Space Science Reviews

, Volume 212, Issue 1–2, pp 645–654 | Cite as

Daytime Ionosphere Retrieval Algorithm for the Ionospheric Connection Explorer (ICON)

  • Andrew W. StephanEmail author
  • Eric J. Korpela
  • Martin M. Sirk
  • Scott L. England
  • Thomas J. Immel
Part of the following topical collections:
  1. The Ionospheric Connection Explorer (ICON) mission


The NASA Ionospheric Connection Explorer Extreme Ultraviolet spectrograph, ICON EUV, will measure altitude profiles of the daytime extreme-ultraviolet (EUV) OII emission near 83.4 and 61.7 nm that are used to determine density profiles and state parameters of the ionosphere. This paper describes the algorithm concept and approach to inverting these measured OII emission profiles to derive the associated \(\mathrm{O}^{+}\) density profile from 150–450 km as a proxy for the electron content in the F-region of the ionosphere. The algorithm incorporates a bias evaluation and feedback step, developed at the U.S. Naval Research Laboratory using data from the Special Sensor Ultraviolet Limb Imager (SSULI) and the Remote Atmospheric and Ionospheric Detection System (RAIDS) missions, that is able to effectively mitigate the effects of systematic instrument calibration errors and inaccuracies in the original photon source within the forward model. Results are presented from end-to-end simulations that convolved simulated airglow profiles with the expected instrument measurement response to produce profiles that were inverted with the algorithm to return data products for comparison to truth. Simulations of measurements over a representative ICON orbit show the algorithm is able to reproduce hmF2 values to better than 5 km accuracy, and NmF2 to better than 12% accuracy over a 12-second integration, and demonstrate that the ICON EUV instrument and daytime ionosphere algorithm can meet the ICON science objectives which require 20 km vertical resolution in hmF2 and 18% precision in NmF2.


ICON Explorer mission Ionosphere Ultraviolet airglow Limb inversions 



ICON is supported by NASA’s Explorers Program through contracts NNG12FA45C and NNG12FA42I. We acknowledge the input and feedback from the entire ICON team. AWS acknowledges the many contributions and productive discussions with J. Michael Picone, Kenneth F. Dymond, Robert R. Meier, and Douglas Drob.


