Space Science Reviews

, Volume 212, Issue 1–2, pp 601–613 | Cite as

Michelson Interferometer for Global High-Resolution Thermospheric Imaging (MIGHTI): Monolithic Interferometer Design and Test

  • John M. Harlander
  • Christoph R. Englert
  • Charles M. Brown
  • Kenneth D. Marr
  • Ian J. Miller
  • Vaz Zastera
  • Bernhard W. Bach
  • Stephen B. Mende
Article
Part of the following topical collections:
  1. The Ionospheric Connection Explorer (ICON) mission

Abstract

The design and laboratory tests of the interferometers for the Michelson Interferometer for Global High-resolution Thermospheric Imaging (MIGHTI) instrument which measures thermospheric wind and temperature for the NASA-sponsored Ionospheric Connection (ICON) Explorer mission are described. The monolithic interferometers use the Doppler Asymmetric Spatial Heterodyne (DASH) Spectroscopy technique for wind measurements and a multi-element photometer approach to measure thermospheric temperatures. The DASH technique and overall optical design of the MIGHTI instrument are described in an overview followed by details on the design, element fabrication, assembly, laboratory tests and thermal control of the interferometers that are the heart of MIGHTI.

Keywords

Remote sensing and sensors Passive remote sensing Interferometery Spectrometers Spectroscopy, high-resolution 

Notes

Acknowledgements

The authors would like to acknowledge the following individuals:

MIGHTI Team: Rebecca Baugh, Glenn Weigle, