Space Science Reviews

, Volume 212, Issue 1–2, pp 615–629 | Cite as

Ion Velocity Measurements for the Ionospheric Connections Explorer

  • R. A. Heelis
  • R. A. Stoneback
  • M. D. Perdue
  • M. D. Depew
  • W. A. Morgan
  • M. W. Mankey
  • C. R. Lippincott
  • L. L. Harmon
  • B. J. Holt
Article
Part of the following topical collections:
  1. The Ionospheric Connection Explorer (ICON) mission

Abstract

The Ionospheric Connections Explorer (ICON) payload includes an Ion Velocity Meter (IVM) to provide measurements of the ion drift motions, density, temperature and major ion composition at the satellite altitude near 575 km. The primary measurement goal for the IVM is to provide the meridional ion drift perpendicular to the magnetic field with an accuracy of 7.5 m s−1 for all daytime conditions encountered by the spacecraft within \(15^{\circ }\) of the magnetic equator. The IVM will derive this parameter utilizing two sensors, a retarding potential analyzer (RPA) and an ion drift meter (IDM) that have a robust and successful flight heritage. The IVM described here incorporates improvements in the design and operation to produce the most sensitive device that has been fielded to date. It will specify the ion drift vector, from which the component perpendicular to the magnetic field will be derived. In addition it will specify the total ion density, the ion temperature and the fractional ion composition. These data will be used in conjunction with measurements from the other ICON instruments to uncover the important connections between the dynamics of the neutral atmosphere and the ionosphere through the generation of dynamo currents perpendicular to the magnetic field and collisional forces parallel to the magnetic field. Here the configuration and operation of the IVM instrument are described, as well as the procedures by which the ion drift velocity is determined. A description of the subsystem characteristics, which allow a determination of the expected uncertainties in the derived parameters, is also given.

Keywords

Ionosphere dynamics Plasma measurements 

Notes

Acknowledgements

This work is supported by NASA grant NNG12FA44C. Successful conduct of the ICON mission and the IVM instrument is the result of key collaborations between teams at the University of California Berkeley, the University of Texas at Dallas and Orbital ATK. We thank the many participants from all these institutions that have resulted in this contribution to the ICON mission.

References

  1. D. Bilitza, L.-A. McKinnell, B. Reinisch, T. Fuller-Rowell, The International Reference Ionosphere (IRI) today and in the future. J. Geod. 85, 909–920 (2011). doi: 10.1007/s00190-010-0427-x ADSCrossRefGoogle Scholar
  2. C.R. Englert et al., Michelson Interferometer for Global High-resolution Thermospheric Imaging (MIGHTI): Instrument design and calibration. Space Sci. Rev. (2017). doi: 10.1007/s11214-017-0358-4. This issue
  3. C.C. Finlay et al., International geomagnetic reference field: the eleventh generation. Geophys. J. Int. 183(3), 1216–1230 (2010). doi: 10.1111/j.1365-246X.2010.04804.x ADSCrossRefGoogle Scholar
  4. W.B. Hanson, S. Sanatani, D. Zuccaro, T.W. Flowerday, Plasma measurements with the retarding potential analyzer on Ogo 6. J. Geophys. Res. 75(28), 5483–5501 (1970). doi: 10.1029/JA075i028p05483 ADSCrossRefGoogle Scholar
  5. W.B. Hanson, D.R. Zuccaro, C.R. Lippincott, S. Sanatani, The retarding-potential analyzer on Atmosphere Explorer. Radio Sci. 8(4), 333–339 (1973). doi: 10.1029/RS008i004p00333 ADSCrossRefGoogle Scholar
  6. W.B. Hanson, R.A. Heelis, R.A. Power, C.R. Lippincott, D.R. Zucarro, L.H. Harmon, B.J. Holt, J.E. Doherty, R.A. Power, The ion drift meter on Dynamics Explorer-B. Space Sci. Instrum. 5, 503–510 (1981) ADSGoogle Scholar
  7. R.A. Heelis, W.B. Hanson, C.R. Lippincott, D.R. Zucarro, B.J. Holt, L.H. Harmon, S. Sanatani, The retarding potential analyzer on Dynamics Explorer-B. Space Sci. Instrum. 5, 503–510 (1981) ADSGoogle Scholar
  8. R.A. Heelis, W.B. Hanson, Techniques for measuring bulk gas motions from satellites. Space Sci. Instrum. 1, 493–524 (1975) ADSGoogle Scholar
  9. R.A. Heelis, W.B. Hanson, Measurements of thermal ion drift velocity and temperature using planar sensors, in Measurement Techniques in Space Plasmas: Particles. American Geophysical Union Monograph (1998). doi: 10.1029/GM102p0061 Google Scholar
  10. R.A. Heelis, W.R. Coley, A.G. Burrell, M.R. Hairston, G.D. Earle, M.D. Perdue, R.A. Power, L.L. Harmon, B.J. Holt, C.R. Lippincott, Behavior of the O+/H+ transition height during the extreme solar minimum of 2008. Geophys. Res. Lett. 36, L00C03 (2009). doi: 10.1029/2009GL038652 CrossRefGoogle Scholar
  11. M.A. Hei, R.A. Heelis, J.P. McClure, Seasonal and longitudinal variation of large-scale topside equatorial plasma depletions. J. Geophys. Res. 110, A12315 (2005) ADSCrossRefGoogle Scholar
  12. J.D. Huba, A. Maute, G. Crowley, SAMI3 ICON: Model of the Ionsphere Plasmasphere System. Space Sci. Rev. (2017), this issue Google Scholar
  13. T.J. Immel et al., The Ionospheric Connection Explorer Mission: Mission goals and design. Space Sci. Rev. (2017), this issue Google Scholar
  14. J.H. Klenzing, G. Earle, R. Heelis, Errors in ram velocity and temperature measurements inferred from satellite-borne retarding potential analyzers. Phys. Plasmas 15, 062905 (2008). doi: 10.1063/1.2936270 ADSCrossRefGoogle Scholar
  15. G. Le, C.-S. Huang, R.F. Pfaff, S.-Y. Su, H.-C. Yeh, R.A. Heelis, F.J. Rich, M. Hairston, Plasma density enhancements associated with equatorial spread F: ROCSAT-1 and DMSP observations. J. Geophys. Res. 108(A8), 1318 (2003). doi: 10.1029/2002JA009592 CrossRefGoogle Scholar
  16. S. Mende et al., The far ultra-violet Imager on the ICON mission. Space Sci. Rev. (2017). doi: 10.1007/s11214-017-0386-0. This issue Google Scholar
  17. M.M. Sirk et al., Design and performance of the ICON EUV spectrograph. Space Sci. Rev. (2017). doi: 10.1007/s11214-017-0384-2. This issue Google Scholar
  18. R.A. Stoneback, R.L. Davidson, R.A. Heelis, Ion drift meter calibration and photoemission correction for the C/NOFS satellite. J. Geophys. Res. 117, A08323 (2012). doi: 10.1029/2012JA017636 ADSCrossRefGoogle Scholar
  19. D.R. Zuccaro, B.J. Holt, A technique for establishing a reference potential on satellites in planetary ionospheres. J. Geophys. Res. 87(A10), 8327–8329 (1982). doi: 10.1029/JA087iA10p08327 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.William B. Hanson Center for Space Sciences, Physics DepartmentUniversity of Texas at DallasRichardsonUSA

Personalised recommendations