Skip to main content
Log in

Particle Radiation Sources, Propagation and Interactions in Deep Space, at Earth, the Moon, Mars, and Beyond: Examples of Radiation Interactions and Effects

Space Science Reviews Aims and scope Submit manuscript

Cite this article

Abstract

Particle radiation has significant effects for astronauts, satellites and planetary bodies throughout the Solar System. Acute space radiation hazards pose risks to human and robotic exploration. This radiation also naturally weathers the exposed surface regolith of the Moon, the two moons of Mars, and other airless bodies, and contributes to chemical evolution of planetary atmospheres at Earth, Mars, Venus, Titan, and Pluto. We provide a select review of recent areas of research covering the origin of SEPs from coronal mass ejections low in the corona, propagation of events through the solar system during the anomalously weak solar cycle 24 and important examples of radiation interactions for Earth, other planets and airless bodies such as the Moon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

References

  • S.K. Antiochos, C.R. DeVore, J.A. Klimchuk, A model for solar coronal mass ejection. Astrophys. J. 510, 485 (1999)

    Article  ADS  Google Scholar 

  • M. Aschwanden, The localization of particle acceleration sites in solar flares and CMEs. Space Sci. Rev. 124, 361–372 (2006). doi:10.1007/s11214-006-9095-9

    Article  ADS  Google Scholar 

  • K. Batygin, M.E. Brown, Evidence for a distant giant planet in the solar system. Astron. J. 151, 22 (2016). doi:10.3847/0004-6256/151/2/22

    Article  ADS  Google Scholar 

  • G.A. Bazilevskaya, I.G. Usoskin, E.O. Flückiger, R.G. Harrison, L. Desorgher, R. Bütikofer, M.B. Krainev, V.S. Makhmutov, Y.I. Stozhkov, A.K. Svirzhevskaya, N.S. Svirzhevsky, G.A. Kovaltsov, Cosmic ray induced ion production in the atmosphere. Space Sci. Rev. 137, 149–173 (2008). doi:10.1007/s11214-008-9339-y

    Article  ADS  Google Scholar 

  • J. Beer, K. McCracken, R. von Steiger, Cosmogenic Radionuclides (2012). doi:10.1007/978-3-642-14651-0

    Book  Google Scholar 

  • P.P. Budenstein IEEE Trans. Electr. Insul. 3, 225 (1980)

    Article  Google Scholar 

  • H. Campins, E.P. Krider, Surface discharges on natural dielectrics in the solar system. Science 245, 622–624 (1989). doi:10.1126/science.245.4918.622

    Article  ADS  Google Scholar 

  • R.W. Carlson, R.E. Johnson, M.S. Anderson, Sulfuric acid on Europa and the radiolytic sulfur cycle. Science 286, 97–99 (1999). doi:10.1126/science.286.5437.97

    Article  ADS  Google Scholar 

  • R.W. Carlson, M.S. Anderson, R. Mehlman, R.E. Johnson, Distribution of hydrate on Europa: further evidence for sulfuric acid hydrate. Icarus 177, 461–471 (2005). doi:10.1016/j.icarus.2005.03.026

    Article  ADS  Google Scholar 

  • J. Chen, Effects of toroidal forces in current loops embedded in a background plasma. Astrophys. J. 338, 453–470 (1989). doi:10.1086/167211

    Article  ADS  MathSciNet  Google Scholar 

  • K.-S. Cho, J. Lee, Y.-J. Moon, M. Dryer, S.-C. Bong, Y.-H. Kim, Y.D. Park, A study of CME and type II shock kinematics based on coronal density measurement. Astron. Astrophys. 461, 1121–1125 (2007). doi:10.1051/0004-6361:20064920

    Article  ADS  Google Scholar 

  • C.F. Chyba, Energy for microbial life on Europa. Nature 403, 381–382 (2000). doi:10.1038/35000281

    Article  ADS  Google Scholar 

  • R.N. Clark, Detection of adsorbed water and hydroxyl on the Moon. Science 326, 562 (2009). doi:10.1126/science.1178105

    Article  ADS  Google Scholar 

  • D.E. Connick, C.W. Smith, N.A. Schwadron, Interplanetary magnetic flux depletion during protracted solar minima. Astrophys. J. 727, 8 (2011). doi:10.1088/0004-637X/727/1/8. http://adsabs.harvard.edu/abs/ 2011ApJ...727....8C

    Article  ADS  Google Scholar 

  • J.F. Cooper, Nuclear cascades in Saturn’s rings—cosmic ray albedo neutron decay and origins of trapped protons in the inner magnetosphere. J. Geophys. Res. 88, 3945–3954 (1983). doi:10.1029/JA088iA05p03945

    Article  ADS  Google Scholar 

  • J.F. Cooper, Satellite sweeping of electrons at Neptune and Uranus. Geophys. Res. Lett. 17, 1665–1668 (1990). doi:10.1029/GL017i010p01665

    Article  ADS  Google Scholar 

  • J.F. Cooper, E.C. Stone, Electron signatures of satellite sweeping in the magnetosphere of Uranus. J. Geophys. Res. 96, 7803–7821 (1991). doi:10.1029/90JA02629

    Article  ADS  Google Scholar 

  • J.F. Cooper, J.H. Eraker, J.A. Simpson, The secondary radiation under Saturn’s A–B–C rings produced by cosmic ray interactions. J. Geophys. Res. 90, 3415–3427 (1985). doi:10.1029/JA090iA04p03415

    Article  ADS  Google Scholar 

  • J.F. Cooper, R.E. Johnson, B.H. Mauk, H.B. Garrett, N. Gehrels, Energetic ion and electron irradiation of the icy Galilean satellites. Icarus 149, 133–159 (2001). doi:10.1006/icar.2000.6498

    Article  ADS  Google Scholar 

  • J.F. Cooper, E.R. Christian, J.D. Richardson, C. Wang, Proton irradiation of Centaur, Kuiper belt, and Oort cloud objects at plasma to cosmic ray energy. Earth Moon Planets 92, 261–277 (2003). doi:10.1023/B:MOON.0000031944.41883.80

    Article  ADS  Google Scholar 

  • J.F. Cooper, M.E. Hill, J.D. Richardson, S.J. Sturner, Proton irradiation environment of solar system objects in the heliospheric boundary regions, in Physics of the Inner Heliosheath, ed. by J. Heerikhuisen, V. Florinski, G.P. Zank, N.V. Pogorelov American Institute of Physics Conference Series, vol. 858, 2006, pp. 372–380. doi:10.1063/1.2359353

    Google Scholar 

  • J.F. Cooper, P.D. Cooper, E.C. Sittler, S.J. Sturner, A.M. Rymer, Old Faithful model for radiolytic gas-driven cryovolcanism at Enceladus. Planet. Space Sci. 57, 1607–1620 (2009). doi:10.1016/j.pss.2009.08.002

    Article  ADS  Google Scholar 

  • J.F. Cooper, P. Kollman, E.C. Sittler Jr., R.E. Johnson, E. Roussos, Plasma, neutral atmosphere, and energetic radiation environments of planetary rings, in Planetary Ring Systems, (Cambridge University Press, Cambridge, 2017), in press

    Google Scholar 

  • F. Cucinotta, Issues in risk assessment from solar particle events. Radiat. Meas. 30, 261 (1999)

    Article  Google Scholar 

  • F.A. Cucinotta, Calculations of cosmic-ray helium transport in shielding materials. NASA Tech. Paper 3354 3354 (1993)

  • F.A. Cucinotta, W. Schimmerling, J.W. Wilson, L.E. Peterson, P. Saganti, G.D. Badhwar, J.F. Dicello, Space radiation cancer risks and uncertainties for mars missions. Radiat. Res. 156, 682 (2001)

    Article  ADS  Google Scholar 

  • F.A. Cucinotta, S. Hu, N.A. Schwadron, K. Kozarev, L.W. Townsend, M.-H.Y. Kim, Space radiation risk limits and Earth–Moon–Mars environmental models. Space Weather 8, S00E09 (2010). doi:10.1029/2010SW000572

