Abstract
Particle radiation has significant effects for astronauts, satellites and planetary bodies throughout the Solar System. Acute space radiation hazards pose risks to human and robotic exploration. This radiation also naturally weathers the exposed surface regolith of the Moon, the two moons of Mars, and other airless bodies, and contributes to chemical evolution of planetary atmospheres at Earth, Mars, Venus, Titan, and Pluto. We provide a select review of recent areas of research covering the origin of SEPs from coronal mass ejections low in the corona, propagation of events through the solar system during the anomalously weak solar cycle 24 and important examples of radiation interactions for Earth, other planets and airless bodies such as the Moon.
This is a preview of subscription content,
to check access.
















References
S.K. Antiochos, C.R. DeVore, J.A. Klimchuk, A model for solar coronal mass ejection. Astrophys. J. 510, 485 (1999)
M. Aschwanden, The localization of particle acceleration sites in solar flares and CMEs. Space Sci. Rev. 124, 361–372 (2006). doi:10.1007/s11214-006-9095-9
K. Batygin, M.E. Brown, Evidence for a distant giant planet in the solar system. Astron. J. 151, 22 (2016). doi:10.3847/0004-6256/151/2/22
G.A. Bazilevskaya, I.G. Usoskin, E.O. Flückiger, R.G. Harrison, L. Desorgher, R. Bütikofer, M.B. Krainev, V.S. Makhmutov, Y.I. Stozhkov, A.K. Svirzhevskaya, N.S. Svirzhevsky, G.A. Kovaltsov, Cosmic ray induced ion production in the atmosphere. Space Sci. Rev. 137, 149–173 (2008). doi:10.1007/s11214-008-9339-y
J. Beer, K. McCracken, R. von Steiger, Cosmogenic Radionuclides (2012). doi:10.1007/978-3-642-14651-0
P.P. Budenstein IEEE Trans. Electr. Insul. 3, 225 (1980)
H. Campins, E.P. Krider, Surface discharges on natural dielectrics in the solar system. Science 245, 622–624 (1989). doi:10.1126/science.245.4918.622
R.W. Carlson, R.E. Johnson, M.S. Anderson, Sulfuric acid on Europa and the radiolytic sulfur cycle. Science 286, 97–99 (1999). doi:10.1126/science.286.5437.97
R.W. Carlson, M.S. Anderson, R. Mehlman, R.E. Johnson, Distribution of hydrate on Europa: further evidence for sulfuric acid hydrate. Icarus 177, 461–471 (2005). doi:10.1016/j.icarus.2005.03.026
J. Chen, Effects of toroidal forces in current loops embedded in a background plasma. Astrophys. J. 338, 453–470 (1989). doi:10.1086/167211
K.-S. Cho, J. Lee, Y.-J. Moon, M. Dryer, S.-C. Bong, Y.-H. Kim, Y.D. Park, A study of CME and type II shock kinematics based on coronal density measurement. Astron. Astrophys. 461, 1121–1125 (2007). doi:10.1051/0004-6361:20064920
C.F. Chyba, Energy for microbial life on Europa. Nature 403, 381–382 (2000). doi:10.1038/35000281
R.N. Clark, Detection of adsorbed water and hydroxyl on the Moon. Science 326, 562 (2009). doi:10.1126/science.1178105
D.E. Connick, C.W. Smith, N.A. Schwadron, Interplanetary magnetic flux depletion during protracted solar minima. Astrophys. J. 727, 8 (2011). doi:10.1088/0004-637X/727/1/8. http://adsabs.harvard.edu/abs/ 2011ApJ...727....8C
J.F. Cooper, Nuclear cascades in Saturn’s rings—cosmic ray albedo neutron decay and origins of trapped protons in the inner magnetosphere. J. Geophys. Res. 88, 3945–3954 (1983). doi:10.1029/JA088iA05p03945
J.F. Cooper, Satellite sweeping of electrons at Neptune and Uranus. Geophys. Res. Lett. 17, 1665–1668 (1990). doi:10.1029/GL017i010p01665
J.F. Cooper, E.C. Stone, Electron signatures of satellite sweeping in the magnetosphere of Uranus. J. Geophys. Res. 96, 7803–7821 (1991). doi:10.1029/90JA02629
J.F. Cooper, J.H. Eraker, J.A. Simpson, The secondary radiation under Saturn’s A–B–C rings produced by cosmic ray interactions. J. Geophys. Res. 90, 3415–3427 (1985). doi:10.1029/JA090iA04p03415
J.F. Cooper, R.E. Johnson, B.H. Mauk, H.B. Garrett, N. Gehrels, Energetic ion and electron irradiation of the icy Galilean satellites. Icarus 149, 133–159 (2001). doi:10.1006/icar.2000.6498
J.F. Cooper, E.R. Christian, J.D. Richardson, C. Wang, Proton irradiation of Centaur, Kuiper belt, and Oort cloud objects at plasma to cosmic ray energy. Earth Moon Planets 92, 261–277 (2003). doi:10.1023/B:MOON.0000031944.41883.80
J.F. Cooper, M.E. Hill, J.D. Richardson, S.J. Sturner, Proton irradiation environment of solar system objects in the heliospheric boundary regions, in Physics of the Inner Heliosheath, ed. by J. Heerikhuisen, V. Florinski, G.P. Zank, N.V. Pogorelov American Institute of Physics Conference Series, vol. 858, 2006, pp. 372–380. doi:10.1063/1.2359353
J.F. Cooper, P.D. Cooper, E.C. Sittler, S.J. Sturner, A.M. Rymer, Old Faithful model for radiolytic gas-driven cryovolcanism at Enceladus. Planet. Space Sci. 57, 1607–1620 (2009). doi:10.1016/j.pss.2009.08.002
J.F. Cooper, P. Kollman, E.C. Sittler Jr., R.E. Johnson, E. Roussos, Plasma, neutral atmosphere, and energetic radiation environments of planetary rings, in Planetary Ring Systems, (Cambridge University Press, Cambridge, 2017), in press
F. Cucinotta, Issues in risk assessment from solar particle events. Radiat. Meas. 30, 261 (1999)
F.A. Cucinotta, Calculations of cosmic-ray helium transport in shielding materials. NASA Tech. Paper 3354 3354 (1993)
F.A. Cucinotta, W. Schimmerling, J.W. Wilson, L.E. Peterson, P. Saganti, G.D. Badhwar, J.F. Dicello, Space radiation cancer risks and uncertainties for mars missions. Radiat. Res. 156, 682 (2001)
F.A. Cucinotta, S. Hu, N.A. Schwadron, K. Kozarev, L.W. Townsend, M.-H.Y. Kim, Space radiation risk limits and Earth–Moon–Mars environmental models. Space Weather 8, S00E09 (2010). doi:10.1029/2010SW000572
A.C. Cummings, E.C. Stone, B.C. Heikkila, N. Lal, W.R. Webber, G. Jóhannesson, I.V. Moskalenko, E. Orlando, T.A. Porter, Galactic cosmic rays in the local interstellar medium: Voyager 1 observations and model results. Astrophys. J. 831, 18 (2016). doi:10.3847/0004-637X/831/1/18
