tetrahedral Al3+ on the partitioning of water between clinopyroxene and silicate melt. Earth Planet. Sci. Lett. 297, 111–120 (2010) ADSCrossRefGoogle Scholar
  401. C.J. O’Neill, A. Lenardic, W.L. Griffin, S.Y. O’Reilly, Dynamics of cratons in an evolving mantle. Lithos 102, 12–24 (2008) ADSCrossRefGoogle Scholar
  402. H.S.C. O’Neill, H. Palme, Composition of the silicate Earth: implications for accretion and core formation, in The Earth’s Mantle: Composition, Structure, and Evolution, ed. by I. Jackson (Cambridge University Press, Cambridge, 1998), pp. 3–126 Google Scholar
  403. I. Ohira, E. Ohtani, T. Sakai, M. Miyahara, N. Hirao, Y. Ohishi, M. Nishijima, Stability of a hydrous \(\delta\)-phase, AlOOH–MgSiO2(OH)2, and a mechanism for water transport into the base of lower mantle. Earth Planet. Sci. Lett. 401, 12–17 (2014) ADSCrossRefGoogle Scholar
  404. E. Ohtani, Hydrous minerals and the storage of water in the deep mantle. Chem. Geol. 418, 6–15 (2015) ADSCrossRefGoogle Scholar
  405. E. Ohtani, N. Hirao, T. Kondo, M. Ito, T. Kikegawa, Iron-water reaction at high pressure and temperature, and hydrogen transport into the core. Phys. Chem. Miner. 32, 77–82 (2005) ADSCrossRefGoogle Scholar
  406. T. Ohuchi, T. Irifune, Development of A-type olivine fabric in water-rich deep upper mantle. Earth Planet. Sci. Lett. 362, 20–30 (2013) ADSCrossRefGoogle Scholar
  407. T. Ohuchi, S.-I. Karato, K. Fujino, Strength of single-crystal orthopyroxene under lithospheric conditions. Contrib. Mineral. Petrol. 161, 961–975 (2010) ADSCrossRefGoogle Scholar
  408. T. Ohuchi, T. Kawazoe, Y. Nishihara, N. Nishiyama, T. Irifune, High pressure and temperature fabric transitions in olivine and variations in upper mantle seismic anisotropy. Earth Planet. Sci. Lett. 304, 55–63 (2011) ADSCrossRefGoogle Scholar
  409. T. Okuchi, Hydrogen partitioning into molten iron at high pressure: implications for Earth’s core. Science 278, 1781–1784 (1997) ADSCrossRefGoogle Scholar
  410. T. Okuchi, E. Takahashi, Hydrogen in molten iron at high pressure: the first measurement, in Properties of Earth and Planetary Materials at High Pressure and Temperature (American Geophysical Union, Washington, 1998), pp. 249–260 CrossRefGoogle Scholar
  411. U. Ott, Planetary and pre-solar noble gases in meteorites. Chem. Erde 74, 519–544 (2014) CrossRefGoogle Scholar
  412. T. Owen, A. Bar-Nun, I. Kleinfeld, Possible cometary origin of heavy noble gases in the atmospheres of Venus, Earth and Mars. Nature 358, 43–46 (1992) ADSCrossRefGoogle Scholar
  413. J.A. Padrón-Navarta, J. Hermann, H.S.C. O’Neill, Site-specific hydrogen diffusion rates in forsterite. Earth Planet. Sci. Lett. 392, 100–112 (2014) ADSCrossRefGoogle Scholar
  414. H. Palme, H.S.C. O’Neill, Cosmochemical estimates of mantle composition, in The Mantle and Core, ed. by A.M. Davis (Elsevier, Amsterdam, 2014a), pp. 1–39 Google Scholar
  415. H. Palme, H.S.C. O’Neill, Solar system abundances of the elements, in The Mantle and Core, ed. by A.M. Davis (Elsevier, Amsterdam, 2014b), pp. 15–36 Google Scholar
  416. M. Palot, S.D. Jacobsen, J.P. Townsend, F. Nestola, K. Marquardt, J.W. Harris, T. Stachel, C.A. McCammon, D.G. Pearson, Evidence for H2O-bearing fluids in the lower mantle from diamond inclusion. Lithos 265, 237–243 (2016). doi: 10.1016/j.lithos.2016.06.023 ADSCrossRefGoogle Scholar
  417. W.R. Panero, L.R. Benedetti, R. Jeanloz, Transport of water into the lower mantle: role of stishovite. J. Geophys. Res. 108, 2039 (2003) ADSCrossRefGoogle Scholar
  418. W.R. Panero, J.S. Pigott, D.M. Reaman, J.E. Kabbes, Z. Liu Dry, (Mg, Fe)SiO3 perovskite in the Earth’s lower mantle. J. Geophys. Res. 120, 894–908 (2015) ADSCrossRefGoogle Scholar
  419. W.R. Panero, J.R. Smyth, J.S. Pigott, Z. Liu, D.J. Frost, Hydrous ringwoodite to 5 K and 35 GPa: multiple hydrogen bonding sites resolved with FTIR spectroscopy. Am. Mineral. 98, 637–642 (2013) ADSCrossRefGoogle Scholar
  420. R. Parai, S. Mukhopadhyay, How large is the subducted water flux? New constraints on mantle regassing rates. Earth Planet. Sci. Lett. 317–318, 396–406 (2012) CrossRefGoogle Scholar
  421. J.D. Pasteris, Fluid inclusions in mantle xenoliths, in Mantle Xenoliths, ed. by P.H. Nixon (Wiley, New York, 1987), pp. 691–707 Google Scholar
  422. A.A. Pavlov, A.K. Pavlov, J.F. Kasting, Irradiated interplanetary dust particles as a possible solution for the deuterium/hydrogen paradox of Earth’s oceans. J. Geophys. Res. 104, 30725–30728 (1999) ADSCrossRefGoogle Scholar
  423. S.M. Peacock, Fluid processes in subduction zones. Science 248, 329–337 (1990) ADSCrossRefGoogle Scholar
  424. D.G. Pearson, F.E. Brenker, F. Nestola, J. McNeill, L. Nasdala, M.T. Hutchison, S. Matveev, K. Mather, G. Silversmit, S. Schmitz, B. Vekemans, L. Vincze, Hydrous mantle transition zone indicated by ringwoodite included within diamond. Nature 507, 221–224 (2014) ADSCrossRefGoogle Scholar
  425. D.G. Pearson, R.W. Carlson, S.B. Shirey, F.R. Boyd, P.H. Nixon, Stabilization of Archean lithospheric mantle: a Re-Os isotope study of peridotite xenoliths from the Kaapvaal craton. Earth Planet. Sci. Lett. 134, 341–357 (1995a) ADSCrossRefGoogle Scholar
  426. D.G. Pearson, S.B. Shirey, R.W. Carlson, F.R. Boyd, N.P. Pokhilenko, N. Shimizu, Re-Os, Sm-Nd, and Rb-Sr isotope evidence for thick Archaean lithospheric mantle beneath the Siberian craton modified by multistage metasomatism. Geochim. Cosmochim. Acta 59, 959–977 (1995b) ADSGoogle Scholar
  427. R.O. Pepin, D. Porcelli, Origin of noble gases in the terrestrial planets. Annu. Rev. Earth Planet. Sci. 47, 191–246 (2002) Google Scholar
  428. A.H. Peslier, A review of water contents of nominally anhydrous natural minerals in the mantles of Earth, Mars and the Moon. J. Volcanol. Geotherm. Res. 197, 239–258 (2010) ADSCrossRefGoogle Scholar
  429. A.H. Peslier, M. Bizimis, Water in Hawaiian peridotite minerals: a case for a dry metasomatized oceanic mantle lithosphere. Geochem. Geophys. Geosyst. 16, 1–22 (2015) CrossRefGoogle Scholar
