Skip to main content
Log in

Modeling of Ground Deformation and Shallow Surface Waves Generated by Martian Dust Devils and Perspectives for Near-Surface Structure Inversion

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

We investigated the possible seismic signatures of dust devils on Mars, both at long and short period, based on the analysis of Earth data and on forward modeling for Mars. Seismic and meteorological data collected in the Mojave Desert, California, recorded the signals generated by dust devils. In the 10–100 s band, the quasi-static surface deformation triggered by pressure fluctuations resulted in detectable ground-tilt effects: these are in good agreement with our modeling based on Sorrells’ theory. In addition, high-frequency records also exhibit a significant excitation in correspondence to dust devil episodes. Besides wind noise, this signal includes shallow surface waves due to the atmosphere-surface coupling and is used for a preliminary inversion of the near-surface S-wave profile down to 50 m depth. In the case of Mars, we modeled the long-period signals generated by the pressure field resulting from turbulence-resolving Large-Eddy Simulations. For typical dust-devil-like vortices with pressure drops of a couple Pascals, the corresponding horizontal acceleration is of a few nm/s2 for rocky subsurface models and reaches 10–20 nm/s2 for weak regolith models. In both cases, this signal can be detected by the Very-Broad Band seismometers of the InSight/SEIS experiment up to a distance of a few hundred meters from the vortex, the amplitude of the signal decreasing as the inverse of the distance. Atmospheric vortices are thus expected to be detected at the InSight landing site; the analysis of their seismic and atmospheric signals could lead to additional constraints on the near-surface structure, more precisely on the ground compliance and possibly on the seismic velocities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • H. Arai, K. Tokimatsu, S-wave velocity profiling by inversion of microtremors H/V spectrum. Bull. Seismol. Soc. Am. 94, 53–63 (2004)

    Article  Google Scholar 

  • R. Beauduin, P. Lognonné, J.P. Montagner, S. Cacho, J.F. Karczewski, M. Morand, The effects of the atmospheric pressure changes on seismic signals or how to improve the quality of a station. Bull. Seismol. Soc. Am. 86, 1760–1769 (1996)

    Google Scholar 

  • A.J. Bedard, Low-frequency atmospheric acoustic energy associated with vortices produced by thunderstorms. Mon. Weather Rev. 133, 241–263 (2005)

    Article  ADS  Google Scholar 

  • S. Bonnefoy-Claudet, A. Köhler, C. Cornou, M. Wathelet, P.-Y. Bard, Effect of love waves on microtremor H/V ratio. Bull. Seismol. Soc. Am. 98, 288–300 (1998)

    Article  Google Scholar 

  • D.S. Choi, C.M. Dundas, Measurements of Martian dust devils winds with HiRISE. Geophys. Res. Lett. 38, L24206 (2011)

    Article  ADS  Google Scholar 

  • A. Colaïtis, A. Spiga, F. Hourdin, C. Rio, F. Forget, E. Millour, A thermal plume model for the martian convective boundary layer. J. Geophys. Res. 118, 1468–1487 (2013)

    Article  Google Scholar 

  • P. Delage, F. Karakostas, A. Dhemaied, Y.J. Cui, M.D. Laure, The geotechnical properties of some Martian regolith simulants in link with the InSight landing site. Space Sci. Rev. (2017, this issue). doi:10.1007/s11214-017-0339-7

    Google Scholar 

  • M.D. Ellehoj, H.P. Gunnlaugsson, P.A. Taylor, H. Kahanpää, K.M. Bean, B.A. Cantor, B.T. Gheynani, L. Drube, D. Fischer, A.-M. Harri, C. Holstein-Rathlou, M.T. Lemmon, M.B. Madsen, M.C. Malin, J. Polkko, P.H. Smith, L.K. Tamppari, W. Weng, J. Whiteway, Convective vortices and dust devils at the Phoenix Mars mission landing site. J. Geophys. Res. 115, E00E16 (2010)

    Article  Google Scholar 

  • W.M. Farrell, P.H. Smith, G.T. Delory, G.B. Hillard, J.R. Marshall, D. Catling, M. Hecht, D.M. Tratt, N. Renno, M.D. Desch, S.A. Cummer, J.G. Houser, B. Johnson, Electric and magnetic signatures of dust devils from the 2000–2001 MATADOR desert tests. J. Geophys. Res. 109, E03004 (2004)

    ADS  Google Scholar 

  • B. Galanti, A. Tsinober, Is turbulence ergodic? Phys. Lett. A 330, 173–180 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • M. Golombek, D. Kipp, N. Warner, I.J. Daubar, R. Fergason, R. Kirk, R. Beyer, A. Huertas, S. Piquex, N. Putzig, B.A. Campbell, G.A. Morgan, C. Charalambous, W.T. Pike, K. Gwinner, F. Calef, D. Kass, M. Mischna, J. Ashley, C. Bloom, N. Wigton, C. Schwartz, H. Gengl, L. Redmond, J. Sweeney, E. Sklyanskiy, M. Lisano, J. Bernardino, P. Lognonné, S. Smrekar, B. Banerdt, Selection of the InSight landing site. Space Sci. Rev. (2017, this issue). doi:10.1007/s11214-016-0321-9

    Google Scholar 

  • R.B. Herrmann, Computer programs in seismology: an evolving tool for instruction and research. Seismol. Res. Lett. 84, 1081–1088 (2013)

    Article  Google Scholar 

  • D.P. Hinson, M. Patzold, S. Tellmann, B. Häusler, G.L. Tyler, The depth of the convective boundary layer on Mars. Icarus 198, 57–66 (2008)

    Article  ADS  Google Scholar 

  • M.S. Howe, Lectures on the theory of vortex sound, in Sound-Flow Interactions, ed. by Y. Aurégan, A. Maurel, V. Pagneux, J.-F. Pinton (Springer, Berlin, 2002), pp. 31–110

    Chapter  Google Scholar 

  • H. Kahanpää, C. Newman, J. Moores, M.-P. Zorzano, J. Martín-Torres, S. Navarro, A. Lepinette, B. Cantor, M.T. Lemmon, P. Valentín-Serrano, A. Ullán, W. Schmidt, Convective vortices and dust devils at the MSL landing site: annual variability. J. Geophys. Res., Planets (2004). doi:10.1002/2016JE005027

    Google Scholar 

  • S. Kedar, J. Andrade, B. Banerdt, P. Delage, M. Golombek, T. Hudson, A. Kiely, M. Knapmeyer, B. Knapmeyer-Endrun, C. Krause, T. Kawamura, P. Lognonné, T. Pike, Y. Ruan, N. Teanby, J. Tromp, J. Wookey, Analysis of regolith properties using seismic signals generated by InSights HP3 penetrator. Space Sci. Rev. (2017, this issue)

  • B.L.N. Kennet, Seismic Waves Propagation in Stratified Media (Cambridge University Press, Cambridge, 1983)

    Google Scholar 

  • B. Knapmeyer-Endrun, M.P. Golombek, M. Ohrnberger, Rayleigh wave ellipticity modeling and inversion for shallow structure at the proposed InSight landing site in Elysium Planitia, Mars. Space Sci. Rev. (2017, this issue). doi:10.1007/s11214-016-0300-1

    Google Scholar 

  • K. Konno, T. Ohmachi, Ground-motion characteristic estimated from spectral ratio between horizontal and vertical components of microtremors. Bull. Seismol. Soc. Am. 88, 228–241 (1998)

    Google Scholar 

  • E. Larose, A. Khan, Y. Nakamura, M. Campillo, Lunar subsurface investigated from correlation of seismic noise. Geophys. Res. Lett. 32, L16201 (2005)

    Article  ADS  Google Scholar 

  • D.K. Lilly, On the numerical simulation of buoyant convection. Tellus 14, 148–162 (1962)

    Article  ADS  Google Scholar 

  • P. Lognonné, B. Mosser, Planetary seismology. Surv. Geophys. 14, 239–302 (1993)