J.B. Dalton, O. Prieto-Ballesteros, J.S. Kargel, C.S. Jamieson, J. Jolivet, R. Quinn, Spectral comparison of heavily hydrated salts with disrupted terrains on Europa. Icarus 177, 472–490 (2005). doi:10.1016/j.icarus.2005.02.023
M.A. Dayeh, M.I. Desai, K. Kozarev, N.A. Schwadron, L.W. Townsend, M. PourArsalan, C. Zeitlin, R.B. Hatcher, Modeling proton intensity gradients and radiation dose equivalents in the inner heliosphere using EMMREM: May 2003 solar events. Space Weather 8, S00E07 (2010)
J.-P. Delaboudinière, G.E. Artzner, J. Brunaud, A.H. Gabriel, J.F. Hochedez, F. Millier, X.Y. Song, B. Au, K.P. Dere, R.A. Howard, R. Kreplin, D.J. Michels, J.D. Moses, J.M. Defise, C. Jamar, P. Rochus, J.P. Chauvineau, J.P. Marioge, R.C. Catura, J.R. Lemen, L. Shing, R.A. Stern, J.B. Gurman, W.M. Neupert, A. Maucherat, F. Clette, P. Cugnon, E.L. van Dessel, EIT: Extreme-ultraviolet Imaging Telescope for the SOHO mission. Sol. Phys. 162, 291–312 (1995). doi:10.1007/BF00733432
C. Delannée, Another view of the EIT wave phenomenon. Astrophys. J. 545, 512–523 (2000). doi:10.1086/317777
M.L. Delitsky, D.A. Paige, M.A. Siegler, E.R. Harju, D. Schriver, R.E. Johnson, P. Travnicek, Ices on Mercury: chemistry of volatiles in permanently cold areas of Mercury’s north polar region. Icarus 281, 19–31 (2017). doi:10.1016/j.icarus.2016.08.006
M.I. Desai, G.M. Mason, J.R. Dwyer, J.E. Mazur, R.E. Gold, S.M. Krimigis, C.W. Smith, R.M. Skoug, Evidence for a suprathermal seed population of heavy ions accelerated by interplanetary shocks near 1 AU. Astrophys. J. 588, 1149–1162 (2003). doi:10.1086/374310
M.I. Desai, G.M. Mason, J.E. Mazur, J.R. Dwyer, Solar cycle variations in the composition of the suprathermal heavy-ion population near 1 AU. Astrophys. J. Lett. 645, 81–84 (2006). doi:10.1086/505935
K.A. Duderstadt, J.E. Dibb, N.A. Schwadron, H.E. Spence, S.C. Solomon, V.A. Yudin, C.H. Jackman, C.E. Randall, Nitrate ion spikes in ice cores not suitable as proxies for solar proton events. J. Geophys. Res., Atmos. 121, 2994–3016 (2016). doi:10.1002/2015JD023805
R.C. Elphic, V.R. Eke, L.F.A. Teodoro, D.J. Lawrence, D.B.J. Bussey, Models of the distribution and abundance of hydrogen at the lunar south pole. Geophys. Res. Lett. 34, 13204 (2007). doi:10.1029/2007GL029954
M.K. Elrod, W.-L. Tseng, R.J. Wilson, R.E. Johnson, Seasonal variations in Saturn’s plasma between the main rings and Enceladus. J. Geophys. Res. Space Phys. 117, 03207 (2012). doi:10.1029/2011JA017332
M.K. Elrod, W.-L. Tseng, A.K. Woodson, R.E. Johnson, Seasonal and radial trends in Saturn’s thermal plasma between the main rings and Enceladus. Icarus 242, 130–137 (2014). doi:10.1016/j.icarus.2014.07.020
S. Fatemi, A.R. Poppe, K.K. Khurana, M. Holmström, G.T. Delory, On the formation of Ganymede’s surface brightness asymmetries: kinetic simulations of Ganymede’s magnetosphere. Geophys. Res. Lett. 43(10), 4745–4754 (2016). doi:10.1002/2016GL068363
T.G. Forbes, J.A. Linker, J. Chen, C. Cid, J. Kóta, M.A. Lee, G. Mann, Z. Mikić, M.S. Potgieter, J.M. Schmidt, G.L. Siscoe, R. Vainio, S.K. Antiochos, P. Riley, CME theory and models. Space Sci. Rev. 123, 251–302 (2006). doi:10.1007/s11214-006-9019-8
P.T. Gallagher, D.M. Long, Large-scale bright fronts in the solar corona: a review of “EIT waves”. Space Sci. Rev. 158, 365–396 (2011). doi:10.1007/s11214-010-9710-7
J. Giacalone, The efficient acceleration of thermal protons by perpendicular shocks. Astrophys. J. Lett. 628, 37–40 (2005). doi:10.1086/432510
M.L. Goelzer, C.W. Smith, N.A. Schwadron, K.G. McCracken, An analysis of heliospheric magnetic field flux based on sunspot number from 1749 to today and prediction for the coming solar minimum. J. Geophys. Res. Space Phys. 118, 7525–7531 (2013). doi:10.1002/2013JA019404
N. Gopalswamy, E. Aguilar-Rodriguez, S. Yashiro, S. Nunes, M.L. Kaiser, R.A. Howard, Type II radio bursts and energetic solar eruptions. J. Geophys. Res. Space Phys. 110(A9), 12 (2005). doi:10.1029/2005JA011158
W.M. Grundy, L.A. Young, J.R. Spencer, R.E. Johnson, E.F. Young, M.W. Buie, Distributions of H2O and CO2 ices on Ariel, Umbriel, Titania, and Oberon from IRTF/SpeX observations. Icarus 184, 543–555 (2006). doi:10.1016/j.icarus.2006.04.016
S.R. Habbal, H. Morgan, M. Druckmüller, A. Ding, J.F. Cooper, A. Daw, E.C. Sittler, Probing the fundamental physics of the solar corona with lunar solar occultation observations. Sol. Phys. 285, 9–24 (2013). doi:10.1007/s11207-012-0115-5
K.P. Hand, C.F. Chyba, R.W. Carlson, J.F. Cooper, Clathrate hydrates of oxidants in the ice shell of Europa. Astrobiology 6, 463–482 (2006). doi:10.1089/ast.2006.6.463
C.A. Hibbitts, T.B. McCord, G.B. Hansen, Distributions of CO2 and SO2 on the surface of Callisto. J. Geophys. Res. 105, 22541–22558 (2000). doi:10.1029/1999JE001101
H.S. Hudson, Global properties of solar flares. Space Sci. Rev. 158, 5–41 (2011). doi:10.1007/s11214-010-9721-4
R.L. Hudson, M.H. Moore, Laboratory studies of the formation of methanol and other organic molecules by water+carbon monoxide radiolysis: relevance to comets, icy satellites, and interstellar ices. Icarus 140, 451–461 (1999). doi:10.1006/icar.1999.6144
R.L. Hudson, M.E. Palumbo, G. Strazzulla, M.H. Moore, J.F. Cooper, S.J. Sturner, Laboratory studies of the chemistry of transneptunian object surface materials, in The Solar System Beyond Neptune, ed. by M.A. Barucci, H. Boehnhardt, D.P. Cruikshank, A. Morbidelli, R. Dotson (2008), pp. 507–523. http://adsabs.harvard.edu/abs/2008ssbn.book..507H
ICRP, International Commission on Radiological Protection ICRP Publication 103: The 2007 Recommendations of the International Commission on Radiological Protection. Ann. ICRP, vol. 37 (Sage, Thousand Oaks, 2007)