  430. A.H. Peslier, M. Bizimis, M. Matney, Water disequilibrium in olivines from Hawaiian peridotites: recent metasomatism, H diffusion and magma ascent rates. Geochim. Cosmochim. Acta 154, 98–117 (2015) ADSCrossRefGoogle Scholar
  431. A.H. Peslier, J.F. Luhr, Hydrogen loss from olivines in mantle xenoliths from Simcoe (USA) and Mexico: mafic alkalic magma ascent rates and water budget of the sub-continental lithosphere. Earth Planet. Sci. Lett. 242, 302–319 (2006) ADSCrossRefGoogle Scholar
  432. A.H. Peslier, J.F. Luhr, J. Post, Low water contents in pyroxenes from spinel-peridotites of the oxidized, sub-arc mantle wedge. Earth Planet. Sci. Lett. 201, 69–86 (2002) ADSCrossRefGoogle Scholar
  433. A.H. Peslier, A.B. Woodland, D.R. Bell, M. Lazarov, Olivine water contents in the continental lithosphere and the longevity of cratons. Nature 467, 78–81 (2010) ADSCrossRefGoogle Scholar
  434. A.H. Peslier, A.B. Woodland, D.R. Bell, M. Lazarov, T.J. Lapen, Metasomatic control of water contents in the Kaapvaal cratonic mantle. Geochim. Cosmochim. Acta 97, 213–246 (2012) ADSCrossRefGoogle Scholar
  435. A.H. Peslier, A.B. Woodland, J.A. Wolff, Fast kimberlite ascent rates estimated from hydrogen diffusion profiles in xenolithic olivines from Southern Africa. Geochim. Cosmochim. Acta 72, 2711–2722 (2008) ADSCrossRefGoogle Scholar
  436. J.S. Pigott, K. Wright, J.D. Gale, W.R. Panero, Calculation of the energetics of water incorporation in majorite garnet. Am. Mineral. 100, 1065–1075 (2015) ADSCrossRefGoogle Scholar
  437. T. Plank, L.B. Cooper, C.E. Manning, Emerging geothermometers for estimating slab surface temperatures. Nat. Geosci. 614, 611–615 (2009) ADSCrossRefGoogle Scholar
  438. T. Plank, K.A. Kelley, M.M. Zimmer, E.H. Hauri, P.J. Wallace, Why do mafic magmas contain ∼4 wt% water on average? Earth Planet. Sci. Lett. 364, 168–179 (2013) ADSCrossRefGoogle Scholar
  439. T. Plank, C.H. Langmuir, The chemical composition of subducted sediment and its consequences for the crust and mantle. Chem. Geol. 145, 325–394 (1998) ADSCrossRefGoogle Scholar
  440. F.A. Podosek, M. Ozima, The xenon age of the Earth, in Origin of the Earth and Moon, ed. by R.M. Canup, K. Righter (University of Arizona Press, Tucson, 2000), pp. 63–72 Google Scholar
  441. F.A. Podosek, D.S. Woolum, P. Cassen, R.H.J. Nichols, Solar gases in the Earth by solar wind irradiation, in Goldschmidt Conf., Oxford, UK (2000), p. 804 Google Scholar
  442. J.-P. Poirier, Light elements in the Earth’s outer core: a critical review. Phys. Earth Planet. Inter. 85, 319–337 (1994) ADSCrossRefGoogle Scholar
  443. H.N. Pollack, Cratonization and thermal evolution of the mantle. Earth Planet. Sci. Lett. 80, 175–182 (1986) ADSCrossRefGoogle Scholar
  444. F.F. Pollitz, R. Bürgmann, B. Romanowicz, Viscosity of oceanic asthenosphere inferred from remote triggering of earthquakes. Science 280, 1245–1249 (1998) ADSCrossRefGoogle Scholar
  445. A. Pommier, Interpretation of magnetotelluric results using laboratory measurements. Surv. Geophys. 35, 41–84 (2014) ADSCrossRefGoogle Scholar
  446. D. Porcelli, C.J. Ballentine, Models for distribution of terrestrial noble gases and evolution of the atmosphere. Rev. Mineral. Geochem. 47, 411–480 (2002) CrossRefGoogle Scholar
  447. K. Priestley, E. Debayle, Seismic evidence for a moderately thick lithosphere beneath the Siberian platform. Geophys. Res. Lett. 30, 1118 (2003) ADSCrossRefGoogle Scholar
  448. K. Priestley, D. McKenzie, The thermal structure of the lithosphere from shear wave velocities. Earth Planet. Sci. Lett. 244, 285–301 (2006) ADSCrossRefGoogle Scholar
  449. L. Qin, C.M.O.D. Alexander, R.W. Carlson, M.F. Horan, T. Yokoyama, Contributors to chromium isotope variation of meteorites. Geochim. Cosmochim. Acta 74, 1122–1145 (2010) ADSCrossRefGoogle Scholar
  450. S.N. Raymond, T. Quinn, J.I. Lunine, High-resolution simulations of the final assembly of Earth-like planets I. Terrestrial accretion and dynamics. Icarus 183, 265–282 (2006) ADSCrossRefGoogle Scholar
  451. J. Revenaugh, R. Meyer, Seismic evidence of partial melt within a possibly ubiquitous low-velocity layer at the base of the mantle. Science 277, 670–673 (1997) CrossRefGoogle Scholar
  452. J. Revenaugh, S.A. Sipkin, Seismic evidence for silicate melt atop the 410-km mantle discontinuity. Nature 369, 474–476 (1994) ADSCrossRefGoogle Scholar
  453. G.G. Richards, D. Bercovici, Water-induced convection in the Earth’s mantle transition zone. J. Geophys. Res. 114, B01205 (2009) ADSCrossRefGoogle Scholar
  454. F. Robert, The origin of water on Earth. Science 293, 1056–1058 (2001) CrossRefGoogle Scholar
  455. F. Robert, The D/H ratio in chondrites, in Solar System History from Isotopic Signatures of Volatile Elements: Volume Resulting from an ISSI Workshop, 14–18 January, 2003, Bern, Switzerland, ed. by R. Kallenbach, T. Encrenaz, J. Geiss, K. Mauersberger, T.C. Owen, F. Robert (Springer, Dordrecht, 2002), pp. 87–101. Google Scholar
  456. F. Robert, M. Javoy, J. Halbout, B. Dimon, L. Merlivat, Hydrogen isotope abundances in the solar system. Part II: meteorites with terrestrial-like DH ratio. Geochim. Cosmochim. Acta 51, 1807–1822 (1987) ADSCrossRefGoogle Scholar
  457. E. Roedder, Liquid CO2 inclusions in olivine-bearing nodules and phenocrysts from basalts. Am. Mineral. 10, 1746–1773 (1965) Google Scholar
  458. E. Roedder, Fluid Inclusions (Mineralogical Society of America, Chantilly, 1984). 644 pp. Google Scholar
  459. S. Rondenay, G.A. Abers, P.E. van Keken, Seismic imaging of subduction zone metamorphism. Geology 36, 275–278 (2008) ADSCrossRefGoogle Scholar
  460. A. Rosenthal, E.H. Hauri, M.M. Hirschmann, Experimental determination of C, F, and H partitioning between mantle minerals and carbonated basalt, CO2/Ba and CO2/Nb systematics of partial melting, and the CO2 contents of basaltic source regions. Earth Planet. Sci. Lett. 412, 77–87 (2015) ADSCrossRefGoogle Scholar
