Advertisement

Space Science Reviews

, Volume 212, Issue 1–2, pp 655–696 | Cite as

The Far Ultra-Violet Imager on the Icon Mission

  • S. B. Mende
  • H. U. Frey
  • K. Rider
  • C. Chou
  • S. E. Harris
  • O. H. W. Siegmund
  • S. L. England
  • C. Wilkins
  • W. Craig
  • T. J. Immel
  • P. Turin
  • N. Darling
  • J. Loicq
  • P. Blain
  • E. Syrstad
  • B. Thompson
  • R. Burt
  • J. Champagne
  • P. Sevilla
  • S. Ellis
Article
Part of the following topical collections:
  1. The Ionospheric Connection Explorer (ICON) mission

Abstract

ICON Far UltraViolet (FUV) imager contributes to the ICON science objectives by providing remote sensing measurements of the daytime and nighttime atmosphere/ionosphere. During sunlit atmospheric conditions, ICON FUV images the limb altitude profile in the shortwave (SW) band at 135.6 nm and the longwave (LW) band at 157 nm perpendicular to the satellite motion to retrieve the atmospheric O/N2 ratio. In conditions of atmospheric darkness, ICON FUV measures the 135.6 nm recombination emission of \(\mathrm{O}^{+}\) ions used to compute the nighttime ionospheric altitude distribution. ICON Far UltraViolet (FUV) imager is a Czerny–Turner design Spectrographic Imager with two exit slits and corresponding back imager cameras that produce two independent images in separate wavelength bands on two detectors. All observations will be processed as limb altitude profiles. In addition, the ionospheric 135.6 nm data will be processed as longitude and latitude spatial maps to obtain images of ion distributions around regions of equatorial spread F. The ICON FUV optic axis is pointed 20 degrees below local horizontal and has a steering mirror that allows the field of view to be steered up to 30 degrees forward and aft, to keep the local magnetic meridian in the field of view. The detectors are micro channel plate (MCP) intensified FUV tubes with the phosphor fiber-optically coupled to Charge Coupled Devices (CCDs). The dual stack MCP-s amplify the photoelectron signals to overcome the CCD noise and the rapidly scanned frames are co-added to digitally create 12-second integrated images. Digital on-board signal processing is used to compensate for geometric distortion and satellite motion and to achieve data compression. The instrument was originally aligned in visible light by using a special grating and visible cameras. Final alignment, functional and environmental testing and calibration were performed in a large vacuum chamber with a UV source. The test and calibration program showed that ICON FUV meets its design requirements and is ready to be launched on the ICON spacecraft.

Keywords

Space-borne far ultraviolet spectral imager Imaging the Earth’s atmosphere/ionosphere Instrument for observing the upper atmosphere 

Notes

Acknowledgements

The authors acknowledge the contributions of many persons who made it possible for us to build the ICON FUV experiment. There are too many persons to be named individually at the various institutions which cooperated in producing the ICON FUV instrument at the University of California, Berkeley, at the Centre Spatiale de Liege in Belgium, at the Space Dynamics Laboratory in Logan Utah, and the Lockheed Advanced Technology Center in Palo Alto, at the Goddard Spaceflight Center in Greenbelt Maryland, at Orbital-ATK in Dulles, Virginia and at several other institutions. The authors gratefully acknowledge funding by the NASA’s Explorers Program under the Ionospheric CONnection Explorer (ICON) project contract number NNG12FA45C.