R.E. Johnson, Energetic Charged-Particle Interactions with Atmospheres and Surfaces. Physics and Chemistry in Space Planetology, vol. 19 (1990)
R.E. Johnson, J.F. Cooper, L.J. Lanzerotti, G. Strazzulla, Radiation formation of a non-volatile comet crust. Astron. Astrophys. 187, 889 (1987)
R.E. Johnson, R.W. Carlson, J.F. Cooper, C. Paranicas, M.H. Moore, M.C. Wong, Radiation effects on the surfaces of the Galilean satellites, in Jupiter. The Planet, Satellites and Magnetosphere, ed. by F. Bagenal, T.E. Dowling, W.B. McKinnon (2004), pp. 485–512. http://adsabs.harvard.edu/ abs/2004jpsm.book..485J
R.E. Johnson, J.G. Luhmann, R.L. Tokar, M. Bouhram, J.J. Berthelier, E.C. Sittler, J.F. Cooper, T.W. Hill, H.T. Smith, M. Michael, M. Liu, F.J. Crary, D.T. Young, Production, ionization and redistribution of \(\mathrm{O}_{2}\) in Saturn’s ring atmosphere. Icarus 180, 393–402 (2006). doi:10.1016/j.icarus.2005.08.021
A.P. Jordan, T.J. Stubbs, C.J. Joyce, N.A. Schwadron, H.E. Spence, J.K. Wilson, The formation of molecular hydrogen from water ice in the lunar regolith by energetic charged particles. J. Geophys. Res., Planets 118, 1257–1264 (2013). doi:10.1002/jgre.20095
A.P. Jordan, T.J. Stubbs, J.K. Wilson, N.A. Schwadron, H.E. Spence, C.J. Joyce, Deep dielectric charging of regolith within the Moon’s permanently shadowed regions. J. Geophys. Res., Planets 119, 1806–1821 (2014). doi:10.1002/2014JE004648
A.P. Jordan, T.J. Stubbs, J.K. Wilson, N.A. Schwadron, H.E. Spence, Dielectric breakdown weathering of the Moon’s polar regolith. J. Geophys. Res., Planets 120, 210–225 (2015). doi:10.1002/2014JE004710
A.P. Jordan, T.J. Stubbs, J.K. Wilson, N.A. Schwadron, H.E. Spence, The rate of dielectric breakdown weathering of lunar regolith in permanently shadowed regions. Icarus 283, 352–358 (2017). doi:10.1016/j.icarus.2016.08.027. Lunar Reconnaissance Orbiter—Part II. http://www.sciencedirect.com/science/article/pii/S0019103516305358
C.J. Joyce, N.A. Schwadron, J.K. Wilson, H.E. Spence, J.C. Kasper, M. Golightly, J.B. Blake, J. Mazur, L.W. Townsend, A.W. Case, E. Semones, S. Smith, C.J. Zeitlin, Validation of PREDICCS using LRO/CRaTER observations during three major solar events in 2012. Space Weather 11, 350–360 (2013). doi:10.1002/swe.20059
C.J. Joyce, N.A. Schwadron, L.W. Townsend, R.A. Mewaldt, C.M.S. Cohen, T.T. Rosenvinge, A.W. Case, H.E. Spence, J.K. Wilson, M. Gorby, M. Quinn, C.J. Zeitlin, Analysis of the potential radiation hazard of the 23 July 2012 SEP event observed by STEREO a using the EMMREM model and LRO/CRaTER. Space Weather 13, 560–567 (2015). doi:10.1002/2015SW001208
C.J. Joyce, N.A. Schwadron, L.W. Townsend, W.C. deWet, J.K. Wilson, H.E. Spence, W.K. Tobiska, K. Shelton-Mur, A. Yarborough, J. Harvey, A. Herbst, A. Koske-Phillips, F. Molina, S. Omondi, C. Reid, D. Reid, J. Shultz, B. Stephenson, M. McDevitt, T. Phillips, Atmospheric radiation modeling of galactic cosmic rays using LRO/CRaTER and the EMMREM model with comparisons to balloon and airline based measurements. Space Weather 14, 659–667 (2016). doi:10.1002/2016SW001425
I.S. Kim, L.P. Nasonova, D.V. Lisin, V.V. Popov, N.L. Krusanova, Imaging the structure of the low k-corona. J. Geophys. Res. Space Phys. 122(1), 77–88 (2017). 2016JA022623. doi:10.1002/2016JA022623
L. Kocharov, M. Lytova, R. Vainio, T. Laitinen, J. Torsti, Modeling the shock aftermath source of energetic particles in the solar corona. Astrophys. J. 620, 1052–1068 (2005). doi:10.1086/427162
H.C. Koons, J.E. Mazur, R.S. Selesnick, J.B. Blake, J.F. Fennell, The Impact of the Space Environment on Space Systems. NASA STI/Recon Technical Report N (1999)
J. Kóta, W.B. Manchester, T.I. Gombosi, SEP acceleration at realistic CMEs: two sites of acceleration? Int. Cosm. Ray Conf., 1, 125 (2005a)
J. Kóta, W.B. Manchester, J.R. Jokipii, D.L. de Zeeuw, T.I. Gombosi, Simulation of SEP acceleration and transport at CME-driven shocks, in The Physics of Collisionless Shocks: 4th Annual IGPP International Astrophysics Conference, ed. by G. Li, G.P. Zank, C.T. Russell American Institute of Physics Conference Series, vol. 781, 2005b, pp. 201–206. doi:10.1063/1.2032697
K.A. Kozarev, K.E. Korreck, V.V. Lobzin, M.A. Weber, N.A. Schwadron, Off-limb solar coronal wavefronts from SDO/AIA extreme-ultraviolet observations—implications for particle production. Astrophys. J. Lett. 733, 25 (2011). doi:10.1088/2041-8205/733/2/L25
K.A. Kozarev, R.M. Evans, N.A. Schwadron, M.A. Dayeh, M. Opher, K.E. Korreck, B. van der Holst, Global numerical modeling of energetic proton acceleration in a coronal mass ejection traveling through the solar corona. Astrophys. J. 778, 43 (2013). doi:10.1088/0004-637X/778/1/43
J.A. Le Roux, M.S. Potgieter, The simulation of complete 11 and 12 year modulation cycles for cosmic rays in the heliosphere using a drift model with global merged interaction regions. Astrophys. J. 442, 847–851 (1995). doi:10.1086/175487
K.-S. Lee, Y.-J. Moon, K.-S. Kim, J.-Y. Lee, K.-S. Cho, G.S. Choe, Comparison of SOHO UVCS and MLSO MK4 coronameter densities. Astron. Astrophys. 486, 1009–1013 (2008). doi:10.1051/0004-6361:20078976
P. Leung, A.C. Whittlesey, H.B. Garrett, P.A. Robinson Jr., Environment-induced electrostatic discharges as the cause of Voyager 1 power-on resets. J. Spacecr. Rockets 23, 323 (1986). doi:10.2514/3.25805
R. Lionello, C. Downs, J.A. Linker, T. Török, P. Riley, Z. Mikić, Magnetohydrodynamic simulations of interplanetary coronal mass ejections. Astrophys. J. 777, 76 (2013). doi:10.1088/0004-637X/777/1/76
W. Liu, N.V. Nitta, C.J. Schrijver, A.M. Title, T.D. Tarbell, First SDO AIA observations of a global coronal EUV “Wave”: multiple components and “ripples”. Astrophys. J. Lett. 723, 53–59 (2010). doi:10.1088/2041-8205/723/1/L53