    Article  Google Scholar 

  • A.C. Cummings, E.C. Stone, B.C. Heikkila, N. Lal, W.R. Webber, G. Jóhannesson, I.V. Moskalenko, E. Orlando, T.A. Porter, Galactic cosmic rays in the local interstellar medium: Voyager 1 observations and model results. Astrophys. J. 831, 18 (2016). doi:10.3847/0004-637X/831/1/18

    Article  ADS  Google Scholar 

  • J.B. Dalton, O. Prieto-Ballesteros, J.S. Kargel, C.S. Jamieson, J. Jolivet, R. Quinn, Spectral comparison of heavily hydrated salts with disrupted terrains on Europa. Icarus 177, 472–490 (2005). doi:10.1016/j.icarus.2005.02.023

    Article  ADS  Google Scholar 

  • M.A. Dayeh, M.I. Desai, K. Kozarev, N.A. Schwadron, L.W. Townsend, M. PourArsalan, C. Zeitlin, R.B. Hatcher, Modeling proton intensity gradients and radiation dose equivalents in the inner heliosphere using EMMREM: May 2003 solar events. Space Weather 8, S00E07 (2010)

    Article  Google Scholar 

  • J.-P. Delaboudinière, G.E. Artzner, J. Brunaud, A.H. Gabriel, J.F. Hochedez, F. Millier, X.Y. Song, B. Au, K.P. Dere, R.A. Howard, R. Kreplin, D.J. Michels, J.D. Moses, J.M. Defise, C. Jamar, P. Rochus, J.P. Chauvineau, J.P. Marioge, R.C. Catura, J.R. Lemen, L. Shing, R.A. Stern, J.B. Gurman, W.M. Neupert, A. Maucherat, F. Clette, P. Cugnon, E.L. van Dessel, EIT: Extreme-ultraviolet Imaging Telescope for the SOHO mission. Sol. Phys. 162, 291–312 (1995). doi:10.1007/BF00733432

    Article  ADS  Google Scholar 

  • C. Delannée, Another view of the EIT wave phenomenon. Astrophys. J. 545, 512–523 (2000). doi:10.1086/317777

    Article  ADS  Google Scholar 

  • M.L. Delitsky, D.A. Paige, M.A. Siegler, E.R. Harju, D. Schriver, R.E. Johnson, P. Travnicek, Ices on Mercury: chemistry of volatiles in permanently cold areas of Mercury’s north polar region. Icarus 281, 19–31 (2017). doi:10.1016/j.icarus.2016.08.006

    Article  ADS  Google Scholar 

  • M.I. Desai, G.M. Mason, J.R. Dwyer, J.E. Mazur, R.E. Gold, S.M. Krimigis, C.W. Smith, R.M. Skoug, Evidence for a suprathermal seed population of heavy ions accelerated by interplanetary shocks near 1 AU. Astrophys. J. 588, 1149–1162 (2003). doi:10.1086/374310

    Article  ADS  Google Scholar 

  • M.I. Desai, G.M. Mason, J.E. Mazur, J.R. Dwyer, Solar cycle variations in the composition of the suprathermal heavy-ion population near 1 AU. Astrophys. J. Lett. 645, 81–84 (2006). doi:10.1086/505935

    Article  ADS  Google Scholar 

  • K.A. Duderstadt, J.E. Dibb, N.A. Schwadron, H.E. Spence, S.C. Solomon, V.A. Yudin, C.H. Jackman, C.E. Randall, Nitrate ion spikes in ice cores not suitable as proxies for solar proton events. J. Geophys. Res., Atmos. 121, 2994–3016 (2016). doi:10.1002/2015JD023805

    Article  ADS  Google Scholar 

  • R.C. Elphic, V.R. Eke, L.F.A. Teodoro, D.J. Lawrence, D.B.J. Bussey, Models of the distribution and abundance of hydrogen at the lunar south pole. Geophys. Res. Lett. 34, 13204 (2007). doi:10.1029/2007GL029954

    Article  ADS  Google Scholar 

  • M.K. Elrod, W.-L. Tseng, R.J. Wilson, R.E. Johnson, Seasonal variations in Saturn’s plasma between the main rings and Enceladus. J. Geophys. Res. Space Phys. 117, 03207 (2012). doi:10.1029/2011JA017332

    Article  ADS  Google Scholar 

  • M.K. Elrod, W.-L. Tseng, A.K. Woodson, R.E. Johnson, Seasonal and radial trends in Saturn’s thermal plasma between the main rings and Enceladus. Icarus 242, 130–137 (2014). doi:10.1016/j.icarus.2014.07.020

    Article  ADS  Google Scholar 

  • S. Fatemi, A.R. Poppe, K.K. Khurana, M. Holmström, G.T. Delory, On the formation of Ganymede’s surface brightness asymmetries: kinetic simulations of Ganymede’s magnetosphere. Geophys. Res. Lett. 43(10), 4745–4754 (2016). doi:10.1002/2016GL068363

    Article  ADS  Google Scholar 

  • T.G. Forbes, J.A. Linker, J. Chen, C. Cid, J. Kóta, M.A. Lee, G. Mann, Z. Mikić, M.S. Potgieter, J.M. Schmidt, G.L. Siscoe, R. Vainio, S.K. Antiochos, P. Riley, CME theory and models. Space Sci. Rev. 123, 251–302 (2006). doi:10.1007/s11214-006-9019-8

    Article  ADS  Google Scholar 

  • P.T. Gallagher, D.M. Long, Large-scale bright fronts in the solar corona: a review of “EIT waves”. Space Sci. Rev. 158, 365–396 (2011). doi:10.1007/s11214-010-9710-7

    Article  ADS  Google Scholar 

  • J. Giacalone, The efficient acceleration of thermal protons by perpendicular shocks. Astrophys. J. Lett. 628, 37–40 (2005). doi:10.1086/432510

    Article  ADS  Google Scholar 

  • M.L. Goelzer, C.W. Smith, N.A. Schwadron, K.G. McCracken, An analysis of heliospheric magnetic field flux based on sunspot number from 1749 to today and prediction for the coming solar minimum. J. Geophys. Res. Space Phys. 118, 7525–7531 (2013). doi:10.1002/2013JA019404

    Article  ADS  Google Scholar 

  • N. Gopalswamy, E. Aguilar-Rodriguez, S. Yashiro, S. Nunes, M.L. Kaiser, R.A. Howard, Type II radio bursts and energetic solar eruptions. J. Geophys. Res. Space Phys. 110(A9), 12 (2005). doi:10.1029/2005JA011158

    Google Scholar 

  • W.M. Grundy, L.A. Young, J.R. Spencer, R.E. Johnson, E.F. Young, M.W. Buie, Distributions of H2O and CO2 ices on Ariel, Umbriel, Titania, and Oberon from IRTF/SpeX observations. Icarus 184, 543–555 (2006). doi:10.1016/j.icarus.2006.04.016

    Article  ADS  Google Scholar 

  • S.R. Habbal, H. Morgan, M. Druckmüller, A. Ding, J.F. Cooper, A. Daw, E.C. Sittler, Probing the fundamental physics of the solar corona with lunar solar occultation observations. Sol. Phys. 285, 9–24 (2013). doi:10.1007/s11207-012-0115-5

    Article  ADS  Google Scholar 

  • K.P. Hand, C.F. Chyba, R.W. Carlson, J.F. Cooper, Clathrate hydrates of oxidants in the ice shell of Europa. Astrobiology 6, 463–482 (2006). doi:10.1089/ast.2006.6.463

    Article  ADS  Google Scholar 

  • C.A. Hibbitts, T.B. McCord, G.B. Hansen, Distributions of CO2 and SO2 on the surface of Callisto. J. Geophys. Res. 105, 22541–22558 (2000). doi:10.1029/1999JE001101

    Article  ADS  Google Scholar 

  • H.S. Hudson, Global properties of solar flares. Space Sci. Rev. 158, 5–41 (2011). doi:10.1007/s11214-010-9721-4

    Article  ADS  Google Scholar 

  • R.L. Hudson, M.H. Moore, Laboratory studies of the formation of methanol and other organic molecules by water+carbon monoxide radiolysis: relevance to comets, icy satellites, and interstellar ices. Icarus 140, 451–461 (1999). doi:10.1006/icar.1999.6144