References

  1. C.D. Anger, S.K. Babey, A.L. Broadfoot, R.G. Brown, L.L. Cogger, R. Gattinger, J.W. Haslett, R.A. King, D.J. McEwen, J.S. Murphree, E.H. Richardson, B.R. Sandel, K. Smith, A.V. Jones, An ultraviolet auroral imager for the Viking spacecraft. Geophys. Res. Lett. 14, 387 (1987) ADSCrossRefGoogle Scholar
  2. D.R. Austin, T. Witting, I.A. Walmsley, Broadband astigmatism-free Czerny–Turner imaging spectrometer using spherical mirrors. Appl. Opt. 48, 3846 (2009). doi: 10.1364/AO.48.003846 ADSCrossRefGoogle Scholar
  3. C.A. Barth, S. Schaffner, Ogo4 spectrometer measurements of the tropical ultraviolet airglow. J. Geophys. Res. 75, 4299–4306 (1970) ADSCrossRefGoogle Scholar
  4. B. Bates, M. McDowell, A.C. Newton, Correction of astigmatism in a Czerny–Turner spectrograph using a plane grating in divergent illumination. J. Phys. E, Sci. Instrum. 3, 206–210 (1970) ADSCrossRefGoogle Scholar
  5. P. Blain, R. Desselle, I. Domken, C. Kintziger, E. Renotte, Y.G. Stockman, C. Chou, H.U. Frey, K. Rider, S.B. Mende, J.J.D. Loicq, VUV optical ground system equipment and its application to the ICON FUV flight grating characterization and selection. Proc. SPIE 9912, 99124O (2016) ADSCrossRefGoogle Scholar
  6. J. Champagne, Design and characterization of the CCD detector assemblies for ICON FUV, in AGU Fall Meeting (AGU, Washington, 2015) Google Scholar
  7. A.B. Christensen, L.J. Paxton, S. Avery et al., Initial observations with the Global Ultraviolet Imager (GUVI) in the NASA TIMED satellite mission. J. Geophys. Res. 108(A12), 1451 (2003). doi: 10.1029/2003JA009918 CrossRefGoogle Scholar
  8. A.B. Christensen, L.J. Paxton, S. Avery, J. Craven, G. Crowley, D.C. Humm, H. Kil, R.R. Meier, C.-I. Meng, D. Morrison, B.S. Ogorzalek, P. Straus, D.J. Strickland, R.M. Swenson, R.L. Walterscheid, B. Wolven, Y. Zhang, Initial observations with the Global Ultraviolet Imager (GUVI) in the NASA TIMED satellite mission. J. Geophys. Res. 108 (SIA 16-1), 1451 (2003). doi: 10.1029/2003JA009918 CrossRefGoogle Scholar
  9. J. Comberiate, F. Kamalabadi, L.J. Paxton, A tomographic model for ionospheric imaging with the Global Ultraviolet Imager. Radio Sci. 42(2), RS2011 (2007). doi: 10.1029/2005RS003348 ADSCrossRefGoogle Scholar
  10. M. Czerny, A. Turner, Über den Astigmatismus bei Spiegelspektrometern. Z. Phys. A 61, 792–797 (1930) CrossRefzbMATHGoogle Scholar
  11. M.L. Dalton, Astigmatism compensation in the Czerny–Turner spectrometer. Appl. Opt. 5, 1121–1123 (1966). doi: 10.1364/AO.5.001121 ADSCrossRefGoogle Scholar
  12. L.A. Frank, J.D. Craven, Imaging results from dynamics explorer 1. Rev. Geophys. 2, 249 (1988) ADSCrossRefGoogle Scholar
  13. L.A. Frank, J.D. Craven, K.L. Ackerson, M.R. English, R.H. Eather, R.L. Carovillano, Global auroral imaging instrumentation for the dynamics explorer mission. Space Sci. Instrum. 5, 369–393 (1981) ADSGoogle Scholar
  14. W.B. Hanson, A comparison of the oxygen ion-ion neutralization and radiative recombination mechanisms for producing the ultraviolet nightglow. J. Geophys. Res. 75, 4343–4346 (1970). doi: 10.1029/JA075i022p04343 ADSCrossRefGoogle Scholar
  15. G.T. Hicks, T.A. Chubb, Equatorial aurora/airglow in the far ultra-violet. J. Geophys. Res. 75, 6233–6248 (1970) ADSCrossRefGoogle Scholar
  16. J.D. Huba, K.F. Dymond, G. Joyce, A.A. Budzien, S.E. Thonnard, J.A. Fedder, R.P. McCoy, Comparison of \(\mathrm{O}+\)demsity from ARGOSLORAAS data analysis and SAMI2 model results. Geophys. Res. Lett. 29 (2002). doi: 10.1029/2001GL013089