J.S. Llorente, A. Agenjo, C. Carrascosa, C. de Negueruela, A. Mestreau-Garreau, A. Cropp, A. Santovincenzo, Proba-3: precise formation flying demonstration mission. Acta Astronaut. 82(1), 38–46 (2013). doi:10.1016/j.actaastro.2012.05.029. 6th International Workshop on Satellite Constellation and Formation Flying. http://www.sciencedirect.com/science/article/pii/S0094576512002202
M.D. Looper, J.E. Mazur, J.B. Blake, H.E. Spence, N.A. Schwadron, M.J. Golightly, A.W. Case, J.C. Kasper, L.W. Townsend, The radiation environment near the lunar surface: CRaTER observations and Geant4 simulations. Space Weather 11, 142–152 (2013). doi:10.1002/swe.20034
S. Ma, J.C. Raymond, L. Golub, J. Lin, H. Chen, P. Grigis, P. Testa, D. Long, Observations and interpretation of a low coronal shock wave observed in the EUV by the SDO/AIA. Astrophys. J. 738, 160 (2011). doi:10.1088/0004-637X/738/2/160
W.B. Manchester IV, T.I. Gombosi, D.L. De Zeeuw, I.V. Sokolov, I.I. Roussev, K.G. Powell, J. Kóta, G. Tóth, T.H. Zurbuchen, Coronal mass ejection shock and sheath structures relevant to particle acceleration. Astrophys. J. 622, 1225–1239 (2005). doi:10.1086/427768
G.M. Mason, G. Gloeckler, D. Hovestadt, Temporal variations of nucleonic abundances in solar flare energetic particle events. II. Evidence for large-scale shock acceleration. Astrophys. J. 280, 902–916 (1984). doi:10.1086/162066
G.M. Mason, C.M.S. Cohen, A.C. Cummings, J.R. Dwyer, R.E. Gold, S.M. Krimigis, R.A. Leske, J.E. Mazur, R.A. Mewaldt, E. Möbius, M. Popecki, E.C. Stone, T.T. von Rosenvinge, M.E. Wiedenbeck, Particle acceleration and sources in the November 1997 solar energetic particle events. Geophys. Res. Lett. 26, 141–144 (1999)
G.M. Mason, M.E. Wiedenbeck, J.A. Miller, J.E. Mazur, E.R. Christian, C.M.S. Cohen, A.C. Cummings, J.R. Dwyer, R.E. Gold, S.M. Krimigis, R.A. Leske, R.A. Mewaldt, P.L. Slocum, E.C. Stone, T.T. von Rosenvinge, Spectral properties of He and heavy ions in 3He-rich solar flares. Astrophys. J. 574, 1039–1058 (2002). doi:10.1086/341112
D.J. McComas, R.W. Ebert, H.A. Elliott, B.E. Goldstein, J.T. Gosling, N.A. Schwadron, R.M. Skoug, Weaker solar wind from the polar coronal holes and the whole Sun. Geophys. Res. Lett. 35, 18103 (2008). doi:10.1029/2008GL034896
D.J. McComas, F. Allegrini, P. Bochsler, P. Frisch, H.O. Funsten, M. Gruntman, P.H. Janzen, H. Kucharek, E. Möbius, D.B. Reisenfeld, N.A. Schwadron, Lunar backscatter and neutralization of the solar wind: first observations of neutral atoms from the Moon. Geophys. Res. Lett. 36, 12104 (2009). doi:10.1029/2009GL038794
D.J. McComas, M. Bzowski, P. Frisch, G.B. Crew, M.A. Dayeh, R. DeMajistre, H.O. Funsten, S.A. Fuselier, M. Gruntman, P. Janzen, M.A. Kubiak, G. Livadiotis, E. Möbius, D.B. Reisenfeld, N.A. Schwadron, Evolving outer heliosphere: large-scale stability and time variations observed by the interstellar boundary explorer. J. Geophys. Res. Space Phys. 115(A14), 9113 (2010). doi:10.1029/2010JA015569
D.J. McComas, N. Angold, H.A. Elliott, G. Livadiotis, N.A. Schwadron, R.M. Skoug, C.W. Smith, Weakest solar wind of the space age and the current “mini” solar maximum. Astrophys. J. 779, 2 (2013). doi:10.1088/0004-637X/779/1/2. http://adsabs.harvard.edu/abs/2013ApJ...779....2M
D.J. McComas, M. Bzowski, P. Frisch, S.A. Fuselier, M.A. Kubiak, H. Kucharek, T. Leonard, E. Möbius, N.A. Schwadron, J.M. Sokół, P. Swaczyna, M. Witte, Warmer local interstellar medium: a possible resolution of the Ulysses-IBEX enigma. Astrophys. J. 801, 28 (2015). doi:10.1088/0004-637X/801/1/28
T.B. McCord, G.B. Hansen, R.N. Clark, P.D. Martin, C.A. Hibbitts, F.P. Fanale, J.C. Granahan, M. Segura, D.L. Matson, T.V. Johnson, R.W. Carlson, W.D. Smythe, G.E. Danielson, Non-water-ice constituents in the surface material of the icy Galilean satellites from the Galileo near-infrared mapping spectrometer investigation. J. Geophys. Res. 103, 8603–8626 (1998a). doi:10.1029/98JE00788
T.B. McCord, G.B. Hansen, F.P. Fanale, R.W. Carlson, D.L. Matson, T.V. Johnson, W.D. Smythe, J.K. Crowley, P.D. Martin, A. Ocampo, C.A. Hibbitts, J.C. Granahan, Salts on Europa’s surface detected by Galileo’s near infrared mapping spectrometer. Science 280, 1242 (1998b). doi:10.1126/science.280.5367.1242
T.B. McCord, G.B. Hansen, D.L. Matson, T.V. Johnson, J.K. Crowley, F.P. Fanale, R.W. Carlson, W.D. Smythe, P.D. Martin, C.A. Hibbitts, J.C. Granahan, A. Ocampo, Hydrated salt minerals on Europa’s surface from the Galileo near-infrared mapping spectrometer (NIMS) investigation. J. Geophys. Res., Planets 104(E5), 11827–11851 (1999). doi:10.1029/1999JE900005
T.B. McCord, T.M. Orlando, G. Teeter, G.B. Hansen, M.T. Sieger, N.G. Petrik, L. Van Keulen, Thermal and radiation stability of the hydrated salt minerals epsomite, mirabilite, and natron under Europa environmental conditions. J. Geophys. Res., Planets 106(E2), 3311–3319 (2001). doi:10.1029/2000JE001282
R.A. Mewaldt, A.J. Davis, K.A. Lave, R.A. Leske, E.C. Stone, M.E. Wiedenbeck, W.R. Binns, E.R. Christian, A.C. Cummings, G.A. de Nolfo, M.H. Israel, A.W. Labrador, T.T. von Rosenvinge, Record-setting cosmic-ray intensities in 2009 and 2010. Astrophys. J. Lett. 723, 1–6 (2010). doi:10.1088/2041-8205/723/1/L1. http://adsabs.harvard.edu/abs/2010ApJ...723L...1M
R. Mewaldt, C. Cohen, G. Mason, T. von Rosenvinge, G. Li, C.W. Smith, A. Vourlidas, An investigation of the causes of solar-cycle variations in SEP fluences and composition, in 34th International Cosmic Ray Conference, ICRC2015, vol. 34 (2015), p. 30
M.H. Moore, R.L. Hudson, R.F. Ferrante, Radiation products in processed ices relevant to Edgeworth–Kuiper-belt objects. Earth Moon Planets 92, 291–306 (2003). doi:10.1023/B:MOON.0000031946.53696.f6