    Article  ADS  Google Scholar 

  • P. Lognonné, J. Gagnepaine Beyneix, W.B. Banerdt, S. Cacho, J.F. Karxzewski, M. Moran, Ultra broad band seismology on InterMarsNet. Planet. Space Sci. 44, 1241–1249 (1996)

    Article  ADS  Google Scholar 

  • P. Lognonné, C. Johnson, Planetary seismology, in Treatise in Geophysics, Volume 10: Planets and Moons, ed. by G. Schubert (Elsevier, Amsterdam, 2007), pp. 67–122

    Google Scholar 

  • P. Lognonné, W.T. Pike, Planetary seismometry, in Extraterrestrial Seismology, ed. by V.C.H. Tong, R.A. García (Cambridge University Press, Cambridge, 2015), pp. 36–50

    Chapter  Google Scholar 

  • R.D. Lorenz, Obseving desert dust devils with a pressure logger. Geosci. Instrum. Method. Data Syst. 1, 209–220 (2012)

    Article  ADS  Google Scholar 

  • R.D. Lorenz, The longevity and aspect ratio of dust devils: effects on detection efficiencies and comparison of landed and orbital imaging at Mars. Icarus 226, 964–970 (2013)

    Article  ADS  Google Scholar 

  • R.D. Lorenz, Vortex encounter rates with fixed barometer stations: comparison with visual dust devil counts and large eddy simulations. J. Atmos. Sci. 71, 4461–4472 (2014)

    Article  ADS  Google Scholar 

  • R.D. Lorenz, D. Christie, Dust devil signatures in infrasound records of the international monitoring system. Geophys. Res. Lett. 42, 2009–2014 (2015)

    Article  ADS  Google Scholar 

  • R.D. Lorenz, S. Kedar, N. Murdoch, P. Lognonné, T. Kawamura, D. Mimoun, W.B. Banerdt, Seismometer detection of dust devil vortices by ground tilt. Bull. Seismol. Soc. Am. 105, 3015–3023 (2015)

    Article  Google Scholar 

  • R.D. Lorenz, M.R. Balme, Z. Gu, H. Kahanpää, M. Klose, M. Kurgansky, M.R. Patel, D. Reiss, A.P. Rossi, A. Spiga, T. Takemi, W. Wei, History and applications of dust devil studies. Space Sci. Rev. 203, 5–37 (2016)

    Article  ADS  Google Scholar 

  • P.G. Malischewsky, F. Scherenbaum, Love’s formula and H/V-ratio (ellipticity) of Rayleigh waves. Wave Motion 40, 57–67 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • P.J. Mason, Large-eddy simulation of the convective atmospheric boundary layer. J. Atmos. Sci. 46, 1492–1516 (1989)

    Article  ADS  Google Scholar 

  • T.I. Michaels, S.C.R. Rafkin, Large-eddy simulation of atmospheric convection on Mars. Q. J. R. Meteorol. Soc. 130, 1251–1274 (2004)

    Article  ADS  Google Scholar 

  • E. Millour, F. Forget, A. Spiga, T. Navarro, J.-B. Madeleine, L. Montabone, A. Pottier, F. Lefevre, F. Montmessin, J.-Y. Chaufray, M.A. Lopez-Valverde, F. Gonzalez-Galindo, S.R. Lewis, P.L. Read, J.-P. Huot, M.-C. Desjean, The Mars Climate Database (MCD version 5.2), EPSC (2015)

  • D. Mimoun, N. Murdoch, P. Lognonné, T. Pike, K. Hurst (the SEIS team), The seismic noise model of the InSight mission to Mars. Space Sci. Rev. (2017, this issue)

  • M. Mucciarelli, M.R. Gallipoli, D. Di Giacomo, F. Di Nota, E. Nino, The influence of wind on measurements of seismic noise. Geophys. J. Int. 161, 303–308 (2005)

    Article  ADS  Google Scholar 

  • N. Murdoch, D. Mimoun, R.F. Garcia, W. Rappin, T. Kawamura, P. Lognonné, Evaluating the wind-induced mechanical noise on the InSight seismometers. Space Sci. Rev. (2017a, this issue). doi:10.1007/s11214-016-0311-y