    Article  ADS  Google Scholar 

  • R.L. Hudson, M.E. Palumbo, G. Strazzulla, M.H. Moore, J.F. Cooper, S.J. Sturner, Laboratory studies of the chemistry of transneptunian object surface materials, in The Solar System Beyond Neptune, ed. by M.A. Barucci, H. Boehnhardt, D.P. Cruikshank, A. Morbidelli, R. Dotson (2008), pp. 507–523. http://adsabs.harvard.edu/abs/2008ssbn.book..507H

    Google Scholar 

  • ICRP, International Commission on Radiological Protection ICRP Publication 103: The 2007 Recommendations of the International Commission on Radiological Protection. Ann. ICRP, vol. 37 (Sage, Thousand Oaks, 2007)

    Google Scholar 

  • R.E. Johnson, Energetic Charged-Particle Interactions with Atmospheres and Surfaces. Physics and Chemistry in Space Planetology, vol. 19 (1990)

    Book  Google Scholar 

  • R.E. Johnson, J.F. Cooper, L.J. Lanzerotti, G. Strazzulla, Radiation formation of a non-volatile comet crust. Astron. Astrophys. 187, 889 (1987)

    ADS  Google Scholar 

  • R.E. Johnson, R.W. Carlson, J.F. Cooper, C. Paranicas, M.H. Moore, M.C. Wong, Radiation effects on the surfaces of the Galilean satellites, in Jupiter. The Planet, Satellites and Magnetosphere, ed. by F. Bagenal, T.E. Dowling, W.B. McKinnon (2004), pp. 485–512. http://adsabs.harvard.edu/ abs/2004jpsm.book..485J

    Google Scholar 

  • R.E. Johnson, J.G. Luhmann, R.L. Tokar, M. Bouhram, J.J. Berthelier, E.C. Sittler, J.F. Cooper, T.W. Hill, H.T. Smith, M. Michael, M. Liu, F.J. Crary, D.T. Young, Production, ionization and redistribution of \(\mathrm{O}_{2}\) in Saturn’s ring atmosphere. Icarus 180, 393–402 (2006). doi:10.1016/j.icarus.2005.08.021

    Article  ADS  Google Scholar 

  • A.P. Jordan, T.J. Stubbs, C.J. Joyce, N.A. Schwadron, H.E. Spence, J.K. Wilson, The formation of molecular hydrogen from water ice in the lunar regolith by energetic charged particles. J. Geophys. Res., Planets 118, 1257–1264 (2013). doi:10.1002/jgre.20095

    Article  ADS  Google Scholar 

  • A.P. Jordan, T.J. Stubbs, J.K. Wilson, N.A. Schwadron, H.E. Spence, C.J. Joyce, Deep dielectric charging of regolith within the Moon’s permanently shadowed regions. J. Geophys. Res., Planets 119, 1806–1821 (2014). doi:10.1002/2014JE004648

    Article  ADS  Google Scholar 

  • A.P. Jordan, T.J. Stubbs, J.K. Wilson, N.A. Schwadron, H.E. Spence, Dielectric breakdown weathering of the Moon’s polar regolith. J. Geophys. Res., Planets 120, 210–225 (2015). doi:10.1002/2014JE004710

    Article  ADS  Google Scholar 

  • A.P. Jordan, T.J. Stubbs, J.K. Wilson, N.A. Schwadron, H.E. Spence, The rate of dielectric breakdown weathering of lunar regolith in permanently shadowed regions. Icarus 283, 352–358 (2017). doi:10.1016/j.icarus.2016.08.027. Lunar Reconnaissance Orbiter—Part II. http://www.sciencedirect.com/science/article/pii/S0019103516305358

    Article  ADS  Google Scholar 

  • C.J. Joyce, N.A. Schwadron, J.K. Wilson, H.E. Spence, J.C. Kasper, M. Golightly, J.B. Blake, J. Mazur, L.W. Townsend, A.W. Case, E. Semones, S. Smith, C.J. Zeitlin, Validation of PREDICCS using LRO/CRaTER observations during three major solar events in 2012. Space Weather 11, 350–360 (2013). doi:10.1002/swe.20059

    Article  ADS  Google Scholar 

  • C.J. Joyce, N.A. Schwadron, L.W. Townsend, R.A. Mewaldt, C.M.S. Cohen, T.T. Rosenvinge, A.W. Case, H.E. Spence, J.K. Wilson, M. Gorby, M. Quinn, C.J. Zeitlin, Analysis of the potential radiation hazard of the 23 July 2012 SEP event observed by STEREO a using the EMMREM model and LRO/CRaTER. Space Weather 13, 560–567 (2015). doi:10.1002/2015SW001208

    Article  ADS  Google Scholar 

  • C.J. Joyce, N.A. Schwadron, L.W. Townsend, W.C. deWet, J.K. Wilson, H.E. Spence, W.K. Tobiska, K. Shelton-Mur, A. Yarborough, J. Harvey, A. Herbst, A. Koske-Phillips, F. Molina, S. Omondi, C. Reid, D. Reid, J. Shultz, B. Stephenson, M. McDevitt, T. Phillips, Atmospheric radiation modeling of galactic cosmic rays using LRO/CRaTER and the EMMREM model with comparisons to balloon and airline based measurements. Space Weather 14, 659–667 (2016). doi:10.1002/2016SW001425

    Article  ADS  Google Scholar 

  • I.S. Kim, L.P. Nasonova, D.V. Lisin, V.V. Popov, N.L. Krusanova, Imaging the structure of the low k-corona. J. Geophys. Res. Space Phys. 122(1), 77–88 (2017). 2016JA022623. doi:10.1002/2016JA022623

    Article  ADS  Google Scholar 

  • L. Kocharov, M. Lytova, R. Vainio, T. Laitinen, J. Torsti, Modeling the shock aftermath source of energetic particles in the solar corona. Astrophys. J. 620, 1052–1068 (2005). doi:10.1086/427162

    Article  ADS  Google Scholar 

  • H.C. Koons, J.E. Mazur, R.S. Selesnick, J.B. Blake, J.F. Fennell, The Impact of the Space Environment on Space Systems. NASA STI/Recon Technical Report N (1999)

  • J. Kóta, W.B. Manchester, T.I. Gombosi, SEP acceleration at realistic CMEs: two sites of acceleration? Int. Cosm. Ray Conf., 1, 125 (2005a)

    Google Scholar 

  • J. Kóta, W.B. Manchester, J.R. Jokipii, D.L. de Zeeuw, T.I. Gombosi, Simulation of SEP acceleration and transport at CME-driven shocks, in The Physics of Collisionless Shocks: 4th Annual IGPP International Astrophysics Conference, ed. by G. Li, G.P. Zank, C.T. Russell American Institute of Physics Conference Series, vol. 781, 2005b, pp. 201–206. doi:10.1063/1.2032697

    Google Scholar 

  • K.A. Kozarev, K.E. Korreck, V.V. Lobzin, M.A. Weber, N.A. Schwadron, Off-limb solar coronal wavefronts from SDO/AIA extreme-ultraviolet observations—implications for particle production. Astrophys. J. Lett. 733, 25 (2011). doi:10.1088/2041-8205/733/2/L25

    Article  ADS  Google Scholar 

  • K.A. Kozarev, R.M. Evans, N.A. Schwadron, M.A. Dayeh, M. Opher, K.E. Korreck, B. van der Holst, Global numerical modeling of energetic proton acceleration in a coronal mass ejection traveling through the solar corona. Astrophys. J. 778, 43 (2013). doi:10.1088/0004-637X/778/1/43

    Article  ADS  Google Scholar 

  • J.A. Le Roux, M.S. Potgieter, The simulation of complete 11 and 12 year modulation cycles for cosmic rays in the heliosphere using a drift model with global merged interaction regions. Astrophys. J. 442, 847–851 (1995). doi:10.1086/175487

    Article  ADS  Google Scholar 

  • K.-S. Lee, Y.-J. Moon, K.-S. Kim, J.-Y. Lee, K.-S. Cho, G.S. Choe, Comparison of SOHO UVCS and MLSO MK4 coronameter densities. Astron. Astrophys. 486, 1009–1013 (2008). doi:10.1051/0004-6361:20078976