G.E. Moreton, H\(\alpha\) observations of flare-initiated disturbances with velocities ∼1000 km/sec. Astron. J. 65, 494 (1960). doi:10.1086/108346
NASA, NASA Space Flight Human System Standard Volume 1: Crew Health, NASA-STD-3001, vol. NASA-STD-3001 (NASA Headquarters, Washington, 2007)
NCRP, Limitation of Exposure to Ionizing Radiation. NCRP Report 116 (National Council on Radiation Protection and Measurements, Bethesda, 1993)
J.E. Nealy, F.A. Cucinotta, J.W. Wilson, F.F. Badavi, N. Zapp, E. Semones, S.A. Walker, G. de Angelis, S.R. Blattnig, Pre-engineering spaceflight validation of environmental models and the 2005 HZETRN simulation code, in 36th COSPAR Scientific Assembly. COSPAR Meeting, vol. 36, 2006, p. 1399
J.E. Nealy, F.A. Cucinotta, J.W. Wilson, F.F. Badavi, T.P. Dachev, B.T. Tomov, S.A. Walker, G. De Angelis, S.R. Blattnig, W. Atwell, Pre-engineering spaceflight validation of environmental models and the 2005 HZETRN simulation code. Adv. Space Res. 40, 1593–1610 (2007). doi:10.1016/j.asr.2006.12.029
R.A. Nymmik, M.I. Panasyuk, V.V. Petrukhin, B.Y. Yushkov, A method of calculation of vertical cutoff rigidity in the geomagnetic field. Cosm. Res. 47, 191–197 (2009). doi:10.1134/S0010952509030010
P.M. O’Neill, Badhwar O’Neill galactic cosmic ray model update based on advanced composition explorer (ACE) energy spectra from 1997 to present. Adv. Space Res. 37, 1727–1733 (2006). doi:10.1016/j.asr.2005.02.001
V. Ontiveros, A. Vourlidas, Quantitative measurements of coronal mass ejection-driven shocks from LASCO observations. Astrophys. J. 693, 267–275 (2009). doi:10.1088/0004-637X/693/1/267
M.J. Owens, N.U. Crooker, Coronal mass ejections and magnetic flux buildup in the heliosphere. J. Geophys. Res. Space Phys. 111, 10104 (2006). doi:10.1029/2006JA011641. http://adsabs.harvard.edu/abs/ 2006JGRA..11110104O
C. Paranicas, R.W. Carlson, R.E. Johnson, Electron bombardment of Europa. Geophys. Res. Lett. 28, 673–676 (2001). doi:10.1029/2000GL012320
C. Paranicas, J.F. Cooper, H.B. Garrett, R.E. Johnson, S.J. Sturner, Europa’s radiation environment and its effects on the surface, in Europa, ed. by R.T. Pappalardo, W.B. McKinnon, K.K. Khurana, with the assistance of René, Dotson with 85 collaborating authors. The University of Arizona Space Science Series (University of Arizona Press, Tucson, 2009), p. 529. ISBN: 9780816528448
C.M. Pieters, J.N. Goswami, R.N. Clark, M. Annadurai, J. Boardman, B. Buratti, J.-P. Combe, M.D. Dyar, R. Green, J.W. Head, C. Hibbitts, M. Hicks, P. Isaacson, R. Klima, G. Kramer, S. Kumar, E. Livo, S. Lundeen, E. Malaret, T. McCord, J. Mustard, J. Nettles, N. Petro, C. Runyon, M. Staid, J. Sunshine, L.A. Taylor, S. Tompkins, P. Varanasi, Character and spatial distribution of \(\mathrm{OH}/\mathrm{H}_{2}\mathrm{O}\) on the surface of the Moon seen by \(\mathrm{M}^{3}\) on Chandrayaan-1. Science 326, 568 (2009). doi:10.1126/science.1178658
C.C. Porco, P. Helfenstein, P.C. Thomas, A.P. Ingersoll, J. Wisdom, R. West, G. Neukum, T. Denk, R. Wagner, T. Roatsch, S. Kieffer, E. Turtle, A. McEwen, T.V. Johnson, J. Rathbun, J. Veverka, D. Wilson, J. Perry, J. Spitale, A. Brahic, J.A. Burns, A.D. Del Genio, L. Dones, C.D. Murray, S. Squyres, Cassini observes the active South pole of Enceladus. Science 311, 1393–1401 (2006). doi:10.1126/science.1123013
M.S. Potgieter, R.A. Burger, S.E.S. Ferreira, Modulation of cosmic rays in the heliosphere from solar minimum to maximum: a theoretical perspective. Space Sci. Rev. 97, 295–307 (2001). doi:10.1023/A:1011837303094
F. Raulin, T. Owen, Organic chemistry and exobiology on Titan. Space Sci. Rev. 104, 379–395 (2002)
D.V. Reames, Particle acceleration at the Sun and in the heliosphere. Space Sci. Rev. 90, 413–491 (1999). doi:10.1023/A:1005105831781
D.V. Reames, Solar energetic-particle release times in historic ground-level events. Astrophys. J. 706, 844–850 (2009a). doi:10.1088/0004-637X/706/1/844
D.V. Reames, Solar release times of energetic particles in ground-level events. Astrophys. J. 693, 812–821 (2009b). doi:10.1088/0004-637X/693/1/812
I.I. Roussev, I.V. Sokolov, T.G. Forbes, T.I. Gombosi, M.A. Lee, J.I. Sakai, A numerical model of a coronal mass ejection: shock development with implications for the acceleration of GeV protons. Astrophys. J. Lett. 605, 73–76 (2004). doi:10.1086/392504
C.T. Russell, R.A. Mewaldt, J.G. Luhmann, G.M. Mason, T.T. von Rosenvinge, C.M.S. Cohen, R.A. Leske, R. Gomez-Herrero, A. Klassen, A.B. Galvin, K.D.C. Simunac, The very unusual interplanetary coronal mass ejection of 2012 July 23: a blast wave mediated by solar energetic particles. Astrophys. J. 770, 38 (2013). doi:10.1088/0004-637X/770/1/38
Y. Saito, S. Yokota, T. Tanaka, K. Asamura, M.N. Nishino, M. Fujimoto, H. Tsunakawa, H. Shibuya, M. Matsushima, H. Shimizu, F. Takahashi, T. Mukai, T. Terasawa, Solar wind proton reflection at the lunar surface: low energy ion measurement by MAP-PACE onboard SELENE (KAGUYA). Geophys. Res. Lett. 35, 24205 (2008). doi:10.1029/2008GL036077
L. Saul, P. Wurz, A. Vorburger, D.F. Rodríguez M., S.A. Fuselier, D.J. McComas, E. Möbius, S. Barabash, H. Funsten, P. Janzen, Solar wind reflection from the lunar surface: the view from far and near. Planet. Space Sci. 84, 1–4 (2013). doi:10.1016/j.pss.2013.02.004
J.M. Schmidt, L. Ofman, Global simulation of an extreme ultraviolet imaging telescope wave. Astrophys. J. 713, 1008–1015 (2010). doi:10.1088/0004-637X/713/2/1008
N.A. Schwadron, M. Owens, N.U. Crooker, The heliospheric magnetic field over the hale cycle. Astrophys. Space Sci. Trans. 4, 19–26 (2008). doi:10.5194/astra-4-19-2008. http://adsabs.harvard.edu/ abs/2008ASTRA...4...19S
N.A. Schwadron, H.E. Spence, R. Came, Does the space environment affect the ecosphere? Eos 92, 297–298 (2011). doi:10.1029/2011EO360001