  461. G.R. Rossman, Studies of OH in nominally anhydrous minerals. Phys. Chem. Miner. 23, 299–304 (1996) ADSCrossRefGoogle Scholar
  462. G.R. Rossman, Analytical methods for measuring water in nominally anhydrous minerals, in Water in Nominally Anhydrous Minerals, ed. by H. Keppler, J.R. Smyth (Mineralogical Society of America, Chantilly, 2006), pp. 1–28 Google Scholar
  463. G.R. Rossman, J.R. Smyth, Hydroxyl contents of accessory minerals in mantle eclogites and related rocks. Am. Mineral. 75, 775–780 (1990) Google Scholar
  464. D.C. Rubie, D.J. Frost, U. Mann, Y. Asahara, F. Nimmo, K. Tsuno, P. Kegler, A.H. Holzheid, H. Palme, Heterogeneous accretion, composition and core–mantle differentiation of the Earth. Earth Planet. Sci. Lett. 301, 31–42 (2011) ADSCrossRefGoogle Scholar
  465. D.C. Rubie, S.A. Jacobson, A. Morbidelli, D.P. O’Brien, E.D. Young, J. de Vries, F. Nimmo, H. Palme, D.J. Frost, Accretion and differentiation of the terrestrial planets with implications for the compositions of early-formed Solar System bodies and accretion of water. Icarus 248, 89–108 (2015) ADSCrossRefGoogle Scholar
  466. R.L. Rudnick, Making continental crust. Nature 378, 571–578 (1995) ADSCrossRefGoogle Scholar
  467. R.L. Rudnick, D.M. Fountain, Nature and composition of the continental crust: a lower crustal perspective. Rev. Geophys. 33, 267–309 (1995) ADSCrossRefGoogle Scholar
  468. L. Rüpke, J.P. Morgan, J.E. Dixon, Implications of subduction rehydration for Earth’s deep water cycle, in Earth’s Deep Water Cycle, ed. by S.D. Jacobsen, S. van der Lee (American Geophysical Union, Washington, 2006), pp. 263–276 CrossRefGoogle Scholar
  469. L.H. Rüpke, J.P. Morgan, M. Hort, J.A.D. Connolly, Serpentine and the subduction zone water cycle. Earth Planet. Sci. Lett. 223, 17–34 (2004) ADSCrossRefGoogle Scholar
  470. D.M. Ruscitto, P.J. Wallace, L.B. Cooper, T. Plank, Global variations in H2O/Ce: 2. Relationships to arc magma geochemistry and volatile fluxes. Geochem. Geophys. Geosyst. 13, 1–27 (2012) CrossRefGoogle Scholar
  471. J.K. Russell, L.A. Porritt, Y. Lavallée, D.B. Dingwell, Kimberlite ascent by assimilation-fuelled buoyancy. Nature 481, 352–356 (2012) ADSCrossRefGoogle Scholar
  472. C.A. Rychert, P.M. Shearer, A global view of the lithosphere-asthenosphere boundary. Science 324, 495–498 (2009) ADSCrossRefGoogle Scholar
  473. A.E. Saal, E.H. Hauri, C.H. Langmuir, M.R. Perfit, Vapour undersaturation in primitive mid-ocean-ridge basalt and the volatile content of Earth’s upper mantle. Nature 419, 451–455 (2002) ADSCrossRefGoogle Scholar
  474. A.E. Saal, E.H. Hauri, M. Lo Cascio, J.A. Van Orman, M.C. Rutherford, R.F. Cooper, Volatile content of lunar volcanic glasses and the presence of water in the Moon’s interior. Nature 454, 192–196 (2008) ADSCrossRefGoogle Scholar
  475. A.E. Saal, E.H. Hauri, J.A. Van Orman, M.C. Rutherford, Hydrogen isotopes in lunar volcanic glasses and melt inclusions reveal a carbonaceous chondrite heritage. Science 340, 1317–1320 (2013) ADSCrossRefGoogle Scholar
  476. T. Sakamaki, A. Suzuki, E. Ohtani, Stability of hydrous melt at the base of the Earth’s upper mantle. Nature 439, 192–194 (2006) ADSCrossRefGoogle Scholar
  477. S.A. Sandford, J. Aléon, C.M.O.D. Alexander, T. Araki, S. Bajt, G.A. Baratta, J. Borg, J.P. Bradley, D.E. Brownlee, J.R. Brucato, M.J. Burchell, H. Busemann, A. Butterworth, S.J. Clemett, G.D. Cody, L. Colangeli, G. Cooper, L. D’Hendecourt, Z. Djouadi, J.P. Dworkin, G. Ferrini, H. Fleckenstein, G.J. Flynn, I.A. Franchi, M. Fries, M.K. Gilles, D.P. Glavin, M. Gounelle, F. Grossemy, C. Jacobsen, L.P. Keller, A.L.D. Kilcoyne, J. Leitner, G. Matrajt, A. Meibom, V. Mennella, S. Mostefaoui, L.R. Nittler, M.E. Palumbo, D.A. Papanastassiou, F. Robert, A. Rotundi, C.J. Snead, M.K. Spencer, F.J. Stadermann, A. Steele, T. Stephan, P. Tsou, T. Tyliszczak, A.J. Westphal, S. Wirick, B. Wopenka, H. Yabuta, R.N. Zare, M.E. Zolensky, Organics captured from comet 81P/Wild 2 by the Stardust Spacecraft. Science 314, 1720–1724 (2006) ADSCrossRefGoogle Scholar
  478. A. Sano, E. Ohtani, T. Kondo, N. Hirao, T. Sakai, N. Sata, Y. Ohishi, T. Kikegawa, Aluminous hydrous mineral \(\delta\)-AlOOH as a carrier of hydrogen into the core-mantle boundary. Geophys. Res. Lett. 35, L03303 (2008) ADSCrossRefGoogle Scholar
  479. A.R. Sarafian, S.G. Nielsen, H.R. Marschall, F.M. McCubbin, B.D. Monteleone, Early accretion of water in the inner solar system from a carbonaceous chondrite-like source. Science 346, 623–626 (2014) ADSCrossRefGoogle Scholar
  480. A.R. Sarafian, M.F. Roden, A.E. Patiño-Douce, The volatile content of Vesta: clues from apatite in eucrites. Meteorit. Planet. Sci. 48, 2135–2154 (2013) ADSCrossRefGoogle Scholar
  481. A.R. Sarafian, E.H. Hauri, F.M. McCubbin, T.J. Lapen, E.L. Berger, S.G. Nielsen, H.R. Marschall, G.A. Gaetani, K. Righter, E. Sarafian, Early accretion of water and volatile elements to the inner Solar System: evidence from angrites. Philos. Trans. R. Soc. Lond. A 375, 1–27 (2017) CrossRefGoogle Scholar
  482. E. Sarafian, R.L. Evans, J.A. Collins, J. Elsenbeck, G.A. Gaetani, J.B. Gaherty, G. Hirth, D. Lizarralde, The electrical structure of the central Pacific upper mantle constrained by the NoMelt experiment. Geochem. Geophys. Geosyst. 16, 1115–1132 (2015) ADSCrossRefGoogle Scholar
  483. L. Schaffer, A.H. Peslier, A.D. Brandon, M. Bizimis, M. Matney, Why Are Mantle Melting Residues Still Hydrous? (Goldschmidt, Yokohama, 2016) Google Scholar
  484. L. Schaefer, B. Fegley Jr., Volatile element chemistry during metamorphism of ordinary chondritic material and some of its implications for the composition of asteroids. Icarus 205, 483–496 (2010) ADSCrossRefGoogle Scholar
  485. P. Schiano, R. Clocchiatti, N. Shimizu, R.C. Maury, K.P. Jochum, A.W. Hofmann, Hydrous, silica-rich melts in the sub-arc mantle and their relationship with erupted arc lavas. Nature 377, 595–600 (1995) ADSCrossRefGoogle Scholar