    Article  ADS  Google Scholar 

  • P. Leung, A.C. Whittlesey, H.B. Garrett, P.A. Robinson Jr., Environment-induced electrostatic discharges as the cause of Voyager 1 power-on resets. J. Spacecr. Rockets 23, 323 (1986). doi:10.2514/3.25805

    Article  ADS  Google Scholar 

  • R. Lionello, C. Downs, J.A. Linker, T. Török, P. Riley, Z. Mikić, Magnetohydrodynamic simulations of interplanetary coronal mass ejections. Astrophys. J. 777, 76 (2013). doi:10.1088/0004-637X/777/1/76

    Article  ADS  Google Scholar 

  • W. Liu, N.V. Nitta, C.J. Schrijver, A.M. Title, T.D. Tarbell, First SDO AIA observations of a global coronal EUV “Wave”: multiple components and “ripples”. Astrophys. J. Lett. 723, 53–59 (2010). doi:10.1088/2041-8205/723/1/L53

    Article  ADS  Google Scholar 

  • J.S. Llorente, A. Agenjo, C. Carrascosa, C. de Negueruela, A. Mestreau-Garreau, A. Cropp, A. Santovincenzo, Proba-3: precise formation flying demonstration mission. Acta Astronaut. 82(1), 38–46 (2013). doi:10.1016/j.actaastro.2012.05.029. 6th International Workshop on Satellite Constellation and Formation Flying. http://www.sciencedirect.com/science/article/pii/S0094576512002202

    Article  ADS  Google Scholar 

  • M.D. Looper, J.E. Mazur, J.B. Blake, H.E. Spence, N.A. Schwadron, M.J. Golightly, A.W. Case, J.C. Kasper, L.W. Townsend, The radiation environment near the lunar surface: CRaTER observations and Geant4 simulations. Space Weather 11, 142–152 (2013). doi:10.1002/swe.20034

    Article  ADS  Google Scholar 

  • S. Ma, J.C. Raymond, L. Golub, J. Lin, H. Chen, P. Grigis, P. Testa, D. Long, Observations and interpretation of a low coronal shock wave observed in the EUV by the SDO/AIA. Astrophys. J. 738, 160 (2011). doi:10.1088/0004-637X/738/2/160

    Article  ADS  Google Scholar 

  • W.B. Manchester IV, T.I. Gombosi, D.L. De Zeeuw, I.V. Sokolov, I.I. Roussev, K.G. Powell, J. Kóta, G. Tóth, T.H. Zurbuchen, Coronal mass ejection shock and sheath structures relevant to particle acceleration. Astrophys. J. 622, 1225–1239 (2005). doi:10.1086/427768

    Article  ADS  Google Scholar 

  • G.M. Mason, G. Gloeckler, D. Hovestadt, Temporal variations of nucleonic abundances in solar flare energetic particle events. II. Evidence for large-scale shock acceleration. Astrophys. J. 280, 902–916 (1984). doi:10.1086/162066

    Article  ADS  Google Scholar 

  • G.M. Mason, C.M.S. Cohen, A.C. Cummings, J.R. Dwyer, R.E. Gold, S.M. Krimigis, R.A. Leske, J.E. Mazur, R.A. Mewaldt, E. Möbius, M. Popecki, E.C. Stone, T.T. von Rosenvinge, M.E. Wiedenbeck, Particle acceleration and sources in the November 1997 solar energetic particle events. Geophys. Res. Lett. 26, 141–144 (1999)

    Article  ADS  Google Scholar 

  • G.M. Mason, M.E. Wiedenbeck, J.A. Miller, J.E. Mazur, E.R. Christian, C.M.S. Cohen, A.C. Cummings, J.R. Dwyer, R.E. Gold, S.M. Krimigis, R.A. Leske, R.A. Mewaldt, P.L. Slocum, E.C. Stone, T.T. von Rosenvinge, Spectral properties of He and heavy ions in 3He-rich solar flares. Astrophys. J. 574, 1039–1058 (2002). doi:10.1086/341112

    Article  ADS  Google Scholar 

  • D.J. McComas, R.W. Ebert, H.A. Elliott, B.E. Goldstein, J.T. Gosling, N.A. Schwadron, R.M. Skoug, Weaker solar wind from the polar coronal holes and the whole Sun. Geophys. Res. Lett. 35, 18103 (2008). doi:10.1029/2008GL034896

    Article  ADS  Google Scholar 

  • D.J. McComas, F. Allegrini, P. Bochsler, P. Frisch, H.O. Funsten, M. Gruntman, P.H. Janzen, H. Kucharek, E. Möbius, D.B. Reisenfeld, N.A. Schwadron, Lunar backscatter and neutralization of the solar wind: first observations of neutral atoms from the Moon. Geophys. Res. Lett. 36, 12104 (2009). doi:10.1029/2009GL038794

    Article  ADS  Google Scholar 

  • D.J. McComas, M. Bzowski, P. Frisch, G.B. Crew, M.A. Dayeh, R. DeMajistre, H.O. Funsten, S.A. Fuselier, M. Gruntman, P. Janzen, M.A. Kubiak, G. Livadiotis, E. Möbius, D.B. Reisenfeld, N.A. Schwadron, Evolving outer heliosphere: large-scale stability and time variations observed by the interstellar boundary explorer. J. Geophys. Res. Space Phys. 115(A14), 9113 (2010). doi:10.1029/2010JA015569

    ADS  Google Scholar 

  • D.J. McComas, N. Angold, H.A. Elliott, G. Livadiotis, N.A. Schwadron, R.M. Skoug, C.W. Smith, Weakest solar wind of the space age and the current “mini” solar maximum. Astrophys. J. 779, 2 (2013). doi:10.1088/0004-637X/779/1/2. http://adsabs.harvard.edu/abs/2013ApJ...779....2M

    Article  ADS  Google Scholar 

  • D.J. McComas, M. Bzowski, P. Frisch, S.A. Fuselier, M.A. Kubiak, H. Kucharek, T. Leonard, E. Möbius, N.A. Schwadron, J.M. Sokół, P. Swaczyna, M. Witte, Warmer local interstellar medium: a possible resolution of the Ulysses-IBEX enigma. Astrophys. J. 801, 28 (2015). doi:10.1088/0004-637X/801/1/28

    Article  ADS  Google Scholar 

  • T.B. McCord, G.B. Hansen, R.N. Clark, P.D. Martin, C.A. Hibbitts, F.P. Fanale, J.C. Granahan, M. Segura, D.L. Matson, T.V. Johnson, R.W. Carlson, W.D. Smythe, G.E. Danielson, Non-water-ice constituents in the surface material of the icy Galilean satellites from the Galileo near-infrared mapping spectrometer investigation. J. Geophys. Res. 103, 8603–8626 (1998a). doi:10.1029/98JE00788

    Article  ADS  Google Scholar 

  • T.B. McCord, G.B. Hansen, F.P. Fanale, R.W. Carlson, D.L. Matson, T.V. Johnson, W.D. Smythe, J.K. Crowley, P.D. Martin, A. Ocampo, C.A. Hibbitts, J.C. Granahan, Salts on Europa’s surface detected by Galileo’s near infrared mapping spectrometer. Science 280, 1242 (1998b). doi:10.1126/science.280.5367.1242

    Article  ADS  Google Scholar 

  • T.B. McCord, G.B. Hansen, D.L. Matson, T.V. Johnson, J.K. Crowley, F.P. Fanale, R.W. Carlson, W.D. Smythe, P.D. Martin, C.A. Hibbitts, J.C. Granahan, A. Ocampo, Hydrated salt minerals on Europa’s surface from the Galileo near-infrared mapping spectrometer (NIMS) investigation. J. Geophys. Res., Planets 104(E5), 11827–11851 (1999). doi:10.1029/1999JE900005

    Article  ADS  Google Scholar 

  • T.B. McCord, T.M. Orlando, G. Teeter, G.B. Hansen, M.T. Sieger, N.G. Petrik, L. Van Keulen, Thermal and radiation stability of the hydrated salt minerals epsomite, mirabilite, and natron under Europa environmental conditions. J. Geophys. Res., Planets 106(E2), 3311–3319 (2001). doi:10.1029/2000JE001282