N.A. Schwadron, L. Townsend, K. Kozarev, M.A. Dayeh, F. Cucinotta, M. Desai, M. Golightly, D. Hassler, R. Hatcher, M.-Y. Kim, A. Posner, M. PourArsalan, H.E. Spence, R.K. Squier, Earth–Moon–Mars radiation environment module framework. Space Weather 8, S00E02 (2010). doi:10.1029/2009SW000523
N.A. Schwadron, C.W. Smith, H.E. Spence, J.C. Kasper, K. Korreck, M.L. Stevens, B.A. Maruca, K.K. Kiefer, S.T. Lepri, D. McComas, Coronal electron temperature from the solar wind scaling law throughout the space age. Astrophys. J. 739, 9 (2011). doi:10.1088/0004-637X/739/1/9. http://adsabs.harvard.edu/abs/2011ApJ...739....9S
N.A. Schwadron, T. Baker, B. Blake, A.W. Case, J.F. Cooper, M. Golightly, A. Jordan, C. Joyce, J. Kasper, K. Kozarev, J. Mislinski, J. Mazur, A. Posner, O. Rother, S. Smith, H.E. Spence, L.W. Townsend, J. Wilson, C. Zeitlin, Lunar radiation environment and space weathering from the cosmic ray telescope for the effects of radiation (CRaTER). J. Geophys. Res., Planets 117 (2012). doi:10.1029/2011JE003978. http://adsabs.harvard.edu/abs/2012JGRE..117.0H13S
N.A. Schwadron, M.L. Goelzer, C.W. Smith, J.C. Kasper, K. Korreck, R.J. Leamon, S.T. Lepri, B.A. Maruca, D. McComas, M.L. Steven, Coronal electron temperature in the protracted solar minimum, the cycle 24 mini maximum, and over centuries. J. Geophys. Res. Space Phys. (2014). doi:10.1002/2013JA019397. http://onlinelibrary.wiley.com/doi/10.1002/2013JA019397/abstract
N.A. Schwadron, J.B. Blake, A.W. Case, C.J. Joyce, J. Kasper, J. Mazur, N. Petro, M. Quinn, J.A. Porter, C.W. Smith, S. Smith, H.E. Spence, L.W. Townsend, R. Turner, J.K. Wilson, C. Zeitlin, Does the worsening galactic cosmic radiation environment observed by CRaTER preclude future manned deep space exploration? Space Weather 12, 622–632 (2014a). doi:10.1002/2014SW001084
N.A. Schwadron, M. Gorby, T. Török, C. Downs, J. Linker, R. Lionello, Z. Mikić, P. Riley, J. Giacalone, B. Chandran, K. Germaschewski, P.A. Isenberg, M.A. Lee, N. Lugaz, S. Smith, H.E. Spence, M. Desai, J. Kasper, K. Kozarev, K. Korreck, M. Stevens, J. Cooper, P. MacNeice, Synthesis of 3-D coronal-solar wind energetic particle acceleration modules. Space Weather 12, 323–328 (2014b). doi:10.1002/2014SW001086
N.A. Schwadron, M.A. Lee, M. Gorby, N. Lugaz, H.E. Spence, M. Desai, T. Török, C. Downs, J. Linker, R. Lionello, Z. Mikić, P. Riley, J. Giacalone, J.R. Jokipii, J. Kota, K. Kozarev, Particle acceleration at low coronal compression regions and shocks. Astrophys. J. 810, 97 (2015). doi:10.1088/0004-637X/810/2/97
K. Shibata, T. Magara, Solar flares: magnetohydrodynamic processes. Living Rev. Sol. Phys. 8, 6 (2011)
J.L. Shinn, J.W. Wilson, M. Weyland, F.A. Cucinotta, Improvements in computational accuracy of BRYNTRN (A Baryon transport code). NASA Tech. Paper 3093 3093 (1991)
M.L. Shusterman, N.R. Izenberg, C.A. Hibbitts, A.P. Jordan, T.J. Stubbs, J.K. Wilson, Weathering effects of dielectric breakdown in the lunar polar regions, in 47th Lunar and Planetary Science Conference (2016)
E.C. Sittler, A. Ali, J.F. Cooper, R.E. Hartle, R.E. Johnson, A.J. Coates, D.T. Young, Heavy ion formation in Titan’s ionosphere: magnetospheric introduction of free oxygen and a source of Titan’s aerosols? Planet. Space Sci. 57, 1547–1557 (2009). doi:10.1016/j.pss.2009.07.017
C.W. Smith, N.A. Schwadron, C.E. DeForest, Decline and recovery of the interplanetary magnetic field during the protracted solar minimum. Astrophys. J. 775, 59 (2013). doi:10.1088/0004-637X/775/1/59
E.J. Smith, A. Balogh, Decrease in heliospheric magnetic flux in this solar minimum: recent Ulysses magnetic field observations. Geophys. Res. Lett. 35, 22103 (2008). doi:10.1029/2008GL035345. http://adsabs.harvard.edu/abs/2008GeoRL..3522103S
W.B. Sparks, K.P. Hand, M.A. McGrath, E. Bergeron, M. Cracraft, S.E. Deustua, Probing for evidence of plumes on Europa with HST/STIS. Astrophys. J. 829, 121 (2016). doi:10.3847/0004-637X/829/2/121
H.E. Spence, A.W. Case, M.J. Golightly, T. Heine, B.A. Larsen, J.B. Blake, P. Caranza, W.R. Crain, J. George, M. Lalic, A. Lin, M.D. Looper, J.E. Mazur, D. Salvaggio, J.C. Kasper, T.J. Stubbs, M. Doucette, P. Ford, R. Foster, R. Goeke, D. Gordon, B. Klatt, J. O’Connor, M. Smith, T. Onsager, C. Zeitlin, L.W. Townsend, Y. Charara, CRaTER: the cosmic ray telescope for the effects of radiation experiment on the lunar reconnaissance orbiter mission. Space Sci. Rev. 150, 243–284 (2010). doi:10.1007/s11214-009-9584-8. http://adsabs.harvard.edu/abs/2010SSRv..150..243S
H.E. Spence, M.J. Golightly, C.J. Joyce, M.D. Looper, N.A. Schwadron, S.S. Smith, L.W. Townsend, J. Wilson, C. Zeitlin, Relative contributions of galactic cosmic rays and lunar proton “albedo” to dose and dose rates near the Moon. Space Weather 11, 643–650 (2013). doi:10.1002/2013SW000995
H.E. Spence, N.A. Schwadron, C.J. Joyce, S.S. Smith, J. Wilson, A. Jordan, Space weathering throughout the solar system (2017 in work)
J.R. Spencer, W.M. Calvin, M.J. Person, Charge-coupled device spectra of the Galilean satellites: molecular oxygen on Ganymede. J. Geophys. Res., Planets 100(E9), 19049–19056 (1995). doi:10.1029/95JE01503
L.V. Starukhina, Y.G. Shkuratov, NOTE: the lunar poles: water ice or chemically trapped hydrogen? Icarus 147, 585–587 (2000). doi:10.1006/icar.2000.6476
E.C. Stone, A.C. Cummings, F.B. McDonald, B.C. Heikkila, N. Lal, W.R. Webber, Voyager 1 observes low-energy galactic cosmic rays in a region depleted of heliospheric ions. Science 341, 150–153 (2013). doi:10.1126/science.1236408
J.M. Sunshine, T.L. Farnham, L.M. Feaga, O. Groussin, F. Merlin, R.E. Milliken, M.F. A’Hearn, Temporal and spatial variability of lunar hydration as observed by the deep impact spacecraft. Science 326, 565 (2009). doi:10.1126/science.1179788
