Skip to main content
Log in

From Initial Models of Seismicity, Structure and Noise to Synthetic Seismograms for Mars

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

The InSight mission will land a single seismic station on Mars in November 2018, and the resultant seismicity catalog will be a key component for studies aiming to understand the interior structure of the planet. Here, we present a preliminary version of the web services that will be used to distribute the event and station metadata in practice, employing synthetic seismograms generated for Mars using a catalog of expected seismicity. Our seismicity catalog consists of 120 events with double-couple source mechanisms only. We also provide Green’s functions databases for a total of 16 structural models, which are constructed to reflect one-dimensional thin (30 km) and thick (80 km) Martian crust with varying seismic wave speeds and densities, combined with two different profiles for temperature and composition for the mantle. Both the Green’s functions databases and the precomputed seismograms are accessible online. These new utilities allow the researchers to either download the precomputed synthetic waveforms directly, or produce customized data sets using any desired source mechanism and event distribution via our servers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • C.M. Bertka, Y. Fei, Mineralogy of the Martian interior up to core-mantle boundary pressures. J. Geophys. Res. 102, 5251–5264 (1997)

    Article  ADS  Google Scholar 

  • E. Bozdağ, Y. Ruan, N. Metthez, A. Khan, K. Leng, M. van Driel, M. Wieczorek, A. Rivoldini, C.S. Larmat, D. Giardini, J. Tromp, P. Lognonné, B.W. Banerdt, Simulations of seismic wave propagation on Mars. Space Sci. Rev. (2017). doi:10.1007/s11214-017-0350-z

    Google Scholar 

  • M. Böse, J. Clinton, S. Ceylan, F. Euchner, M. van Driel, A. Khan, D. Giardini, A probabilistic framework for single-station location of seismicity on Earth and Mars. Phys. Earth Planet. Inter. (2016). doi:10.1016/j.pepi.2016.11.003

    Google Scholar 

  • J.A.D. Connolly, The geodynamic equation of state: What and how. Geochem. Geophys. Geosyst. 10(10), q10014 (2009)

    Article  ADS  Google Scholar 

  • IRIS DMC, Data Services Products: Synthetics Engine (2015). doi:10.17611/DP/SYNGINE.1

  • A. Khan, J.A.D. Connolly, Constraining the composition and thermal state of Mars from inversion of geophysical data. J. Geophys. Res., Planets 113, 7003 (2008)

    Article  ADS  Google Scholar 

  • A. Khan, M. van Driel, M. Böse, D. Giardini, S. Ceylan, J. Yan, J. Clinton, F. Euchner, P. Lognonné, N. Murdoch, D. Mimoun, M. Panning, M. Knapmeyer, W.B. Banerdt, Single-station and single-event marsquake location and inversion for structure using synthetic Martian waveforms. Phys. Earth Planet. Inter. 258, 28–42 (2016). doi:10.1016/j.pepi.2016.05.017

    Article  ADS  Google Scholar 

  • M. Knapmeyer, J. Oberst, E. Hauber, M. Wählisch, C. Deuchler, R. Wagner, Working models for spatial distribution and level of Mars’ seismicity. J. Geophys. Res. 111, E11006 (2006). doi:10.1029/2006JE002708

    Article  ADS  Google Scholar 

  • L. Krischer, T. Megies, R. Barsch, M. Beyreuther, T. Lecocq, C. Caudron, J. Wassermann, ObsPy: A bridge for seismology into the scientific Python ecosystem. Comput. Sci. Discov. 8(1), 014003 (2015). doi:10.1088/1749-4699/8/1/014003

    Article  Google Scholar 

  • L. Krischer, A. Hutko, M. van Driel, T. Nissen-Meyer, S. Stähler Chad, Trabant: On-demand custom broadband synthetic seismograms. Seismol. Res. Lett. 88(4) (2017)

  • C. Larmat, J.-P. Montagner, Y. Capdeville, W.B. Banerdt, P. Lognonné, J.-P. Vilotte, Numerical assessment of the effects of topography and crustal thickness on martian seismograms using a coupled modal solution spectral element method. Icarus 196, 78–89 (2008)