    Article  ADS  Google Scholar 

  • R.A. Mewaldt, A.J. Davis, K.A. Lave, R.A. Leske, E.C. Stone, M.E. Wiedenbeck, W.R. Binns, E.R. Christian, A.C. Cummings, G.A. de Nolfo, M.H. Israel, A.W. Labrador, T.T. von Rosenvinge, Record-setting cosmic-ray intensities in 2009 and 2010. Astrophys. J. Lett. 723, 1–6 (2010). doi:10.1088/2041-8205/723/1/L1. http://adsabs.harvard.edu/abs/2010ApJ...723L...1M

    Article  ADS  Google Scholar 

  • R. Mewaldt, C. Cohen, G. Mason, T. von Rosenvinge, G. Li, C.W. Smith, A. Vourlidas, An investigation of the causes of solar-cycle variations in SEP fluences and composition, in 34th International Cosmic Ray Conference, ICRC2015, vol. 34 (2015), p. 30

    Google Scholar 

  • M.H. Moore, R.L. Hudson, R.F. Ferrante, Radiation products in processed ices relevant to Edgeworth–Kuiper-belt objects. Earth Moon Planets 92, 291–306 (2003). doi:10.1023/B:MOON.0000031946.53696.f6

    Article  ADS  Google Scholar 

  • G.E. Moreton, H\(\alpha\) observations of flare-initiated disturbances with velocities ∼1000 km/sec. Astron. J. 65, 494 (1960). doi:10.1086/108346

    Article  ADS  Google Scholar 

  • NASA, NASA Space Flight Human System Standard Volume 1: Crew Health, NASA-STD-3001, vol. NASA-STD-3001 (NASA Headquarters, Washington, 2007)

    Google Scholar 

  • NCRP, Limitation of Exposure to Ionizing Radiation. NCRP Report 116 (National Council on Radiation Protection and Measurements, Bethesda, 1993)

    Google Scholar 

  • J.E. Nealy, F.A. Cucinotta, J.W. Wilson, F.F. Badavi, N. Zapp, E. Semones, S.A. Walker, G. de Angelis, S.R. Blattnig, Pre-engineering spaceflight validation of environmental models and the 2005 HZETRN simulation code, in 36th COSPAR Scientific Assembly. COSPAR Meeting, vol. 36, 2006, p. 1399

    Google Scholar 

  • J.E. Nealy, F.A. Cucinotta, J.W. Wilson, F.F. Badavi, T.P. Dachev, B.T. Tomov, S.A. Walker, G. De Angelis, S.R. Blattnig, W. Atwell, Pre-engineering spaceflight validation of environmental models and the 2005 HZETRN simulation code. Adv. Space Res. 40, 1593–1610 (2007). doi:10.1016/j.asr.2006.12.029

    Article  ADS  Google Scholar 

  • R.A. Nymmik, M.I. Panasyuk, V.V. Petrukhin, B.Y. Yushkov, A method of calculation of vertical cutoff rigidity in the geomagnetic field. Cosm. Res. 47, 191–197 (2009). doi:10.1134/S0010952509030010

    Article  ADS  Google Scholar 

  • P.M. O’Neill, Badhwar O’Neill galactic cosmic ray model update based on advanced composition explorer (ACE) energy spectra from 1997 to present. Adv. Space Res. 37, 1727–1733 (2006). doi:10.1016/j.asr.2005.02.001

    Article  ADS  Google Scholar 

  • V. Ontiveros, A. Vourlidas, Quantitative measurements of coronal mass ejection-driven shocks from LASCO observations. Astrophys. J. 693, 267–275 (2009). doi:10.1088/0004-637X/693/1/267

    Article  ADS  Google Scholar 

  • M.J. Owens, N.U. Crooker, Coronal mass ejections and magnetic flux buildup in the heliosphere. J. Geophys. Res. Space Phys. 111, 10104 (2006). doi:10.1029/2006JA011641. http://adsabs.harvard.edu/abs/ 2006JGRA..11110104O

    Article  ADS  Google Scholar 

  • C. Paranicas, R.W. Carlson, R.E. Johnson, Electron bombardment of Europa. Geophys. Res. Lett. 28, 673–676 (2001). doi:10.1029/2000GL012320

    Article  ADS  Google Scholar 

  • C. Paranicas, J.F. Cooper, H.B. Garrett, R.E. Johnson, S.J. Sturner, Europa’s radiation environment and its effects on the surface, in Europa, ed. by R.T. Pappalardo, W.B. McKinnon, K.K. Khurana, with the assistance of René, Dotson with 85 collaborating authors. The University of Arizona Space Science Series (University of Arizona Press, Tucson, 2009), p. 529. ISBN: 9780816528448

    Google Scholar 

  • C.M. Pieters, J.N. Goswami, R.N. Clark, M. Annadurai, J. Boardman, B. Buratti, J.-P. Combe, M.D. Dyar, R. Green, J.W. Head, C. Hibbitts, M. Hicks, P. Isaacson, R. Klima, G. Kramer, S. Kumar, E. Livo, S. Lundeen, E. Malaret, T. McCord, J. Mustard, J. Nettles, N. Petro, C. Runyon, M. Staid, J. Sunshine, L.A. Taylor, S. Tompkins, P. Varanasi, Character and spatial distribution of \(\mathrm{OH}/\mathrm{H}_{2}\mathrm{O}\) on the surface of the Moon seen by \(\mathrm{M}^{3}\) on Chandrayaan-1. Science 326, 568 (2009). doi:10.1126/science.1178658

    Article  ADS  Google Scholar 

  • C.C. Porco, P. Helfenstein, P.C. Thomas, A.P. Ingersoll, J. Wisdom, R. West, G. Neukum, T. Denk, R. Wagner, T. Roatsch, S. Kieffer, E. Turtle, A. McEwen, T.V. Johnson, J. Rathbun, J. Veverka, D. Wilson, J. Perry, J. Spitale, A. Brahic, J.A. Burns, A.D. Del Genio, L. Dones, C.D. Murray, S. Squyres, Cassini observes the active South pole of Enceladus. Science 311, 1393–1401 (2006). doi:10.1126/science.1123013

    Article  ADS  Google Scholar 

  • M.S. Potgieter, R.A. Burger, S.E.S. Ferreira, Modulation of cosmic rays in the heliosphere from solar minimum to maximum: a theoretical perspective. Space Sci. Rev. 97, 295–307 (2001). doi:10.1023/A:1011837303094

    Article  ADS  Google Scholar 

  • F. Raulin, T. Owen, Organic chemistry and exobiology on Titan. Space Sci. Rev. 104, 379–395 (2002)

    Article  ADS  Google Scholar 

  • D.V. Reames, Particle acceleration at the Sun and in the heliosphere. Space Sci. Rev. 90, 413–491 (1999). doi:10.1023/A:1005105831781

    Article  ADS  Google Scholar 

  • D.V. Reames, Solar energetic-particle release times in historic ground-level events. Astrophys. J. 706, 844–850 (2009a). doi:10.1088/0004-637X/706/1/844

    Article  ADS  Google Scholar 

  • D.V. Reames, Solar release times of energetic particles in ground-level events. Astrophys. J. 693, 812–821 (2009b). doi:10.1088/0004-637X/693/1/812

    Article  ADS  Google Scholar 

  • I.I. Roussev, I.V. Sokolov, T.G. Forbes, T.I. Gombosi, M.A. Lee, J.I. Sakai, A numerical model of a coronal mass ejection: shock development with implications for the acceleration of GeV protons. Astrophys. J. Lett. 605, 73–76 (2004). doi:10.1086/392504

    Article  ADS  Google Scholar 

  • C.T. Russell, R.A. Mewaldt, J.G. Luhmann, G.M. Mason, T.T. von Rosenvinge, C.M.S. Cohen, R.A. Leske, R. Gomez-Herrero, A. Klassen, A.B. Galvin, K.D.C. Simunac, The very unusual interplanetary coronal mass ejection of 2012 July 23: a blast wave mediated by solar energetic particles. Astrophys. J. 770, 38 (2013). doi:10.1088/0004-637X/770/1/38

    Article  ADS  Google Scholar 

  • Y. Saito, S. Yokota, T. Tanaka, K. Asamura, M.N. Nishino, M. Fujimoto, H. Tsunakawa, H. Shibuya, M. Matsushima, H. Shimizu, F. Takahashi, T. Mukai, T. Terasawa, Solar wind proton reflection at the lunar surface: low energy ion measurement by MAP-PACE onboard SELENE (KAGUYA). Geophys. Res. Lett. 35, 24205 (2008). doi:10.1029/2008GL036077