B.J. Thompson, J.B. Gurman, W.M. Neupert, J.S. Newmark, J.-P. Delaboudinière, O.C.S. Cyr, S. Stezelberger, K.P. Dere, R.A. Howard, D.J. Michels, SOHO/EIT observations of the 1997 April 7 coronal transient: possible evidence of coronal Moreton waves. Astrophys. J. Lett. 517, 151–154 (1999). doi:10.1086/312030
W.T. Thompson, N.L. Reginald, The radiometric and pointing calibration of SECCHI Cor1 on STEREO. Sol. Phys. 250(2), 443–454 (2008). doi:10.1007/s11207-008-9228-2
V.S. Titov, P. Démoulin, Basic topology of twisted magnetic configurations in solar flares. Astron. Astrophys. 351, 707–720 (1999)
V.S. Titov, T. Török, Z. Mikic, J.A. Linker, A method for embedding circular force-free flux ropes in potential magnetic fields. Astrophys. J. 790, 163 (2014). doi:10.1088/0004-637X/790/2/163
G. Tóth, I.V. Sokolov, T.I. Gombosi, D.R. Chesney, C.R. Clauer, D.L. de Zeeuw, K.C. Hansen, K.J. Kane, W.B. Manchester, R.C. Oehmke, K.G. Powell, A.J. Ridley, I.I. Roussev, Q.F. Stout, O. Volberg, R.A. Wolf, S. Sazykin, A. Chan, B. Yu, J. Kóta, Space weather modeling framework: a new tool for the space science community. J. Geophys. Res. Space Phys. 110(A9), 12226 (2005). doi:10.1029/2005JA011126
L.W. Townsend, T.M. Miller, T.A. Gabriel, Hetc radiation transport code development for cosmic ray shielding applications in space. Radiat. Prot. Dosim. 116(1–4), 135–139 (2005). doi:10.1093/rpd/nci091
B. Tsurutani, S.T. Wu, T.X. Zhang, M. Dryer, Coronal Mass Ejection (CME)-induced shock formation, propagation and some temporally and spatially developing shock parameters relevant to particle energization. Astron. Astrophys. 412, 293–304 (2003). doi:10.1051/0004-6361:20031413
Y. Uchida, Propagation of hydromagnetic disturbances in the solar corona and Moreton’s wave phenomenon. Sol. Phys. 4, 30–44 (1968). doi:10.1007/BF00146996
O.P. Verkhoglyadova, G. Li, G.P. Zank, Q. Hu, Modeling a mixed SEP event with the PATH model: December 13, 2006, in American Institute of Physics Conference Series, ed. by G. Li, Q. Hu, O. Verkhoglyadova, G.P. Zank, R.P. Lin, J. Luhmann American Institute of Physics Conference Series, vol. 1039, 2008, pp. 214–219. doi:10.1063/1.2982448
A.M. Veronig, N. Muhr, I.W. Kienreich, M. Temmer, B. Vršnak, First observations of a dome-shaped large-scale coronal extreme-ultraviolet wave. Astrophys. J. Lett. 716, 57–62 (2010). doi:10.1088/2041-8205/716/1/L57
J.H. Waite Jr., W.S. Lewis, B.A. Magee, J.I. Lunine, W.B. McKinnon, C.R. Glein, O. Mousis, D.T. Young, T. Brockwell, J. Westlake, M.-J. Nguyen, B.D. Teolis, H.B. Niemann, R.L. McNutt, M. Perry, W.-H. Ip, Liquid water on Enceladus from observations of ammonia and 40Ar in the plume. Nature 460, 487–490 (2009). doi:10.1038/nature08153
J.H. Waite, M.R. Combi, W.-H. Ip, T.E. Cravens, R.L. McNutt, W. Kasprzak, R. Yelle, J. Luhmann, H. Niemann, D. Gell, B. Magee, G. Fletcher, J. Lunine, W.-L. Tseng, Cassini ion and neutral mass spectrometer: Enceladus plume composition and structure. Science 311, 1419–1422 (2006). doi:10.1126/science.1121290
A. Warmuth, B. Vršnak, H. Aurass, A. Hanslmeier, Evolution of two \(\mathrm{EIT}/\mathrm{H}{\alpha}\) Moreton waves. Astrophys. J. Lett. 560, 105–109 (2001). doi:10.1086/324055
W.R. Webber, J.A. Lockwood, Heliocentric radial intensity profiles of galactic cosmic rays measured by the IMP, Voyager, and Pioneer spacecraft in solar 11-year modulation cycles of opposite magnetic polarity. J. Geophys. Res. Space Phys. 109(A18), 11101 (2004). doi:10.1029/2004JA010642
M.J. Wills-Davey, G.D.R. Attrill, EIT waves: a changing understanding over a solar cycle. Space Sci. Rev. 149, 325–353 (2009). doi:10.1007/s11214-009-9612-8
J.W. Wilson, F.F. Badavi, Methods of galactic heavy ion transport. Radiat. Res., 108, 231–237 (1986). ISSN 0033-7587
J.W. Wilson, L.W. Townsend, W.S. Schimmerling, G.S. Khandelwal, F.S. Khan, J.E. Nealy, F.A. Cucinotta, L.C. Simonsen, J.L. Shinn, J.W. Norbury, Transport methods and interactions for space radiations. NASA STI/Recon Technical Report N 92, 15956 (1991)
J.W. Wilson, F.A. Cucinotta, J. Miller, J.L. Shinn, S.A. Thibeault, R.C. Singleterry, L.C. Simonsen, M.H. Kim, Materials for shielding astronauts from the hazards of space radiations. Mater. Res. Soc. Symp. Proc. 551, 3 (1999)
J.W. Wilson, J.E. Nealy, G. de Angelis, M.S. Clowdsley, F.F. Badavi, Deep space environment and shielding, in Space Technology and Applications International Forum—STAIF 2003, ed. by M.S. El-Genk American Institute of Physics Conference Series, vol. 654 (2003), pp. 993–1010. doi:10.1063/1.1541395
C. Zeitlin, A.W. Case, H.E. Spence, N.A. Schwadron, M. Golightly, J.K. Wilson, J.C. Kasper, J.B. Blake, M.D. Looper, J.E. Mazur, L.W. Townsend, Y. Iwata, Measurements of galactic cosmic ray shielding with the CRaTER instrument. Space Weather 11, 284–296 (2013). doi:10.1002/swe.20043
M. Zhang, G. Qin, H. Rassoul, Propagation of solar energetic particles in three-dimensional interplanetary magnetic fields. Astrophys. J. 692, 109–132 (2009). doi:10.1088/0004-637X/692/1/109
A. Zhukov, The PROBA-3 mission, in 41st COSPAR Scientific Assembly. COSPAR Meeting, vol. 41 (2016)
Acknowledgements
We thank all those who made CRaTER possible. CRaTER is primarily funded by the LRO program (Contract No. NNG11PA03C). This work was also funded EMMREM (grant number NNX07AC14G), C-SWEPA (NASA grant number NNX13AI75G), Sun-2-Ice (NSF grant number AGS1135432) projects, and DoSEN (NASA grant NNX13AC89G), DREAM (NASA grant NNX10AB17A) and DREAM2 (NASA grant NNX14AG13A). CRaTER and VEPO data are respectively available at http://prediccs.sr.unh.edu/craterweb/ and http://vepo.gsfc.nasa.gov/. We thank the International Space Science Institute, which made possible this paper as a part of the ISSI workshop, the Scientific Foundation of Space Weather, and International Team 353, Radiation Interactions at Planetary Bodies.