  486. E. Schmädicke, J. Gose, J. Reinhardt, T.M. Will, R. Stalder, Garnet in cratonic and non-cratonic mantle and lower crustal xenoliths from southern Africa: composition, water incorporation and geodynamic constraints. Precambrian Res. 270, 285–299 (2015) ADSCrossRefGoogle Scholar
  487. E. Schmädicke, J. Göse, T.M. Will, Heterogeneous mantle underneath the North Atlantic: evidence from water in orthopyroxene, mineral composition and equilibrium conditions of spinel peridotite from different locations at the Mid-Atlantic ridge. Lithos 125, 308–320 (2011) ADSCrossRefGoogle Scholar
  488. B. Schmandt, S.D. Jacobsen, T.W. Becker, Z. Liu, K. Ducker, Dehydration melting at the top of the lower mantle. Science 344, 1265–1268 (2014) ADSCrossRefGoogle Scholar
  489. M.W. Schmidt, S. Poli, Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation. Earth Planet. Sci. Lett. 163, 361–379 (1998) ADSCrossRefGoogle Scholar
  490. M. Schönbächler, R.W. Carlson, M.F. Horan, T.D. Mock, E.H. Hauri, Silver isotope variations in chondrites: volatile depletion and the initial 107Pd abundance of the solar system. Geochim. Cosmochim. Acta 72, 5330–5341 (2008) ADSCrossRefGoogle Scholar
  491. M. Schönbächler, R.W. Carlson, M.F. Horan, T.D. Mock, E.H. Hauri, Heterogeneous accretion and the moderately volatile element budget of Earth. Science 328, 884–887 (2010) ADSCrossRefGoogle Scholar
  492. M. Schönbächler, F. Nimmo, Heterogeneous accretion of the Earth and the timing of volatile element depletion, in AGU Fall Meeting, San Francisco (2011) Google Scholar
  493. J.E.C. Scully, C.T. Russell, A. Yin, R. Jaumann, E. Carey, J. Castillo-Rogez, H.Y. McSween, C.A. Raymond, V. Reddy, L. Le Corre, Geomorphological evidence for transient water flow on Vesta. Earth Planet. Sci. Lett. 411, 151–163 (2015) ADSCrossRefGoogle Scholar
  494. S.J. Seaman, M.L. Williams, M.J. Jercinovic, G.C. Koteas, L.B. Brown, Water in nominally anhydrous minerals: implications for partial melting and strain localization in the lower crust. Geology 41, 1051–1054 (2013) ADSCrossRefGoogle Scholar
  495. A.N. Seligman, I.N. Bindeman, J.M. Watkins, A.M. Ross, Water in volcanic glass: from volcanic degassing to secondary hydration. Geochim. Cosmochim. Acta 191, 216–238 (2016) ADSCrossRefGoogle Scholar
  496. K. Selway, J. Yi, S.-I. Karato, Water content of the Tanzanian lithosphere from magnetotelluric data: implications for cratonic growth and stability. Earth Planet. Sci. Lett. 388, 175–186 (2014) ADSCrossRefGoogle Scholar
  497. S.S. Shapiro, B.H. Hager, T.H. Jordan, Stability and dynamics of the continental tectosphere. Lithos 48, 135–152 (1999) ADSCrossRefGoogle Scholar
  498. Z.D. Sharp, F.M. McCubbin, C.K. Shearer, A hydrogen-based oxidation mechanism relevant to planetary formation. Earth Planet. Sci. Lett. 380, 88–97 (2013) ADSCrossRefGoogle Scholar
  499. A.M. Shaw, E.H. Hauri, M.D. Behn, D.R. Hilton, C.G. McPherson, J.M. Sinton, Long-term preservation of slab signatures in the mantle inferred from hydrogen isotopes. Nat. Geosci. 5, 224–228 (2012) ADSCrossRefGoogle Scholar
  500. A. Shen, H. Keppler, Infrared spectroscopy of hydrous silicate melts to 1000 °C and 10 kbars: direct observation of H2O speciation in a diamond-anvil cell. Am. Mineral. 80, 1335–1338 (1995) ADSCrossRefGoogle Scholar
  501. Y. Shibazaki, E. Ohtani, H. Fukui, T. Sakai, S. Kamada, D. Ishikawa, S. Tsutsui, A.Q.R. Baron, N. Nishitani, N. Hirao, K. Takemura, Sound velocity measurements in dhcp-FeH up to 70 GPa with inelastic X-ray scattering: implications for the composition of the Earth’s core. Earth Planet. Sci. Lett. 313–314, 79–85 (2012) CrossRefGoogle Scholar
  502. Y. Shibazaki, E. Ohtani, H. Terasaki, A. Suzuki, K-i. Funakoshi, Hydrogen partitioning between iron and ringwoodite: implications for water transport into the Martian core. Earth Planet. Sci. Lett. 287, 463–470 (2009) ADSCrossRefGoogle Scholar
  503. S. Shirey, S.H. Richardson, Start of the Wilson cycle at 3 Ga shown by diamonds from subcontinental Mantle. Science 333, 434–436 (2011) ADSCrossRefGoogle Scholar
  504. J. Siebert, J. Badro, D. Antonangeli, F.J. Ryerson, Terrestrial accretion under oxidizing conditions. Science 339, 1194–1197 (2013) ADSCrossRefGoogle Scholar
  505. T.W. Sisson, S. Bronto, Evidence for pressure-release melting beneath magmatic arcs from basalt at Galunggung, Indonesia. Nature 391, 883–886 (1998) ADSCrossRefGoogle Scholar
  506. T.W. Sisson, G.D. Layne, H2O in basalt and basaltic andesite glass inclusions from four subduction-related volcanoes. Earth Planet. Sci. Lett. 117, 619–635 (1993) ADSCrossRefGoogle Scholar
  507. L.E. Sjöberg, M. Pan, E. Asenjo, S. Erlingsson, Glacial rebound near Vatnajökull, Iceland, studied by GPS campaigns in 1992 and 1996. J. Geodyn. 29, 63–70 (2000) CrossRefGoogle Scholar
  508. P. Skemer, J.M. Warren, L. Hansen, G. Hirth, P.B. Kelemen, The influence of water and LPO on the initiation and evolution of mantle shear zones. Earth Planet. Sci. Lett. 375, 222–233 (2013) ADSCrossRefGoogle Scholar
  509. N.H. Sleep, Survival of Archean cratonal lithosphere. J. Geophys. Res. 108, 2302 (2003). doi: 10.1029/2001JB000169 ADSCrossRefGoogle Scholar
  510. N.H. Sleep, Evolution of the continental lithosphere. Annu. Rev. Earth Planet. Sci. 33, 369–393 (2005) ADSCrossRefGoogle Scholar
  511. J.R. Smyth, A crystallographic model for hydrous wadsleyite (\(\beta\)-Mg2SiO4): an ocean in the Earth’s interior? Am. Mineral. 79, 1021–1024 (1994) Google Scholar
  512. J.R. Smyth, Hydrogen in high pressure silicate and oxide mineral structures, in Water in Nominally Anhydrous Minerals, ed. by H. Keppler, J.R. Smyth (Mineralogical Society of America, Chantilly, 2006), pp. 85–115 Google Scholar
  513. J.R. Smyth, D.R. Bell, G.R. Rossman, Incorporation of hydroxyl in upper-mantle clinopyroxenes. Nature 351, 732–735 (1991) ADSCrossRefGoogle Scholar