    Article  ADS  Google Scholar 

  • L. Saul, P. Wurz, A. Vorburger, D.F. Rodríguez M., S.A. Fuselier, D.J. McComas, E. Möbius, S. Barabash, H. Funsten, P. Janzen, Solar wind reflection from the lunar surface: the view from far and near. Planet. Space Sci. 84, 1–4 (2013). doi:10.1016/j.pss.2013.02.004

    Article  ADS  Google Scholar 

  • J.M. Schmidt, L. Ofman, Global simulation of an extreme ultraviolet imaging telescope wave. Astrophys. J. 713, 1008–1015 (2010). doi:10.1088/0004-637X/713/2/1008

    Article  ADS  Google Scholar 

  • N.A. Schwadron, M. Owens, N.U. Crooker, The heliospheric magnetic field over the hale cycle. Astrophys. Space Sci. Trans. 4, 19–26 (2008). doi:10.5194/astra-4-19-2008. http://adsabs.harvard.edu/ abs/2008ASTRA...4...19S

    Article  ADS  Google Scholar 

  • N.A. Schwadron, H.E. Spence, R. Came, Does the space environment affect the ecosphere? Eos 92, 297–298 (2011). doi:10.1029/2011EO360001

    Article  ADS  Google Scholar 

  • N.A. Schwadron, L. Townsend, K. Kozarev, M.A. Dayeh, F. Cucinotta, M. Desai, M. Golightly, D. Hassler, R. Hatcher, M.-Y. Kim, A. Posner, M. PourArsalan, H.E. Spence, R.K. Squier, Earth–Moon–Mars radiation environment module framework. Space Weather 8, S00E02 (2010). doi:10.1029/2009SW000523

    Google Scholar 

  • N.A. Schwadron, C.W. Smith, H.E. Spence, J.C. Kasper, K. Korreck, M.L. Stevens, B.A. Maruca, K.K. Kiefer, S.T. Lepri, D. McComas, Coronal electron temperature from the solar wind scaling law throughout the space age. Astrophys. J. 739, 9 (2011). doi:10.1088/0004-637X/739/1/9. http://adsabs.harvard.edu/abs/2011ApJ...739....9S

    Article  ADS  Google Scholar 

  • N.A. Schwadron, T. Baker, B. Blake, A.W. Case, J.F. Cooper, M. Golightly, A. Jordan, C. Joyce, J. Kasper, K. Kozarev, J. Mislinski, J. Mazur, A. Posner, O. Rother, S. Smith, H.E. Spence, L.W. Townsend, J. Wilson, C. Zeitlin, Lunar radiation environment and space weathering from the cosmic ray telescope for the effects of radiation (CRaTER). J. Geophys. Res., Planets 117 (2012). doi:10.1029/2011JE003978. http://adsabs.harvard.edu/abs/2012JGRE..117.0H13S

  • N.A. Schwadron, M.L. Goelzer, C.W. Smith, J.C. Kasper, K. Korreck, R.J. Leamon, S.T. Lepri, B.A. Maruca, D. McComas, M.L. Steven, Coronal electron temperature in the protracted solar minimum, the cycle 24 mini maximum, and over centuries. J. Geophys. Res. Space Phys. (2014). doi:10.1002/2013JA019397. http://onlinelibrary.wiley.com/doi/10.1002/2013JA019397/abstract

    Google Scholar 

  • N.A. Schwadron, J.B. Blake, A.W. Case, C.J. Joyce, J. Kasper, J. Mazur, N. Petro, M. Quinn, J.A. Porter, C.W. Smith, S. Smith, H.E. Spence, L.W. Townsend, R. Turner, J.K. Wilson, C. Zeitlin, Does the worsening galactic cosmic radiation environment observed by CRaTER preclude future manned deep space exploration? Space Weather 12, 622–632 (2014a). doi:10.1002/2014SW001084

    Article  ADS  Google Scholar 

  • N.A. Schwadron, M. Gorby, T. Török, C. Downs, J. Linker, R. Lionello, Z. Mikić, P. Riley, J. Giacalone, B. Chandran, K. Germaschewski, P.A. Isenberg, M.A. Lee, N. Lugaz, S. Smith, H.E. Spence, M. Desai, J. Kasper, K. Kozarev, K. Korreck, M. Stevens, J. Cooper, P. MacNeice, Synthesis of 3-D coronal-solar wind energetic particle acceleration modules. Space Weather 12, 323–328 (2014b). doi:10.1002/2014SW001086

    Article  ADS  Google Scholar 

  • N.A. Schwadron, M.A. Lee, M. Gorby, N. Lugaz, H.E. Spence, M. Desai, T. Török, C. Downs, J. Linker, R. Lionello, Z. Mikić, P. Riley, J. Giacalone, J.R. Jokipii, J. Kota, K. Kozarev, Particle acceleration at low coronal compression regions and shocks. Astrophys. J. 810, 97 (2015). doi:10.1088/0004-637X/810/2/97

    Article  ADS  Google Scholar 

  • K. Shibata, T. Magara, Solar flares: magnetohydrodynamic processes. Living Rev. Sol. Phys. 8, 6 (2011)

    Article  ADS  Google Scholar 

  • J.L. Shinn, J.W. Wilson, M. Weyland, F.A. Cucinotta, Improvements in computational accuracy of BRYNTRN (A Baryon transport code). NASA Tech. Paper 3093 3093 (1991)

  • M.L. Shusterman, N.R. Izenberg, C.A. Hibbitts, A.P. Jordan, T.J. Stubbs, J.K. Wilson, Weathering effects of dielectric breakdown in the lunar polar regions, in 47th Lunar and Planetary Science Conference (2016)

    Google Scholar 

  • E.C. Sittler, A. Ali, J.F. Cooper, R.E. Hartle, R.E. Johnson, A.J. Coates, D.T. Young, Heavy ion formation in Titan’s ionosphere: magnetospheric introduction of free oxygen and a source of Titan’s aerosols? Planet. Space Sci. 57, 1547–1557 (2009). doi:10.1016/j.pss.2009.07.017

    Article  ADS  Google Scholar 

  • C.W. Smith, N.A. Schwadron, C.E. DeForest, Decline and recovery of the interplanetary magnetic field during the protracted solar minimum. Astrophys. J. 775, 59 (2013). doi:10.1088/0004-637X/775/1/59

    Article  ADS  Google Scholar 

  • E.J. Smith, A. Balogh, Decrease in heliospheric magnetic flux in this solar minimum: recent Ulysses magnetic field observations. Geophys. Res. Lett. 35, 22103 (2008). doi:10.1029/2008GL035345. http://adsabs.harvard.edu/abs/2008GeoRL..3522103S

    Article  ADS  Google Scholar 

  • W.B. Sparks, K.P. Hand, M.A. McGrath, E. Bergeron, M. Cracraft, S.E. Deustua, Probing for evidence of plumes on Europa with HST/STIS. Astrophys. J. 829, 121 (2016). doi:10.3847/0004-637X/829/2/121

    Article  ADS  Google Scholar 

  • H.E. Spence, A.W. Case, M.J. Golightly, T. Heine, B.A. Larsen, J.B. Blake, P. Caranza, W.R. Crain, J. George, M. Lalic, A. Lin, M.D. Looper, J.E. Mazur, D. Salvaggio, J.C. Kasper, T.J. Stubbs, M. Doucette, P. Ford, R. Foster, R. Goeke, D. Gordon, B. Klatt, J. O’Connor, M. Smith, T. Onsager, C. Zeitlin, L.W. Townsend, Y. Charara, CRaTER: the cosmic ray telescope for the effects of radiation experiment on the lunar reconnaissance orbiter mission. Space Sci. Rev. 150, 243–284 (2010). doi:10.1007/s11214-009-9584-8. http://adsabs.harvard.edu/abs/2010SSRv..150..243S