    Google Scholar 

  • N. Murdoch, B. Kenda, T. Kawamura, A. Spiga, P. Lognonné, D. Mimoun, W.B. Banerdt, Pressure noise on Mars determined from large-eddy simulations. Space Sci. Rev. (2017b, this issue). doi:10.1007/s11214-017-0343-y

    Google Scholar 

  • J.R. Murphy, S. Nelli, Mars Pathfinder convective vortices: frequency of occurrence. Geophys. Res. Lett. 29, 2103 (2002)

    ADS  Google Scholar 

  • V. Naderyan, C.J. Hickey, R. Raspet, Wind-induced ground motion. J. Geophys. Res., Solid Earth 121, 917–930 (2016)

    Article  ADS  Google Scholar 

  • L.D.V. Neakrase, R. Greeley, J.D. Iversen, M.R. Balme, Dust flux within dust devils: preliminary laboratory simulations. Geophys. Res. Lett. 33, L19S09 (2006)

    Article  Google Scholar 

  • F.M. Neubauer, Thermal convection in the Martian atmosphere. J. Geophys. Res. 71(10), 2419–2426 (1966)

    Article  ADS  Google Scholar 

  • S. Nishizawa, M. Odaka, Y.O. Takahash, K. Sugiyama, K. Nakajima, M. Ishiwatari, S. Takehiro, H. Yashiro, Y. Sato, H. Tomita, Y.-Y. Hayashi, Martian dust devil statistics from high-resolution large-eddy simulations. Geophys. Res. Lett. 43, 4180–4188 (2016)

    Article  ADS  Google Scholar 

  • S.C.R. Rafkin, R.M. Haberle, T.I. Michaels, The Mars regional atmospheric modeling system: model description and selected simulations. Icarus 151, 228–256 (2001)

    Article  ADS  Google Scholar 

  • D. Reiss, R.D. Lorenz, Dust devil track survey at Elysium Plmanitia: implications for the InSight landing sites. Icarus 266, 315–330 (2016)

    Article  ADS  Google Scholar 

  • D. Reiss, A. Spiga, G. Erkeling, The horizontal motion of dust devils on Mars derived from CRISM and CTX/HiRISE observations. Icarus 227, 8–20 (2014)

    Article  ADS  Google Scholar 

  • N.O. Rennó, A.A. Nash, J. Lunine, J. Murphy, Martian and terrestrial dust devils: test of a scaling theory using Pathfinder data. J. Geophys. Res. 105, 1859–1865 (2000)

    Article  ADS  Google Scholar 

  • N.O. Rennó, V.J. Abreu, J. Koch, P.H. Smith, O.K. Hartogensis, H.A.R. De Bruin, D. Burose, G.T. Delory, W.M. Farrell, C.J. Watts, J. Garatuza, M. Parker, A. Carswell, MATADOR 2002: a pilot field experiment on convective plumes and dust devils. J. Geophys. Res. 109, E07001 (2004)

    Article  ADS  Google Scholar 

  • M.H. Ritzwoller, A.L. Levshin, Estimating shallow shear wave velocities with marine multicomponent seismic data. Geophysics 67 (2002). doi:10.1190/1.1527099

  • J.A. Ryan, R.D. Lucich, Possible dust devils, vortices on Mars. J. Geophys. Res. 88(C15), 11005–11011 (1986)

    Article  ADS  Google Scholar 

  • E.D. Schmitter, Modeling tornado dynamics and the generation of infrasound, electric and magnetic field. Nat. Hazards Earth Syst. Sci. 10, 295–298 (2010)

    Article  ADS  Google Scholar 

  • J.T. Schofield, J.R. Barnes, D. Crisp, R.M. Haberle, S. Larsen, J.A. Magalhaes, J.R. Murphy, A. Seiff, G. Wilson, The Mars Pathfinder Atmospheric Structure Investigation/Meteorology (ASI/MET) experiment. Science 278(5344), 1752–1758 (1997)