    Article  ADS  Google Scholar 

  • P. Lognonné, W.B. Banerdt, D. Giardini, U. Christensen, D. Mimoun, S. de Raucourt, A. Spiga, R. Garcia, A. Mocquet, M. Panning, E. Beucler, L. Boschi, W. Goetz, T. Pike, C. Johnson, R. Weber, M. Wieczorek, K. Larmat, N. Kobayashi, J. Tromp, Insight and single-station broadband seismology: From signal and noise to interior structure determination, in 43rd Lunar and Planetary Science Conference, Mar. 2012 (2012). Lunar and Planetary Inst. Technical Report 1983

    Google Scholar 

  • P. Lognonné, T.W. Pike, Planetary seismometry, in Extraterrestrial Seismology, ed. by V.C.H. Tong, R.A. Garcia (Cambridge University Press, Cambridge, 2015), pp. 91–106

    Google Scholar 

  • D. Mimoun, P. Lognonné, W.B. Banerdt, K. Hurst, S. Deraucourt, J. Gagnepain-Beyneix, T. Pike, S. Calcutt, M. Bierwirth, R. Roll, P. Zweifel, D. Mance, O. Robert, T. Nébut, S. Tillier, P. Laudet, L. Kerjean, R. Perez, D. Giardini, U. Christenssen, R. Garcia, The InSight SEIS Experiment, in 43rd Lunar and Planetary Science Conference (2012). Lunar and Planetary Inst. Technical Report 1493

    Google Scholar 

  • N. Murdoch, B. Kenda, T. Kawamura, A. Spiga, P. Lognonné, D. Mimoun, W.B. Banerdt, Estimations of the seismic pressure noise on Mars determined from Large Eddy Simulations and demonstration of pressure decorrelation techniques for the InSight mission. Space Sci. Rev. 82 (2017). doi:10.1007/s11214-017-0343-y

  • F. Nimmo, U.H. Faul, Dissipation at tidal and seismic frequencies in a melt-free, anhydrous Mars. J. Geophys. Res., Planets 118, 2558–2569 (2013)

    Article  ADS  Google Scholar 

  • T. Nissen-Meyer, M. van Driel, S.C. Stähler, K. Hosseini, S. Hempel, L. Auer, A. Colombi, A. Fournier, AxiSEM: Broadband 3-D seismic wavefields in axisymmetric media. Solid Earth 5, 425–445 (2014). doi:10.5194/se-5-425-2014

    Article  ADS  Google Scholar 

  • C. Sanloup, A. Jambon, P. Gillet, A simple chondritic model of Mars. Phys. Earth Planet. Inter. 112(1–2), 43–54 (1999). doi:10.1016/S0031-9201(98)00175-7

    Article  ADS  Google Scholar 

  • D. Schorlemmer, F. Euchner, P. Kästli, J. Saul, QuakeML: Status of the XML-based seismological data exchange format. Ann. Geophys. 54(1), 59–65 (2011). doi:10.4401/ag-4874

    Google Scholar 

  • W. Tape, C. Tape, A uniform parameterization of moment tensors. Geophys. J. Int. 202, 2074–2081 (2015)

    Article  ADS  Google Scholar 

  • G.J. Taylor, The bulk composition of Mars. Geochemistry 73, 401–420 (2013)

    Google Scholar 

  • M. van Driel, L. Krischer, S.C. Stähler, K. Hosseini, T. Nissen-Meyer, Instaseis: Instant global seismograms based on a broadband waveform database. Solid Earth 6, 701–717 (2015). doi:10.5194/se-6-701-2015

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank Naomi Murdoch and David Mimoun for making their Martian noise model available prior to publication, and Francis Nimmo for kindly sharing his visco-elastic attenuation code. This work was supported by grants from the Swiss National Science Foundation (SNF-ANR project 157133 “Seismology on Mars”) and the Swiss National Supercomputing Center (CSCS) under project ID s682. The InSight Contribution Number (ICN) of this paper is 27.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Savas Ceylan.