    Article  ADS  Google Scholar 

  • H.E. Spence, M.J. Golightly, C.J. Joyce, M.D. Looper, N.A. Schwadron, S.S. Smith, L.W. Townsend, J. Wilson, C. Zeitlin, Relative contributions of galactic cosmic rays and lunar proton “albedo” to dose and dose rates near the Moon. Space Weather 11, 643–650 (2013). doi:10.1002/2013SW000995

    Article  ADS  Google Scholar 

  • H.E. Spence, N.A. Schwadron, C.J. Joyce, S.S. Smith, J. Wilson, A. Jordan, Space weathering throughout the solar system (2017 in work)

  • J.R. Spencer, W.M. Calvin, M.J. Person, Charge-coupled device spectra of the Galilean satellites: molecular oxygen on Ganymede. J. Geophys. Res., Planets 100(E9), 19049–19056 (1995). doi:10.1029/95JE01503

    Article  ADS  Google Scholar 

  • L.V. Starukhina, Y.G. Shkuratov, NOTE: the lunar poles: water ice or chemically trapped hydrogen? Icarus 147, 585–587 (2000). doi:10.1006/icar.2000.6476

    Article  ADS  Google Scholar 

  • E.C. Stone, A.C. Cummings, F.B. McDonald, B.C. Heikkila, N. Lal, W.R. Webber, Voyager 1 observes low-energy galactic cosmic rays in a region depleted of heliospheric ions. Science 341, 150–153 (2013). doi:10.1126/science.1236408

    Article  ADS  Google Scholar 

  • J.M. Sunshine, T.L. Farnham, L.M. Feaga, O. Groussin, F. Merlin, R.E. Milliken, M.F. A’Hearn, Temporal and spatial variability of lunar hydration as observed by the deep impact spacecraft. Science 326, 565 (2009). doi:10.1126/science.1179788

    Article  ADS  Google Scholar 

  • B.J. Thompson, J.B. Gurman, W.M. Neupert, J.S. Newmark, J.-P. Delaboudinière, O.C.S. Cyr, S. Stezelberger, K.P. Dere, R.A. Howard, D.J. Michels, SOHO/EIT observations of the 1997 April 7 coronal transient: possible evidence of coronal Moreton waves. Astrophys. J. Lett. 517, 151–154 (1999). doi:10.1086/312030

    Article  ADS  Google Scholar 

  • W.T. Thompson, N.L. Reginald, The radiometric and pointing calibration of SECCHI Cor1 on STEREO. Sol. Phys. 250(2), 443–454 (2008). doi:10.1007/s11207-008-9228-2

    Article  ADS  Google Scholar 

  • V.S. Titov, P. Démoulin, Basic topology of twisted magnetic configurations in solar flares. Astron. Astrophys. 351, 707–720 (1999)

    ADS  Google Scholar 

  • V.S. Titov, T. Török, Z. Mikic, J.A. Linker, A method for embedding circular force-free flux ropes in potential magnetic fields. Astrophys. J. 790, 163 (2014). doi:10.1088/0004-637X/790/2/163

    Article  ADS  Google Scholar 

  • G. Tóth, I.V. Sokolov, T.I. Gombosi, D.R. Chesney, C.R. Clauer, D.L. de Zeeuw, K.C. Hansen, K.J. Kane, W.B. Manchester, R.C. Oehmke, K.G. Powell, A.J. Ridley, I.I. Roussev, Q.F. Stout, O. Volberg, R.A. Wolf, S. Sazykin, A. Chan, B. Yu, J. Kóta, Space weather modeling framework: a new tool for the space science community. J. Geophys. Res. Space Phys. 110(A9), 12226 (2005). doi:10.1029/2005JA011126

    Article  ADS  Google Scholar 

  • L.W. Townsend, T.M. Miller, T.A. Gabriel, Hetc radiation transport code development for cosmic ray shielding applications in space. Radiat. Prot. Dosim. 116(1–4), 135–139 (2005). doi:10.1093/rpd/nci091

    Article  Google Scholar 

  • B. Tsurutani, S.T. Wu, T.X. Zhang, M. Dryer, Coronal Mass Ejection (CME)-induced shock formation, propagation and some temporally and spatially developing shock parameters relevant to particle energization. Astron. Astrophys. 412, 293–304 (2003). doi:10.1051/0004-6361:20031413

    Article  ADS  Google Scholar 

  • Y. Uchida, Propagation of hydromagnetic disturbances in the solar corona and Moreton’s wave phenomenon. Sol. Phys. 4, 30–44 (1968). doi:10.1007/BF00146996

    Article  ADS  Google Scholar 

  • O.P. Verkhoglyadova, G. Li, G.P. Zank, Q. Hu, Modeling a mixed SEP event with the PATH model: December 13, 2006, in American Institute of Physics Conference Series, ed. by G. Li, Q. Hu, O. Verkhoglyadova, G.P. Zank, R.P. Lin, J. Luhmann American Institute of Physics Conference Series, vol. 1039, 2008, pp. 214–219. doi:10.1063/1.2982448

    Google Scholar 

  • A.M. Veronig, N. Muhr, I.W. Kienreich, M. Temmer, B. Vršnak, First observations of a dome-shaped large-scale coronal extreme-ultraviolet wave. Astrophys. J. Lett. 716, 57–62 (2010). doi:10.1088/2041-8205/716/1/L57

    Article  ADS  Google Scholar 

  • J.H. Waite Jr., W.S. Lewis, B.A. Magee, J.I. Lunine, W.B. McKinnon, C.R. Glein, O. Mousis, D.T. Young, T. Brockwell, J. Westlake, M.-J. Nguyen, B.D. Teolis, H.B. Niemann, R.L. McNutt, M. Perry, W.-H. Ip, Liquid water on Enceladus from observations of ammonia and 40Ar in the plume. Nature 460, 487–490 (2009). doi:10.1038/nature08153

    Article  ADS  Google Scholar 

  • J.H. Waite, M.R. Combi, W.-H. Ip, T.E. Cravens, R.L. McNutt, W. Kasprzak, R. Yelle, J. Luhmann, H. Niemann, D. Gell, B. Magee, G. Fletcher, J. Lunine, W.-L. Tseng, Cassini ion and neutral mass spectrometer: Enceladus plume composition and structure. Science 311, 1419–1422 (2006). doi:10.1126/science.1121290

    Article  ADS  Google Scholar 

  • A. Warmuth, B. Vršnak, H. Aurass, A. Hanslmeier, Evolution of two \(\mathrm{EIT}/\mathrm{H}{\alpha}\) Moreton waves. Astrophys. J. Lett. 560, 105–109 (2001). doi:10.1086/324055

    Article  ADS  Google Scholar 

  • W.R. Webber, J.A. Lockwood, Heliocentric radial intensity profiles of galactic cosmic rays measured by the IMP, Voyager, and Pioneer spacecraft in solar 11-year modulation cycles of opposite magnetic polarity. J. Geophys. Res. Space Phys. 109(A18), 11101 (2004). doi:10.1029/2004JA010642

    Article  ADS  Google Scholar 

  • M.J. Wills-Davey, G.D.R. Attrill, EIT waves: a changing understanding over a solar cycle. Space Sci. Rev. 149, 325–353 (2009). doi:10.1007/s11214-009-9612-8

    Article  ADS  Google Scholar 

  • J.W. Wilson, F.F. Badavi, Methods of galactic heavy ion transport. Radiat. Res., 108, 231–237 (1986). ISSN 0033-7587

    Article  ADS  Google Scholar 

  • J.W. Wilson, L.W. Townsend, W.S. Schimmerling, G.S. Khandelwal, F.S. Khan, J.E. Nealy, F.A. Cucinotta, L.C. Simonsen, J.L. Shinn, J.W. Norbury, Transport methods and interactions for space radiations. NASA STI/Recon Technical Report N 92, 15956 (1991)

    ADS  Google Scholar 

  • J.W. Wilson, F.A. Cucinotta, J. Miller, J.L. Shinn, S.A. Thibeault, R.C. Singleterry, L.C. Simonsen, M.H. Kim, Materials for shielding astronauts from the hazards of space radiations. Mater. Res. Soc. Symp. Proc. 551, 3 (1999)