  17. T.J. Immel, S.L. England, S.B. Mende, R.A. Heelis, C.R. Englert, J. Edelstein, H.U. Frey, E.R. Taylor, W.W. Craig, S.E. Harris, M. Bester, G.S. Bust, G. Crowley, J.M. Forbes, J.-C. Gèrard, J.M. Harlander, J.D. Huba, B. Hubert, F. Kamalabadi, J.J. Makela, A.I. Maute, R.R. Meier, C. Raftery, P. Rochus, O.H.W. Siegmund, A.W. Stephan, G.R. Swenson, S. Frey, D.L. Hysell, A. Saito, K.A. Rider, M.M. Sirk, M.H. Stevens, The ionospheric connection explorer mission: mission goals and design. Space Sci. Rev. (2017) Google Scholar
  18. T.J. Immel, E. Sagawa, S.L. England, S.B. Henderson, M.E. Hagan, S.B. Mende, H.U. Frey, C.M. Swenson, L.J. Paxton, Control of equatorial ionospheric morphology by atmospheric tides. Geophys. Res. Lett. 33, L15108 (2006). doi: 10.1029/2006GL026161 ADSCrossRefGoogle Scholar
  19. F. Kamalabadi, J.M. Comberiate, M.J. Taylor, P.-D. Pautet, Estimation of electron densities in the lower thermosphere from GUVI 135.6 nm tomographic inversions in support of SpreadFEx. Ann. Geophys. 27, 2439–2448 (2009). doi: 10.5194/angeo-27-2439-2009 ADSCrossRefGoogle Scholar
  20. F. Kamalabadi, J. Qin, B. Harding, D. Iliou, J. Makela, R.R. Meier, S.L. England, H.U. Frey, S.B. Mende, T.J. Immel, Inferring nighttime ionospheric parameters with the far ultraviolet imager onboard the ionospheric connection explorer. Space Sci. Rev. (2017) Google Scholar
  21. J. Loicq, C. Kintziger, A. Mazzoli, T. Miller, C. Chou, T. Immel, H. Frey, S. Mende, Optical design and optical properties of a VUV spectrographic imager for ICON mission. Proc. SPIE 9905, 990507 (2016a) CrossRefGoogle Scholar
  22. J. Loicq, P. Blain, R. Desselle, I. Domken, C. Kintziger, E. Renotte, Y. Stockman, C. Chou, H. Frey, K. Rider, S. Mende, VUV optical ground system equipment and its application to the ICON-FUV flight grating characterization and selection. Proc. SPIE 9912, 99124O (2016b) CrossRefGoogle Scholar
  23. J. Loicq, P. Blain, R. Desselle, I. Domken, C. Kintziger, E. Renotte, Y. Stockman, L. Clermont, C. Chou, C. Popette, H. Frey, K. Rider, S. Mende, Alignment and calibration of the ICON-FUV instrument: development of a vacuum UV facility. Proc. SPIE 9905, 99052W (2016c) CrossRefGoogle Scholar
  24. J.J. Makela, M.C. Kelley, A. González Sixto, N. Aponte, R.P. McCoy, Ionospheric topography maps using multiple-wavelength all-sky images. J. Geophys. Res. 106, 29161–29174 (2001). doi: 10.1029/2000JA000449 ADSCrossRefGoogle Scholar
  25. L. Mandel, Image fluctuations in cascade intensifiers. Br. J. Appl. Phys. 10, 233–234 (1959) ADSCrossRefGoogle Scholar
  26. R.R. Meier, D.E. Anderson, Determination of atmospheric composition and temperature from the UV airglow. Planet. Space Sci. 31, 967–976 (1983). doi: 10.1016/0032-0633(83)90088-0 ADSCrossRefGoogle Scholar
  27. R.R. Meier, J.M. Picone, Retrieval of absolute thermospheric concentrations from the far UV dayglow: an application of discrete inverse theory. J. Geophys. Res. 99, 6307–6320 (1994). doi: 10.1029/93JA02775 ADSCrossRefGoogle Scholar
  28. R.R. Meier et al., Remote sensing of Earth’s limb by TIMED/GUVI: retrieval of thermospheric composition and temperature. Earth Space Sci. 2, 1–37 (2015). doi: 10.1002/2014EA000035 ADSCrossRefGoogle Scholar
  29. S.B. Mende, Observing the magnetosphere through global auroral imaging, 2. observing techniques. J. Geophys. Res. Space Phys. 121, 10,638–10,660 (2016). doi: 10.1002/2016JA022607 CrossRefGoogle Scholar