Appendices

Appendix A: Example Python Code Snippet for Accessing Instaseis Servers to Retrieve Synthetic Waveforms

# Import obspy and instaseis packages

import instaseis

import obspy

# Connect to the desired database. Replace DATABASE_NAME with a database

# hosted at the ETH server listed at the URL below.

db = instaseis.open_db(’http://instaseis.ethz.ch/marssynthetics/DATABASE_NAME’)

# Create a receiver/source pair or use a whole obspy.Catalog in a loop

receiver = instaseis.Receiver(

 latitude=4.5, longitude = 136.0, network = ”7J”, station = ”SYNT1”)

# Define a source using strike/dip/slip angles. M0 is in Nm.

source = instaseis.Source.from_strike_dip_rake(

 latitude=0.0, longitude=0.0, depth_in_m=50000,

  strike=130.0, dip=15.0, rake\({=}-90.0\), M0=1E19,

 origin_time=obspy.UTCDateTime(2020, 1, 2, 3, 4, 5))

# Or define a source with moment tensor: Note that above line does not

# correspond to the moment tensor definition below.

source = instaseis.Source(

 latitude=0.0, longitude=0.0, depth_in_m=50000,

 m_rr\({=}1.710000\mathrm{e}{+}24\),

 m_tt\({=}1.810000\mathrm{e}{+}22\),

 m_pp\({=}-1.740000\mathrm{e}{+}24\),

 m_rt\({=}1.990000\mathrm{e}{+}23\),

 m_rp\({=}-1.050000\mathrm{e}{+}23\),

 m_tp\({=}-1.230000\mathrm{e}{+}24\),

 origin_time=obspy.UTCDateTime(2020, 1, 2, 3, 4, 5))

# Retrieve the waveforms: seismogram is an obspy.Stream object

seismogram = db.get_seismograms(source=source, receiver=receiver)

# Do some processing as needed.

seismogram.filter(“highpass”, freq=1.0)

# Plot the waveforms.

seismogram.plot()

Appendix B: Using the Instaseis REST-like API

To download waveforms, the parameters should be combined together in a HTTP request string as the following. This string later can be used from any browser’s address bar or in conjunction with a tool such as wget. Waveforms can be extracted as zipped SAC or miniSEED files using the format option. Instaseis supports additional end-points for retrieving Green’s functions, event and station info. Further information is available at http://www.instaseis.net. An example output for the HTTP command below is shown in Fig. 9. Note that Instaseis automatically assigns the component names (MX*), and can be changed as needed.

Fig. 9
figure 9

Example output of REST-like API command. The waveforms are in displacement units as it is the default output type the GF database

http://instaseis.ethz.ch/marssynthetics/C30VH-BFT13-1s/seismograms?receiverlatitude=10.0&receiverlongitude=20.0&sourcelatitude=0&sourcelongitude=0&sourcedepthinmeters=50000&sourcedoublecouple=310,15,90,1E19&origintime=2020-1-2T03:04:05&networkcode=7J&stationcode=SYNT1&locationcode=00&format=miniseed

Appendix C: Examples for Using Standard FDSN Web Services to Retrieve Data

Below are some examples for downloading data using FDSN web services. Further examples are available at http://synthetics.mars.ethz.ch URL.

In order to request station metadata for all BX* channels of station SYNT1 in XML format:

http://synthetics.mars.ethz.ch/fdsnws/station/1/query?channel=BX*&level=channel

To request the same metadata above in text format, provide the format statement in the query URL:

http://synthetics.mars.ethz.ch/fdsnws/station/1/query?channel=BX*&level=channel&format=text

To retrieve catalog information between two dates with \(M \geq 2.5\) in text format:

http://synthetics.mars.ethz.ch/fdsnws/event/1/query?minmag=2.5&starttime=2019-01-01T00:00:00&endtime=2019-03-01T12:00:00&format=text

To download waveforms as miniSEED files between two dates on network 7J for station SYNT1:

http://synthetics.mars.ethz.ch/fdsnws/dataselect/1/query?network=7J&station=SYNT1&starttime=2019-01-01T00:00:00&endtime=2019-01-01T12:00:00

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ceylan, S., van Driel, M., Euchner, F. et al. From Initial Models of Seismicity, Structure and Noise to Synthetic Seismograms for Mars. Space Sci Rev 211, 595–610 (2017). https://doi.org/10.1007/s11214-017-0380-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-017-0380-6

Keywords

Navigation