  514. J.R. Smyth, F.A. Caporuscio, T.C. McCormick, Mantle eclogite: evidence of igneous fractionation in the mantle. Earth Planet. Sci. Lett. 93, 133–141 (1989) ADSCrossRefGoogle Scholar
  515. J.R. Smyth, D.J. Frost, The effect of water on the 410-km discontinuity: an experimental study. Geophys. Res. Lett. 29, 123-121–123-124 (2002) CrossRefGoogle Scholar
  516. J.R. Smyth, C.M. Holl, D.J. Frost, S.D. Jacobsen, High pressure crystal chemistry of hydrous ringwoodite and water in the Earth’s interior. Phys. Earth Planet. Inter. 143–144, 271–278 (2004) CrossRefGoogle Scholar
  517. J.R. Smyth, S.D. Jacobsen, Nominally anhydrous minerals and Earth’s deep water cycle, in Earth’s Deep Water Cycle, ed. by S. Jacobsen, S. Lee (AGU Geophysical Monograph, Washington D.C., 2006), pp. 1–11 Google Scholar
  518. A.V. Sobolev, E.V. Asafov, A.A. Gurenko, N.T. Arndt, V.G. Batanova, M. Portnyagin, D. Garbe-Schönberg, S.P. Krashenninnikov, Komatiites reveal a hydrous Archaean deep-mantle reservoir. Nature 531, 628–632 (2016) ADSCrossRefGoogle Scholar
  519. A.V. Sobolev, M. Chaussidon, H2O concentrations in primary melts from supra-subduction zones and mid-ocean ridges: implications for H2O storage and recycling in the mantle. Earth Planet. Sci. Lett. 137, 45–55 (1996) ADSCrossRefGoogle Scholar
  520. S. Song, L. Su, Y. Niu, Y. Lai, L. Zhang, CH4 inclusions in orogenic harzburgite: evidence for reduced slab fluids and implications for redox melting in mantle wedge. Geochim. Cosmochim. Acta 73, 1737–1754 (2009) ADSCrossRefGoogle Scholar
  521. T.-R.A. Song, D.V. Helmberger, S.P. Grand, Low-velocity zone atop the 410-km seismic discontinuity in the northwestern United States. Nature 427, 530–533 (2004) ADSCrossRefGoogle Scholar
  522. V. Soustelle, A. Tommasi, S. Demouchy, L. Franz, Melt-rock interactions, deformation, hydration and seismic properties in the sub-arc lithospheric mantle inferred from xenoliths from seamounts near Lihir, Papua New Guinea. Tectonophysics 608, 330–345 (2013) ADSCrossRefGoogle Scholar
  523. V. Soustelle, A. Tommasi, S. Demouchy, D.A. Ionov, Deformation and fluid-rock interaction in the supra-subduction mantle: microstructures and water contents in peridotite xenoliths from the Avacha volcano, Kamchatka. J. Petrol. 51, 363–394 (2010) ADSCrossRefGoogle Scholar
  524. W. Soyer, M. Unsworth, Deep electrical structure of the northern Cascadia (British Columbia, Canada) subduction zone: implications for the distribution of fluids. Geology 34, 53–56 (2006) ADSCrossRefGoogle Scholar
  525. R.S.J. Sparks, Kimberlite volcanism. Annu. Rev. Earth Planet. Sci. 41, 497–528 (2013) ADSCrossRefGoogle Scholar
  526. R.S.J. Sparks, J. Barclay, C. Jaupart, H.M. Mader, J.C. Phillips, Physical aspects of magmatic degassing I. Experimental and theoretical constraints on vesiculation, in Volatiles in Magmas, ed. by M.R. Carroll, J.R. Holloway (Mineralogical Society of America, Washington D.C., 1994), pp. 413–446 Google Scholar
  527. N.H. Spring, H. Busemann, S.A. Crowther, J.D. Gilmour, C. Engrand, L.R. Nittler, Xenon in Antarctic micrometeorites (AMMs) and interplanetary dust particles (IDPs), in 45th Lunar and Planetary Science Conference, The Woodland, TX (2014), p. 2923 Google Scholar
  528. T. Stachel, W.J. Harris, P.G. Brey, W. Joswig, Kankan diamonds (Guinea) II: lower mantle inclusion parageneses. Contrib. Mineral. Petrol. 140, 16–27 (2000) ADSCrossRefGoogle Scholar
  529. R. Stalder, Influence of Fe, Cr and Al on hydrogen incorporation in orthopyroxene. Eur. J. Mineral. 16, 703–711 (2004) ADSCrossRefGoogle Scholar
  530. R. Stalder, A. Karimova, J. Konzett, OH-defects in multiple-doped orthoenstatite at 4–8 GPa: filling the gap between pure and natural systems. Contrib. Mineral. Petrol. 169, 38 (2015) ADSCrossRefGoogle Scholar
  531. R. Stalder, J. Konzett, OH defects in quartz in the system quartz–albite–water and granite–water between 5 and 25 kbar. Phys. Chem. Miner. 39, 817–827 (2012) ADSCrossRefGoogle Scholar
  532. R. Stalder, H. Skogby, Hydrogen incorporation in enstatite. Eur. J. Mineral. 14, 1139–1144 (2002) ADSCrossRefGoogle Scholar
  533. A. Stephant, R.L. Hervig, M. Bose, M. Wadhwa, D/H ratios and water contents in eucrite minerals: implications for the source and abundance of water on Vesta, in 79th Meteoritical Society Meeting (2016), p. 6212 Google Scholar
  534. A. Stephant, L. Remusat, F. Robert, Water in type I chondrules of Paris CM chondrite. Geochim. Cosmochim. Acta 199, 75–90 (2017) ADSCrossRefGoogle Scholar
  535. E. Stolper, The speciation of water in silicate melts. Geochim. Cosmochim. Acta 46, 2609–2620 (1982) ADSCrossRefGoogle Scholar
  536. E. Stolper, S. Newman, The role of water in the petrogenesis of Mariana trough magmas. Earth Planet. Sci. Lett. 293(325), 293–325 (1994) ADSCrossRefGoogle Scholar
  537. A. Stracke, A.W. Hofmann, S.R. Hart, FOZO, HIMU, and the rest of the mantle zoo. Geochem. Geophys. Geosyst. 6, 1–20 (2005) CrossRefGoogle Scholar
  538. D. Suetsugu, T. Inoue, A. Yamada, D. Zhao, M. Obayashi, Towards mapping the three-dimentional distribution of water in the transition zone from P-velocity tomography and 660-km discontinuity depths, in Earth’s Deep Water Cycle, ed. by S. Jacobsen, S. Lee (AGU Geophysical Monograph, Washington D.C., 2006), pp. 237–250 CrossRefGoogle Scholar
  539. S.-S. Sun, Chemical composition and origin of the Earth’s primitive mantle. Geochim. Cosmochim. Acta 46, 179–192 (1982) ADSCrossRefGoogle Scholar
  540. S.S. Sun, W.F. McDonough, Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes, in Magmatism in Ocean Basins, ed. by A.D. Saunders, M.J. Norry (Geol. Soc. London Spec. Publ., London, 1989), pp. 313–345 Google Scholar
  541. W. Sun, T. Yoshino, N. Sakamoto, H. Yurimoto, Hydrogen self-diffusivity in single crystal ringwoodite: implications for water content and distribution in the mantle transition zone. Geophys. Res. Lett. 42, 6582–6589 (2015) ADSCrossRefGoogle Scholar