  30. S.B. Mende, H. Heetderks, H.U. Frey, M. Lampton, S.P. Geller, S. Habraken, E. Renotte, C. Jamar, P. Rochus, J. Spann, S.A. Fuselier, J.-C. Gerard, R. Gladstone, S. Murphree, L. Cogger, Far ultraviolet imaging from the IMAGE spacecraft, 1: system design. Space Sci. Rev. 91, 243–270 (2000a) ADSCrossRefGoogle Scholar
  31. S.B. Mende, H. Heetderks, H.U. Frey, M. Lampton, S.P. Geller, R. Abiad, O.H.W. Siegmund, A.S. Tremsin, J. Spann, H. Dougani, S.A. Fuselier, A.L. Magoncelli, M.B. Bumala, S. Murphree, T. Trondsen, Far ultraviolet imaging from the IMAGE spacecraft, 2: wideband FUV imaging. Space Sci. Rev. 91, 271–285 (2000b) ADSCrossRefGoogle Scholar
  32. S.B. Mende, H. Heetderks, H.U. Frey, J.M. Stock, M. Lampton, S.P. Geller, R. Abiad, O.H.W. Siegmund, S. Habraken, E. Renotte, C. Jamar, P. Rochus, J.-C. Gerard, R. Sigler, H. Lauche, Far ultraviolet imaging from the IMAGE spacecraft, 3: spectral imaging of Lyman\(-\alpha\) and OI 135.6 nm. Space Sci. Rev. 91, 287–318 (2000c) ADSCrossRefGoogle Scholar
  33. J.S. Murphree, R.A. King, T. Payne, K. Smith, D. Reid, J. Adema, B. Gordon, R. Wlochowicz, The Freja ultraviolet imager. Space Sci. Rev. 70, 421–446 (1994) ADSCrossRefGoogle Scholar
  34. J. Qin, F. Kamalabadi, J.J. Makela, Quantifying the inversion accuracy of simplified physical models for the nighttime OI 135.6 nm emission. J. Geophys. Res. Space Phys. 121, 5805–5814 (2016). doi: 10.1002/2016JA022720 ADSCrossRefGoogle Scholar
  35. M.A. Quijada, S. Rice, E. Mentzell, Enhanced MgF2 and LiF over-coated al mirrors for FUV space astronomy, in Modern Technologies in Space- and Ground-Based Telescopes and Instrumentation II. Proc. SPIE, vol. 8450 (2012), p. article 84502H, pp10. doi: 10.1117/12.925579 CrossRefGoogle Scholar
  36. E. Sagawa, T. Maruyama, T.J. Immel, H.U. Frey, S.B. Mende, Global view of the nighttime low-latitude ionosphere by the IMAGE/FUV 135.6 nm observations. Geophys. Res. Lett. 30(10), 1534 (2003). doi: 10.1029/2003GL017140 ADSCrossRefGoogle Scholar
  37. A.W. Stephan, R.R. Meier, S.L. England, H.U. Frey, S.B. Mende, T.J. Immel, Daytime O/N2 retrieval algorithm for the ionospheric connection explorer (ICON) (2017) Google Scholar
  38. D.J. Strickland, J.S. Evans, L.J. Paxton, Satellite remote sensing of thermospheric O/N2 and solar EUV, 1: theory. J. Geophys. Res. 100, 12217–12226 (1995). doi: 10.1029/95JA00574 ADSCrossRefGoogle Scholar
  39. M.R. Torr, D.G. Torr, M. Zukic, R.B. Johnson, J. Ajello, P. Banks, K. Clark, K. Cole, C. Keffer, G. Parks, B. Tsuratani, J. Spann, A far ultraviolet imager for the international solar-terrestrial physics mission. Space Sci. Rev. 71, 329 (1995) ADSCrossRefGoogle Scholar
  40. C.W. Wilkins, S.B. Mende, H.U. Frey, S.L. England, Time-delay integration imaging with ICON’s far-ultraviolet spectrograph. Space Sci. Rev. (2017) Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • S. B. Mende
    • 1
  • H. U. Frey
    • 1
  • K. Rider
    • 1
  • C. Chou
    • 1
  • S. E. Harris
    • 1
  • O. H. W. Siegmund
    • 1
  • S. L. England
    • 1
  • C. Wilkins
    • 1
  • W. Craig
    • 1
  • T. J. Immel
    • 1
  • P. Turin
    • 1
  • N. Darling
    • 1
  • J. Loicq
    • 2
  • P. Blain
    • 2
  • E. Syrstad
    • 3
  • B. Thompson
    • 3
  • R. Burt
    • 3
  • J. Champagne
    • 3
  • P. Sevilla
    • 3
  • S. Ellis
    • 4
  1. 1.University of California BerkeleyBerkeleyUSA
  2. 2.Centre Spatial de Liege (CSL)LiegeBelgium
  3. 3.Space Dynamics Lab.Utah State UniversityLoganUSA
  4. 4.Photon EngineeringTucsonUSA

Personalised recommendations