    Article  Google Scholar 

  • J.W. Wilson, J.E. Nealy, G. de Angelis, M.S. Clowdsley, F.F. Badavi, Deep space environment and shielding, in Space Technology and Applications International Forum—STAIF 2003, ed. by M.S. El-Genk American Institute of Physics Conference Series, vol. 654 (2003), pp. 993–1010. doi:10.1063/1.1541395

    Google Scholar 

  • C. Zeitlin, A.W. Case, H.E. Spence, N.A. Schwadron, M. Golightly, J.K. Wilson, J.C. Kasper, J.B. Blake, M.D. Looper, J.E. Mazur, L.W. Townsend, Y. Iwata, Measurements of galactic cosmic ray shielding with the CRaTER instrument. Space Weather 11, 284–296 (2013). doi:10.1002/swe.20043

    Article  ADS  Google Scholar 

  • M. Zhang, G. Qin, H. Rassoul, Propagation of solar energetic particles in three-dimensional interplanetary magnetic fields. Astrophys. J. 692, 109–132 (2009). doi:10.1088/0004-637X/692/1/109

    Article  ADS  Google Scholar 

  • A. Zhukov, The PROBA-3 mission, in 41st COSPAR Scientific Assembly. COSPAR Meeting, vol. 41 (2016)

    Google Scholar 

Download references

Acknowledgements

We thank all those who made CRaTER possible. CRaTER is primarily funded by the LRO program (Contract No. NNG11PA03C). This work was also funded EMMREM (grant number NNX07AC14G), C-SWEPA (NASA grant number NNX13AI75G), Sun-2-Ice (NSF grant number AGS1135432) projects, and DoSEN (NASA grant NNX13AC89G), DREAM (NASA grant NNX10AB17A) and DREAM2 (NASA grant NNX14AG13A). CRaTER and VEPO data are respectively available at http://prediccs.sr.unh.edu/craterweb/ and http://vepo.gsfc.nasa.gov/. We thank the International Space Science Institute, which made possible this paper as a part of the ISSI workshop, the Scientific Foundation of Space Weather, and International Team 353, Radiation Interactions at Planetary Bodies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan A. Schwadron.

Additional information

The Scientific Foundation of Space Weather

Edited by Rudolf von Steiger, Daniel Baker, André Balogh, Tamás Gombosi, Hannu Koskinen and Astrid Veronig

Appendices

Appendix A: Acronyms

Table 1 Acronyms and Models used throughout the paper

Appendix B: Components of EMMREM and PREDICCS

Throughout parts of this paper, we have used results from the Earth–Moon–Mars Radiation Environment Module (EMMREM, Fig. 18) and PREDICCS (Predictions of Radiation from Release, EMMREM, and Data Incorporating the CRaTER, COSTEP and other SEP measurements, http://prediccs.sr.unh.edu). EMMREM includes a suite of modules is designed to predict the radiation environment at Earth, the Moon, Mars and throughout the interplanetary medium in the inner heliosphere (Schwadron et al. 2010). PREDICCS is an online system that provides characterization of the radiation environment of the inner heliosphere in near real-time. PREDICCS utilizes data from satellites (ACE, Wind, GOES) in conjunction with EMMREM to produce dose rate and particle flux data at the Earth, Moon and Mars (Joyce et al. 2013). Validation has been performed through detailed comparisons between dose rates produced by PREDICCS with those measured by CRaTER.

Fig. 18
figure 18

The Earth–Moon–Mars Radiation Environment Model (EMMREM) provides a link from the Space Science to Space Exploration programs by characterizing time-dependent radiation exposure from observed and simulated particle radiation events. EMMREM provides a series of primary and secondary transport modules for the prediction and validation of particle radiation environment. Key components of EMMREM include: the Energetic Particle Radiation Environment Module (EPREM) solves for the propagation and acceleration of energetic particles in the evolving magnetic fields of the inner heliosphere with input based on observations from satellites; the Baryon Transport Module (BRYNTRN), which is a deterministic, coupled proton-neutron space radiation transport model that transports incident protons and their secondary products (protons, neutrons, deuterons, tritons, helions, and alphas) through shields of arbitrary composition and thickness (Wilson et al. 1991); the High-charge (Z) and Energy (HZE) Transport (HZETRN) model (Nealy et al. 2007) and the high-energy transport code (HETC-HEDS) (Townsend et al. 2005) to estimate associated dose rate from galactic cosmic rays (Wilson and Badavi 1986; Wilson et al. 1991, 2003; Shinn et al. 1991; Cucinotta 1993; Nealy et al. 2006)

The EMMREM modules consists of four primary pieces:

  • The Energetic Particle Radiation Environment Module (EPREM) solves for the propagation and acceleration of energetic particles in the evolving magnetic fields of the inner heliosphere with input based on observations from satellites.

  • The Baryon Transport Module (BRYNTRN) is a deterministic, coupled proton-neutron space radiation transport model that transports incident protons and their secondary products (protons, neutrons, deuterons, tritons, helions, and alphas) through shields of arbitrary composition and thickness (Wilson et al. 1991). BRYNTRN is used primarily in the modeling of solar proton events.

  • The High Energy Transport Code for Human Exploration and Development in Space (HETC-HEDS) is a Monte Carlo based algorithm that was specially designed to address space radiation problems, and, in particular, with the secondary particle distributions that are produced when the high-energy GCRs or SPEs interact with shielding and/or body organs (e.g., bone marrow or the central nervous system). HETC-HEDS has been extensively verified and validated, particularly against available laboratory beam data. HETC-HEDS models the nuclear elastic and inelastic interactions, decay and atomic interactions (Townsend et al. 2005). It accomplishes this using a Monte Carlo approach for computing the trajectories of particle cascades that result from the nuclear collisions. The particles included in HETC-HEDS are: protons, neutrons, \(\pi^{+}\), \(\pi^{-}\), \(\mu^{+}\), \(\mu^{-}\), and heavy ions. The code is fully three-dimensional and the particles can be distributed in angle, energy, and space. Each particle in the cascade is tracked until it: (1) escapes from the system; (2) undergoes nuclear collision or absorption; (3) comes to rest, as the result of energy losses from ionization and excitation of atomic electrons; or (4) in the case of pions and muons, decays. HETC-HEDS has been used in EMMREM to describe the interaction of GCR distributions with planetary atmospheres.

  • GCR and SEP flux distributions are fed in to the High-charge (Z) and Energy (HZE) Transport (HZETRN) model (Nealy et al. 2007) to estimate associated GCR dose rate. The HZETRN code transports the incident charged ions and their nuclear reaction secondary particles (protons, neutrons, deuterons, tritons, 3He, 4He, and heavier ions) generated from nuclear collisions. The code outputs, include particle fluences, dose, dose equivalent, effective dose, and linear energy transfer (LET) distributions. The HZETRN model results are used to derive effective dose and organ doses for the assumed aluminum shield configurations.

In model calculations, organ doses (\(D\)) are in units of centiGray (cGy) where \(1~\mbox{cGy} = 1~\mbox{rad}\) and \(100~\mbox{cGy} = \mbox{Gy} = 1~\mbox{J}/\mbox{kg}\). Organ dose equivalents (\(H\)), which are the product of dose with a quality factor, \(Q\) (\(H = Q D\)), are in centiSievert (cSv) where \(1~\mbox{cSv} = 1~\mbox{rem}\) and \(100~\mbox{cSv} = 1~\mbox{Sv} = 1~\mbox{J}/\mbox{kg}\). The units of effective dose (\(E\)) are also cSv. For HZETRN effective dose is calculated from

$$\begin{aligned} E = \sum_{T} w_{T} H_{T} \end{aligned}$$
(1)

where \(H_{T}\) is the organ dose equivalent for the organ specified by \(T\) (e.g., skin, eye, lens, etc.). The tissue (organ) weighting factors \(w_{T}\) are the proportionate detriment of the organ when the whole body is irradiated and are tabulated in Table 5.1 of National Council on Radiation Protection and Measurements (NCRP) [1993].

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schwadron, N.A., Cooper, J.F., Desai, M. et al. Particle Radiation Sources, Propagation and Interactions in Deep Space, at Earth, the Moon, Mars, and Beyond: Examples of Radiation Interactions and Effects. Space Sci Rev 212, 1069–1106 (2017). https://doi.org/10.1007/s11214-017-0381-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-017-0381-5

Keywords

Navigation