  542. R. Sundvall, R. Stalder, Water in upper mantle pyroxene megacrysts and xenocrysts: a survey study. Am. Mineral. 96, 1215–1227 (2011) ADSCrossRefGoogle Scholar
  543. R.J. Sweeney, A.B. Thompson, P. Ulmer, Phase relations of a natural MARID composition and implications for MARID genesis, lithospheric melting and mantle metasomatism. Contrib. Mineral. Petrol. 115, 225–241 (1993) ADSCrossRefGoogle Scholar
  544. N. Tada, P. Tarits, K. Baba, H. Utada, T. Kasaya, D. Suetsugu, Electromagnetic evidence for volatile-rich upwelling beneath the society hotspot, French Polynesia. Geophys. Res. Lett. 43, 12021–12026 (2016) ADSCrossRefGoogle Scholar
  545. R. Tappert, J. Foden, T. Stachel, K. Muehlenbachs, M. Tappert, K. Wills, Deep mantle diamonds from South Australia: a record of Pacific subduction at the Gondwanan margin. Geology 37, 43–46 (2008) ADSCrossRefGoogle Scholar
  546. L.A. Taylor, A.M. Logvinova, G.H. Howarth, Y. Liu, A.H. Peslier, G.R. Rossman, Y. Chen, N.V. Sobolev, Low water in diamond mineral inclusions: proto-genetic origin in a dry cratonic lithosphere. Earth Planet. Sci. Lett. 433, 125–132 (2016) ADSCrossRefGoogle Scholar
  547. S.R. Taylor, S.M. McLennan, The Continental Crust: Its Composition and Evolution (Blackwell, Oxford, 1985) Google Scholar
  548. T.J. Tenner, M.M. Hirschmann, A.C. Withers, P. Ardia, H2O storage capacity of olivine and low-Ca pyroxene from 10 to 13 GPa: consequences for dehydration melting above the transition zone. Contrib. Mineral. Petrol. 163, 297–316 (2012) ADSCrossRefGoogle Scholar
  549. T.J. Tenner, M.M. Hirschmann, A.C. Withers, R.L. Hervig, Hydrogen partitioning between nominally anhydrous upper mantle minerals and melt between 3 and 5 GPa and applications to hydrous peridotite partial melting. Chem. Geol. 262, 42–56 (2009) ADSCrossRefGoogle Scholar
  550. H. Terasaki, E. Ohtani, T. Sakai, S. Kamada, H. Asanuma, Y. Shibazaki, N. Hirao, N. Sata, Y. Ohishi, T. Sakamaki, A. Suzuki, K.-I. Funakoshi, Stability of Fe–Ni hydride after the reaction between Fe–Ni alloy and hydrous phase (\(\delta\)-AlOOH) up to 1.2 Mbar: possibility of H contribution to the core density deficit. Phys. Earth Planet. Inter. 194–195, 18–24 (2012) CrossRefGoogle Scholar
  551. S.-M. Thomas, S.D. Jacobsen, C.R. Bina, P. Reichart, M. Moser, E.H. Hauri, M. Koch-Müller, J.R. Smyth, G. Dollinger, Quantification of water in hydrous ringwoodite. Front. Earth Sci. 2, 1–19 (2014) Google Scholar
  552. S.-M. Thomas, K. Wilson, M. Koch-Müller, E.H. Hauri, C.A. McCammon, S.D. Jacobsen, J. Lazarz, D. Rhede, M. Ren, N. Blair, S. Lenz, Quantification of water in majoritic garnet. Am. Mineral. 100, 1084–1092 (2015) ADSCrossRefGoogle Scholar
  553. C. Thoraval, S. Demouchy, Numerical models of ionic diffusion in one and three dimensions: application to dehydration of mantle olivine. Phys. Chem. Miner. 41, 709–723 (2014) ADSCrossRefGoogle Scholar
  554. Z.Z. Tian, J. Liu, Q.-K. Xia, J. Ingrin, Y.T. Hao, D. Christophe, Water concentration profiles in natural mantle orthopyroxenes: a geochronometer for long annealing of xenoliths within magma. Geology 45, 87–90 (2017) ADSCrossRefGoogle Scholar
  555. J.A. Tielke, M.E. Zimmerman, D.L. Kohlstedt, Hydrolytic weakening in olivine single crystals. J. Geophys. Res. 122, 3465–3479 (2017) ADSCrossRefGoogle Scholar
  556. P.M.E. Tollan, H.S.C. O’Neill, J. Hermann, A. Benedictus, R.J. Arculus, Frozen melt-rock reaction in a peridotite xenolith from the sub-arc mantle recorded by diffusion of trace elements and water in olivine. Earth Planet. Sci. Lett. 422, 169–181 (2015) ADSCrossRefGoogle Scholar
  557. J.P. Townsend, J. Tsuchiya, C.R. Bina, S.D. Jacobsen, Water partitioning between bridgmanite and postperovskite in the lowermost mantle. Earth Planet. Sci. Lett. 454, 20–27 (2016) ADSCrossRefGoogle Scholar
  558. M. Trieloff, J. Kunz, D.A. Clague, D. Harrison, C.J. Allègre, The nature of pristine noble gases in mantle plumes. Science 288, 1036–1038 (2000) ADSCrossRefGoogle Scholar
  559. A. Trinquier, J.L. Birck, C.J. Allègre, C. Göpel, D. Ulfbeck, 53Mn–53Cr systematics of the early Solar System revisited. Geochim. Cosmochim. Acta 72, 5146–5163 (2008) ADSCrossRefGoogle Scholar
  560. K. Tucker, R.L. Hervig, M. Wadhwa, Hydrogen isotope systematics of nominally anhydrous phases in martian meteorites, in 46th Lunar and Planetary Science Conference, The Woodlands, TX (2015) Google Scholar
  561. K. Umemoto, K. Hirose, Liquid iron-hydrogen alloys at outer core conditions by first-principles calculations. Geophys. Res. Lett. 42, 7513–7520 (2015) ADSCrossRefGoogle Scholar
  562. T. Usui, C.M.O.D. Alexander, J. Wang, J.I. Simon, J.H. Jones, Origin of water and mantle-crust interactions on Mars inferred from hydrogen isotopes and volatile element abundances of olivine-hosted melt inclusions of primitive shergottites. Earth Planet. Sci. Lett. 357–358, 119–129 (2012) CrossRefGoogle Scholar
  563. T. Usui, C.M.O.D. Alexander, J. Wang, J.I. Simon, J.H. Jones, Meteoritic evidence for a previously unrecognized hydrogen reservoir on Mars. Earth Planet. Sci. Lett. 410, 140–151 (2015) ADSCrossRefGoogle Scholar
  564. T. Usui, E. Nakamura, K. Kobayashi, S. Maruyama, H. Helmstaedt, Fate of the subducted Farallon plate inferred from eclogite xenoliths in the Colorado Plateau. Geology 31, 589–592 (2003) ADSCrossRefGoogle Scholar
  565. R. van der Hilst, E.R. Engdahl, W. Spakman, G. Nolet, Tomographic imaging of subducted lithosphere below northwest Pacific island arcs. Nature 353, 37–43 (1991) ADSCrossRefGoogle Scholar
  566. M. van der Meijde, F. Marone, D. Giardini, S. van der Lee, Seismic evidence for water deep in Earth’s upper mantle. Science 300, 1556–1558 (2003) ADSCrossRefGoogle Scholar
  567. P.E. van Keken, B.R. Hacker, E.M. Syracuse, G.A. Abers, Subduction factory: 4. Depth-dependent flux of H2O from subducting slabs worldwide. J. Geophys. Res. 116, B01401 (2011) ADSGoogle Scholar