  1. D. Bilitza, International Reference Ionosphere 2000. Radio Sci. 36(2), 261–275 (2001). doi: 10.1029/2000RS002432 ADSCrossRefGoogle Scholar
  2. D. Bilitza, B.W. Reinisch, International Reference Ionosphere 2007: improvements and new parameters. Adv. Space Res. 42, 599–609 (2008). doi: 10.1016/j.asr.2007.07.048 ADSCrossRefGoogle Scholar
  3. P.D. Feldman, D.E. Anderson Jr., R.R. Meier, E.P. Gentieu, The ultraviolet dayglow. IV: The spectrum and excitation of singly ionized oxygen. J. Geophys. Res. 86(A5), 3583–3588 (1981). doi: 10.1029/JA086iA05p03583 ADSCrossRefGoogle Scholar
  4. H.E. Hinteregger, K. Fukui, B.R. Gilson, Observational, reference and model data on solar EUV from measurements on AE-E. Geophys. Res. Lett. 8, 1147–1150 (1981). doi: 10.1029/GL008i011p01147 ADSCrossRefGoogle Scholar
  5. T. Holstein, Imprisonment of resonance radiation in gases. Phys. Rev. 72, 1212–1233 (1947). doi: 10.1103/PhysRev.72.1212 ADSCrossRefzbMATHGoogle Scholar
  6. T.J. Immel et al., The Ionospheric Connection Explorer Mission: mission goals and design. Space Sci. Rev. (2017, this issue) Google Scholar
  7. W.C. Martin, V. Kaufman, A. Musgrove, A compilation of energy levels and wavelengths for the spectrum of singly-ionized oxygen (OII). J. Phys. Chem. Ref. Data 22, 1179 (1993). doi: 10.1063/1.555928 ADSCrossRefGoogle Scholar
  8. R.P. McCoy, D.E. Anderson Jr., S. Chakrabarti, \(\mathrm{F}_{2}\) region ion densities from analysis of \(\mathrm {O} ^{+} 834-\mathrm{A}\) airglow: a parametric study and comparisons with satellite data. J. Geophys. Res. 90(A12), 12257 (1985). doi: 10.1029/JA090iA12p12257 ADSCrossRefGoogle Scholar
  9. R. Meier, The scattering rate of solar 834 Å radiation by magnetospheric \(\mathrm{O}^{+}\) and \(\mathrm{O}^{++}\). Geophys. Res. Lett. 17(10), 1613–1616 (1990). doi: 10.1029/GL017i010p01613 ADSCrossRefGoogle Scholar
  10. R.R. Meier, J.M. Picone, Retrieval of absolute thermospheric concentrations from the far UV dayglow: an application of discrete inverse theory. J. Geophys. Res. 99(A4), 6307–6320 (1994). doi: 10.1029/93JA02775 ADSCrossRefGoogle Scholar
  11. R.R. Meier et al., Remote sensing of Earth’s limb by TIMED/GUVI: retrieval of thermospheric composition and temperature. Earth Space Sci. 2, 1–37 (2015). doi: 10.1002/2014EA000035 ADSCrossRefGoogle Scholar
  12. J.M. Picone, Influence of systematic error on least squares retrieval of upper atmospheric parameters from the ultraviolet airglow. J. Geophys. Res. 113, A09306 (2008). doi: 10.1029/2007JA012831 ADSCrossRefGoogle Scholar
  13. J. Picone, R. Meier, O. Kelley, D. Melendez-Alvira, K. Dymond, R. McCoy, M. Buonsanto, Discrete inverse theory for 834-Å ionospheric remote sensing. Radio Sci. 32(5), 1973–1984 (1997a). doi: 10.1029/97RS01028 ADSCrossRefGoogle Scholar
  14. J. Picone, R. Meier, O. Kelley, K. Dymond, R. Thomas, D. Melendez-Alvira, R. McCoy, Investigation of ionospheric of remote sensing using the 834-Å airglow. J. Geophys. Res. 102(A2), 2441–2456 (1997b). doi: 10.1029/96JA03314 ADSCrossRefGoogle Scholar
  15. M.M. Sirk et al., Design and performance of the ICON EUV spectrograph. Space Sci. Rev. (2017). doi: 10.1007/s11214-017-0384-2 Google Scholar
  16. A.W. Stephan, Advances in remote sensing of the daytime ionosphere with EUV airglow. J. Geophys. Res. Space Phys. 121, 9284–9292 (2016). doi: 10.1002/2016JA022629 ADSCrossRefGoogle Scholar
  17. A.W. Stephan, J.M. Picone, S.A. Budzien, R.L. Bishop, A.B. Christensen, J.H. Hecht, Measurement and application of the O II 61.7 nm dayglow. J. Geophys. Res. 117, A01316 (2012). doi: 10.1029/2011JA016897 ADSCrossRefGoogle Scholar
  18. D.E. Strickland, J. Bishop, J.S. Evans, T. Majeed, P.M. Shen, R.J. Cox, R. Link, R.E. Huffman, Atmospheric Ultraviolet Radiance Integrated Code (AURIC): theory, software architecture, inputs, and selected results. J. Quant. Spectrosc. Radiat. Transf. 62(6), 689–742 (1999). doi: 10.1016/S0022-4073(98)00098-3 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht (outside the USA) 2017

Authors and Affiliations

  • Andrew W. Stephan
    • 1
    Email author
  • Eric J. Korpela
    • 2
  • Martin M. Sirk
    • 2
  • Scott L. England
    • 3
  • Thomas J. Immel
    • 2
  1. 1.Space Science Division, Code 7634U.S. Naval Research LaboratoryWashingtonUSA
  2. 2.Space Sciences LaboratoryUniversity of California-BerkeleyBerkeleyUSA
  3. 3.Aerospace and Ocean Engineering DepartmentVirginia Polytechnic Institute and State UniversityBlacksburgUSA

Personalised recommendations