Author information
Authors and Affiliations
Corresponding author
Additional information
The Scientific Foundation of Space Weather
Edited by Rudolf von Steiger, Daniel Baker, André Balogh, Tamás Gombosi, Hannu Koskinen and Astrid Veronig
Appendices
Appendix A: Acronyms
Appendix B: Components of EMMREM and PREDICCS
Throughout parts of this paper, we have used results from the Earth–Moon–Mars Radiation Environment Module (EMMREM, Fig. 18) and PREDICCS (Predictions of Radiation from Release, EMMREM, and Data Incorporating the CRaTER, COSTEP and other SEP measurements, http://prediccs.sr.unh.edu). EMMREM includes a suite of modules is designed to predict the radiation environment at Earth, the Moon, Mars and throughout the interplanetary medium in the inner heliosphere (Schwadron et al. 2010). PREDICCS is an online system that provides characterization of the radiation environment of the inner heliosphere in near real-time. PREDICCS utilizes data from satellites (ACE, Wind, GOES) in conjunction with EMMREM to produce dose rate and particle flux data at the Earth, Moon and Mars (Joyce et al. 2013). Validation has been performed through detailed comparisons between dose rates produced by PREDICCS with those measured by CRaTER.
The Earth–Moon–Mars Radiation Environment Model (EMMREM) provides a link from the Space Science to Space Exploration programs by characterizing time-dependent radiation exposure from observed and simulated particle radiation events. EMMREM provides a series of primary and secondary transport modules for the prediction and validation of particle radiation environment. Key components of EMMREM include: the Energetic Particle Radiation Environment Module (EPREM) solves for the propagation and acceleration of energetic particles in the evolving magnetic fields of the inner heliosphere with input based on observations from satellites; the Baryon Transport Module (BRYNTRN), which is a deterministic, coupled proton-neutron space radiation transport model that transports incident protons and their secondary products (protons, neutrons, deuterons, tritons, helions, and alphas) through shields of arbitrary composition and thickness (Wilson et al. 1991); the High-charge (Z) and Energy (HZE) Transport (HZETRN) model (Nealy et al. 2007) and the high-energy transport code (HETC-HEDS) (Townsend et al. 2005) to estimate associated dose rate from galactic cosmic rays (Wilson and Badavi 1986; Wilson et al. 1991, 2003; Shinn et al. 1991; Cucinotta 1993; Nealy et al. 2006)
The EMMREM modules consists of four primary pieces:
-
The Energetic Particle Radiation Environment Module (EPREM) solves for the propagation and acceleration of energetic particles in the evolving magnetic fields of the inner heliosphere with input based on observations from satellites.
-
The Baryon Transport Module (BRYNTRN) is a deterministic, coupled proton-neutron space radiation transport model that transports incident protons and their secondary products (protons, neutrons, deuterons, tritons, helions, and alphas) through shields of arbitrary composition and thickness (Wilson et al. 1991). BRYNTRN is used primarily in the modeling of solar proton events.
-
The High Energy Transport Code for Human Exploration and Development in Space (HETC-HEDS) is a Monte Carlo based algorithm that was specially designed to address space radiation problems, and, in particular, with the secondary particle distributions that are produced when the high-energy GCRs or SPEs interact with shielding and/or body organs (e.g., bone marrow or the central nervous system). HETC-HEDS has been extensively verified and validated, particularly against available laboratory beam data. HETC-HEDS models the nuclear elastic and inelastic interactions, decay and atomic interactions (Townsend et al. 2005). It accomplishes this using a Monte Carlo approach for computing the trajectories of particle cascades that result from the nuclear collisions. The particles included in HETC-HEDS are: protons, neutrons, \(\pi^{+}\), \(\pi^{-}\), \(\mu^{+}\), \(\mu^{-}\), and heavy ions. The code is fully three-dimensional and the particles can be distributed in angle, energy, and space. Each particle in the cascade is tracked until it: (1) escapes from the system; (2) undergoes nuclear collision or absorption; (3) comes to rest, as the result of energy losses from ionization and excitation of atomic electrons; or (4) in the case of pions and muons, decays. HETC-HEDS has been used in EMMREM to describe the interaction of GCR distributions with planetary atmospheres.
-
GCR and SEP flux distributions are fed in to the High-charge (Z) and Energy (HZE) Transport (HZETRN) model (Nealy et al. 2007) to estimate associated GCR dose rate. The HZETRN code transports the incident charged ions and their nuclear reaction secondary particles (protons, neutrons, deuterons, tritons, 3He, 4He, and heavier ions) generated from nuclear collisions. The code outputs, include particle fluences, dose, dose equivalent, effective dose, and linear energy transfer (LET) distributions. The HZETRN model results are used to derive effective dose and organ doses for the assumed aluminum shield configurations.
In model calculations, organ doses (\(D\)) are in units of centiGray (cGy) where \(1~\mbox{cGy} = 1~\mbox{rad}\) and \(100~\mbox{cGy} = \mbox{Gy} = 1~\mbox{J}/\mbox{kg}\). Organ dose equivalents (\(H\)), which are the product of dose with a quality factor, \(Q\) (\(H = Q D\)), are in centiSievert (cSv) where \(1~\mbox{cSv} = 1~\mbox{rem}\) and \(100~\mbox{cSv} = 1~\mbox{Sv} = 1~\mbox{J}/\mbox{kg}\). The units of effective dose (\(E\)) are also cSv. For HZETRN effective dose is calculated from
where \(H_{T}\) is the organ dose equivalent for the organ specified by \(T\) (e.g., skin, eye, lens, etc.). The tissue (organ) weighting factors \(w_{T}\) are the proportionate detriment of the organ when the whole body is irradiated and are tabulated in Table 5.1 of National Council on Radiation Protection and Measurements (NCRP) [1993].
Rights and permissions
About this article
Cite this article
Schwadron, N.A., Cooper, J.F., Desai, M. et al. Particle Radiation Sources, Propagation and Interactions in Deep Space, at Earth, the Moon, Mars, and Beyond: Examples of Radiation Interactions and Effects. Space Sci Rev 212, 1069–1106 (2017). https://doi.org/10.1007/s11214-017-0381-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11214-017-0381-5