  568. W.L. van Mierlo, F. Langenhorst, D.J. Frost, D.C. Rubie, Stagnation of subducting slabs in the transition zone due to slow diffusion in majoritic garnet. Nat. Geosci. 6, 400–403 (2013) ADSCrossRefGoogle Scholar
  569. L. Vattuone, M. Smerieri, L. Savio, A.M. Asaduzzaman, K. Muralidharan, M.l.J. Drake, M. Rocca, Accretion disc origin of the Earth’s water. Philos. Trans. R. Soc. Lond. A 371, 20110585 (2013) ADSCrossRefGoogle Scholar
  570. L.P. Vinnik, R.W.E. Green, L.O. Nicolaysen, Seismic constraints on dynamics of the mantle of the Kaapvaal craton. Phys. Earth Planet. Inter. 95, 139–151 (1996) ADSCrossRefGoogle Scholar
  571. D. Vlassopoulos, G.R. Rossman, S.E. Haggerty, Coupled substitution of H and minor elements in rutile and the implications of high OH contents in Nb- and Cr-rich rutile from the upper mantle. Am. Mineral. 78, 1181–1191 (1993) Google Scholar
  572. N. Vogel, V.S. Heber, H. Baur, D.S. Burnett, R. Wieler, Argon, krypton, and xenon in the bulk solar wind as collected by the Genesis mission. Geochim. Cosmochim. Acta 75, 3057–3071 (2011) ADSCrossRefGoogle Scholar
  573. J.A. Wade, T. Plank, E.H. Hauri, K.A. Kelley, K. Roggensack, M. Zimmer, Prediction of magmatic water contents measurements of H2O in clinopyroxene phenocrysts. Geology 36, 799–802 (2008) ADSCrossRefGoogle Scholar
  574. J.H. Waite Jr., W.S. Lewis, B.A. Magee, J.I. Lunine, W.B. McKinnon, C.R. Glein, O. Mousis, D.T. Young, T. Brockwell, J. Westlake, M.J. Nguyen, B.D. Teolis, H.B. Niemann, R.L. McNutt Jr., M. Perry, W.H. Ip, Liquid water on Enceladus from observations of ammonia and 40Ar in the plume. Nature 460, 487–490 (2009) ADSCrossRefGoogle Scholar
  575. R.J. Walker, Highly siderophile elements in the Earth, Moon and Mars: update and implications for planetary accretion and differentiation. Chem. Erde 69, 101–125 (2009) CrossRefGoogle Scholar
  576. R.J. Walker, R.W. Carlson, S.B. Shirey, F.R. Boyd, Os, Sr, Nd, and Pb isotope systematics of southern African peridotite xenoliths: implications for the chemical evolution of subcontinental mantle. Geochim. Cosmochim. Acta 53, 1583–1595 (1989) ADSCrossRefGoogle Scholar
  577. P.J. Wallace, Volatiles in submarine basaltic glasses from the Northern Kerguelen Plateau (Site 1140): implications for source region compositions, magmatic processes, and plateau subsidence. J. Petrol. 43, 1311–1326 (2002) ADSCrossRefGoogle Scholar
  578. P.J. Wallace, Volatiles in subduction zone magmas: concentrations and fluxes based on melt inclusion and volcanic gas data. J. Volcanol. Geotherm. Res. 140, 217–240 (2005) ADSCrossRefGoogle Scholar
  579. K. Wallmann, The geological water cycle and the evolution of marine \(\delta^{18}\mbox{O}\) values. Geochim. Cosmochim. Acta 65, 2469–2485 (2001) ADSCrossRefGoogle Scholar
  580. M.J. Walter, S.C. Kohn, D. Araujo, G.P. Bulanova, C.B. Smith, E. Gaillou, J. Wang, A. Steele, S.B. Shirey, Deep mantle cycling of oceanic crust: evidence from diamonds and their mineral inclusions. Science 334, 54–57 (2011) ADSCrossRefGoogle Scholar
  581. M.J. Walter, A.R. Thompson, W. Wang, O.T. Lord, J.L. Ross, S.C. McMahon, M.A. Baron, E. Melekhova, A.K. Kleppe, S.C. Kohn, The stability of hydrous silicates in Earth’s lower mantle: experimental constraints from the systems MgO–SiO2–H2O and MgO–Al2O3–SiO2–H2O. Chem. Geol. 418, 16–29 (2015) ADSCrossRefGoogle Scholar
  582. H. Wang, J. van Hunen, D.G. Pearson, M.B. Allen, Craton stability and longevity: the roles of composition-dependent rheology and buoyancy. Earth Planet. Sci. Lett. 391, 224–233 (2014) ADSCrossRefGoogle Scholar
  583. J. Wang, K.H. Hattori, R. Kilian, C.R. Stern, Metasomatism of sub-arc mantle peridotites below southernmost South America: reduction of fO2 by slab-melt. Contrib. Mineral. Petrol. 153, 607–624 (2007) ADSCrossRefGoogle Scholar
  584. Q. Wang, A review of water contents and ductile deformation mechanisms of olivine: implications for the lithosphere-asthenosphere boundary of continents. Lithos 120, 30–41 (2010) ADSCrossRefGoogle Scholar
  585. Y. Wang, H. Ren, Z. Jin, Water and fabric in an ophiolitic peridotite from a supra-subduction zone. Contrib. Mineral. Petrol. 171, 1–17 (2016) CrossRefGoogle Scholar
  586. Z. Wang, H. Becker, Ratios of S, Se and Te in the silicate Earth require a volatile-rich late veneer. Nature 499, 328–331 (2013) ADSCrossRefGoogle Scholar
  587. J.M. Warren, E.H. Hauri, Pyroxenes as tracers of mantle water variations. J. Geophys. Res. 119, 1851–1881 (2014) ADSCrossRefGoogle Scholar
  588. L.L. Watson, I.D. Hutcheon, S. Epstein, E.M. Stolper, Water on Mars: clues from deuterium/hydrogen and water contents of hydrous phases in SNC meteorites. Science 265, 86–90 (1994) ADSCrossRefGoogle Scholar
  589. J.D. Webster, P.M. Piccoli, Magmatic apatite: a powerful, yet deceptive, mineral. Elements 11, 177–182 (2015) CrossRefGoogle Scholar
  590. F.A. Weis, H. Skogby, V.R. Troll, F.M. Deegan, B. Dahren, Magmatic water contents determined through clinopyroxene: examples from the Western Canary Islands, Spain. Geochem. Geophys. Geosyst. 16, 2127–2146 (2015) ADSCrossRefGoogle Scholar
  591. R. Wieler, H. Busemann, I.A. Franchi, Trapping and modification processes of noble gases and nitrogen in meteorites and their parent bodies, in Meteorites and the Early Solar System II, ed. by D.S. Lauretta, H.Y. McSween Jr. (University of Arizona Press, Tucson, 2006), pp. 499–521 Google Scholar
  592. S.A. Wilde, J.W. Valley, W.H. Peck, C.M. Graham, Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 409, 175–178 (2001) ADSCrossRefGoogle Scholar
  593. M. Willbold, T. Elliott, S. Moorbath, The tungsten isotopic composition of the Earth’s mantle before the terminal bombardment. Nature 477, 195–198 (2011) ADSCrossRefGoogle Scholar
  594. R. Wirth, C. Vollmer, F. Brenker, S.S. Matsyuk, F. Kaminsky, Inclusions of nanocrystalline hydrous aluminium silicate “Phase Egg” in superdeep diamonds from Juina (Mato Grosso State, Brazil). Earth Planet. Sci. Lett. 259, 384–399 (2007) ADSCrossRefGoogle Scholar
  595. A.C. Withers, H. Bureau, C. Raepsaet, M.M. Hirschmann, Calibration of infrared spectroscopy by elastic recoil detection analysis of H in synthetic olivine. Chem. Geol. 334, 92–98 (2012) ADSCrossRefGoogle Scholar
  596. B.J. Wood, L.T. Bryndzia, K.E. Johnson, Mantle oxidation state and its relationship to tectonic environment and fluid speciation. Science 248, 337–345 (1990) ADSCrossRefGoogle Scholar
  597. B.J. Wood, A.N. Halliday, The lead isotopic age of the Earth can be explained by core formation alone. Nature 465, 767–770 (2010) ADSCrossRefGoogle Scholar
  598. B.J. Wood, A.N. Halliday, M. Rehkamper, Volatile accretion history of the Earth. Nature 467, E6–E7 (2010) ADSCrossRefGoogle Scholar
  599. B.J. Wood, J.-Y. Li, A. Shahar, Carbon in the core: its influence on the properties of core and mantle. Rev. Mineral. Geochem. 75, 231–250 (2013) CrossRefGoogle Scholar
  600. B.J. Wood, J.A. Wade, M.R. Kilburn, Core formation and the oxidation state of the Earth: additional constraints from Nb, V and Cr partitioning. Geochim. Cosmochim. Acta 72, 1415–1426 (2008) ADSCrossRefGoogle Scholar
  601. A.B. Woodland, M. Koch, Variation in oxygen fugacity with depth in the upper mantle beneath the Kaapvaal craton, Southern Africa. Earth Planet. Sci. Lett. 214, 295–310 (2003) ADSCrossRefGoogle Scholar
  602. R.K. Workman, S.H. Hart, Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet. Sci. Lett. 231, 53–72 (2005) ADSCrossRefGoogle Scholar
  603. R.K. Workman, E. Hauri, S.R. Hart, J. Wang, J. Blusztajn, Volatile and trace elements in basaltic glasses from Samoa: implication for water distribution in the mantle. Earth Planet. Sci. Lett. 241, 932–951 (2006) ADSCrossRefGoogle Scholar
  604. K. Wright, Atomistic models of OH defects in nominally anhydrous minerals, in Water in Nominally Anhydrous Minerals, ed. by H. Keppler, J.R. Smyth (Mineralogical Society of America, Chantilly, 2006), pp. 67–83 Google Scholar
  605. Q.-K. Xia, Y. Hao, P. Li, E. Deloule, M. Coltorti, L. Dallai, X. Yang, M. Feng, Low water content of the Cenozoic lithospheric mantle beneath the eastern part of the North China Craton. J. Geophys. Res. 115, B07207 (2010) ADSCrossRefGoogle Scholar
  606. Q.-K. Xia, Y.-T. Hao, S.C. Liu, X.-Y. Gu, M. Feng, Water contents of the Cenozoic lithospheric mantle beneath the western part of the North China Craton: peridotite xenolith constraints. Gondwana Res. 23, 108–118 (2013a) ADSCrossRefGoogle Scholar
  607. Q.-K. Xia, J. Liu, S.-C. Liu, I. Kovács, M. Feng, L. Dang, High water content in Mesozoic primitive basalts of the North China Craton and implications on the destruction of cratonic mantle lithosphere. Earth Planet. Sci. Lett. 361, 85–97 (2013b) ADSCrossRefGoogle Scholar
  608. Q.-K. Xia, X.-Z. Yang, E. Deloule, Y.-M. Sheng, Y.-T. Hao, Water in the lower crustal granulite xenoliths from Nushan, eastern China. J. Geophys. Res. 111, B11202 (2006) ADSCrossRefGoogle Scholar
  609. X. Yang, OH solubility in olivine in the peridotite-COH system under reducing conditions and implications for water storage and hydrous melting in the reducing upper mantle. Earth Planet. Sci. Lett. 432, 199–209 (2015) ADSCrossRefGoogle Scholar
  610. X. Yang, Effect of oxygen fugacity on OH dissolution in olivine under peridotite-saturated conditions: an experimental study at 1.5–7 GPa and 1100–1300 °C. Geochim. Cosmochim. Acta 173, 319–336 (2016) ADSCrossRefGoogle Scholar
  611. X. Yang, H. Keppler, Y. Li, Molecular hydrogen in mantle minerals. Geochem. Perspect. Lett. 2, 160–168 (2016) CrossRefGoogle Scholar
  612. X. Yang, D. Liu, Q.-K. Xia, CO2-induced small water solubility in olivine and implications for properties of the shallow mantle. Earth Planet. Sci. Lett. 403, 37–47 (2014) ADSCrossRefGoogle Scholar
  613. X.-Z. Yang, E. Deloule, Q.-K. Xia, Q.-C. Fan, M. Feng, Water contrast between Precambrian and Phanerozoic continental lower crust in eastern China. J. Geophys. Res. 113, B08207 (2008a) ADSCrossRefGoogle Scholar
  614. X.-Z. Yang, Q.-K. Xia, E. Deloule, L. Dallai, Q.C. Fan, M. Feng, Water in minerals of the continental lithospheric mantle and overlying lower crust: a comparative study of peridotite and granulite xenoliths from the North China craton. Chem. Geol. 256, 33–45 (2008b) ADSCrossRefGoogle Scholar
  615. R. Yokochi, B. Marty, A determination of the neon isotopic composition of the deep mantle. Earth Planet. Sci. Lett. 225, 77–88 (2004) ADSCrossRefGoogle Scholar
  616. T. Yoshino, T. Matsuzaki, S. Yamashita, T. Katsura, Hydrous olivine unable to account for conductivity anomaly at the top of the asthenosphere. Nature 443, 973–976 (2006) ADSCrossRefGoogle Scholar
  617. H. Yuan, B. Romanowicz, Lithospheric layering in the North American craton. Nature 466, 1063–1068 (2010) ADSCrossRefGoogle Scholar
  618. C. Zhang, Z. Duan, A model for C-O-H fluid in the Earth’s mantle. Geochim. Cosmochim. Acta 73, 2089–2102 (2009) ADSCrossRefGoogle Scholar
  619. Y. Zhang, H2O in rhyolitic glasses and melts: measurement, speciation, solubility, and diffusion. Rev. Geophys. 37, 493–516 (1999) ADSCrossRefGoogle Scholar
  620. Y. Zhang, H. Ni, Diffusion of H, C, and O components in silicate melts, in Diffusion in Minerals and Melts, ed. by Y. Zhang, D.J. Cherniak (Mineralogical Society of America, Geochemical Society, Chantilly, 2010), pp. 171–225 Google Scholar
  621. A. Zindler, S. Hart, Chemical geodynamics. Annu. Rev. Earth Planet. Sci. 14, 493–571 (1986) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Anne H. Peslier
    • 1
    Email author
  • Maria Schönbächler
    • 2
  • Henner Busemann
    • 2
  • Shun-Ichiro Karato
    • 3
  1. 1.JacobsNASA-Johnson Space CenterHoustonUSA
  2. 2.Institute of Geochemistry and Petrology, Department of Earth SciencesETH ZurichZurichSwitzerland
  3. 3.Department of Geology and GeophysicsYale UniversityNew HavenUSA

Personalised recommendations