    Article  ADS  Google Scholar 

  • W.C. Skamarock, J.B. Klemp, A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys. 227, 3465–3485 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • G.G. Sorrells, A preliminary investigation into the relationship between long-period seismic noise and local fluctuations in the atmospheric pressure field. Geophys. J. R. Astron. Soc. 26, 71–82 (1971)

    Article  ADS  Google Scholar 

  • G.G. Sorrells, J.A. McDonald, Z.A. Der, E. Herrin, Earth motion caused by local atmospheric pressure changes. Geophys. J. R. Astron. Soc. 26, 83–98 (1971)

    Article  ADS  Google Scholar 

  • A. Spiga, F. Forget, A new model to simulate the Martian mesoscale and microscale atmospheric circulation: Validation and first results. J. Geophys. Res., Planets 114 (2009). doi:10.1029/2008JE003242

  • A. Spiga, F. Forget, S.R. Lewis, D.P. Hinson, Structure and dynamics of the convective boundary layer on Mars as inferred from large-eddy simulations and remote-sensing measurements. Q. J. R. Meteorol. Soc. 136, 414–428 (2010)

    Article  ADS  Google Scholar 

  • A. Spiga, E. Barth, Z. Gu, F. Hoffmann, J. Ito, B. Jemmett-Smith, M. Klose, S. Raasch, S. Rafkin, T. Takemi, D. Tyler, W. Wei, Large-eddy simulations of dust devils and convective vortices. Space Sci. Rev. 203, 245–275 (2016)

    Article  ADS  Google Scholar 

  • F.B. Tatom, K.R. Knupp, S.J. Vitton, Tornado detection based on seismic signal. J. Appl. Meteorol. 34, 572–582 (1995)

    Article  ADS  Google Scholar 

  • A.D. Toigo, M.I. Richardson, S.P. Ewald, P.J. Gierasch, Numerical simulation of Martian dust devils. J. Geophys. Res. 108, 95 (2003)

    Google Scholar 

  • G.H. Vatistas, V. Kozel, W.C. Mih, A simpler model for concentrated vortices. Exp. Fluids 11, 73–76 (1991)

    Article  Google Scholar 

  • N.H. Warner, M.P. Golombek, J. Sweeney, R. Fergason, R. Kirk, C. Schwartz, Near surface stratigraphy and regolith production in southwestern Elysium Planitia, Mars: implications for Hesperian-Amazonian terrains and the InSight lander mission. Space Sci. Rev. (2017, this issue). doi:10.1007/s11214-017-0352-x

    Google Scholar 

  • M.M. Withers, R.C. Aster, C.J. Young, E.P. Chael, High-frequency analysis of seismic background noise as a function of wind speed and shallow depth. Bull. Seismol. Soc. Am. 86, 1507–1515 (1996)

    Google Scholar 

  • W. Zürn, J. Exss, H. Steffen, C. Kroner, T. Jahr, M. Westerhaus, On reduction of long-period horizontal seismic noise using local barometric pressure. Geophys. J. Int. 171, 780–796 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work has been supported by CNES and ANR SismoMars in the frame of the preparation of InSight/SEIS. B. Kenda acknowledges the support of ED560 STEP’UP and of the NASA InSight project for his PhD support. R. Lorenz acknowledges the support of NASA Grant NNX12AI04G. Research described in this paper was partially done by the InSight Project, Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. This is IPGP contribution 3844. This is InSight Contribution Number 26. We gratefully thank the Editor and two anonymous reviewers, whose comments helped us in improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balthasar Kenda.

Electronic Supplementary Material

Below are the links to the electronic supplementary material.

(AVI 36.2 MB)

(AVI 33.6 MB)

(AVI 42.3 MB)

(AVI 7.6 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kenda, B., Lognonné, P., Spiga, A. et al. Modeling of Ground Deformation and Shallow Surface Waves Generated by Martian Dust Devils and Perspectives for Near-Surface Structure Inversion. Space Sci Rev 211, 501–524 (2017). https://doi.org/10.1007/s11214-017-0378-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-017-0378-0

Keywords

Navigation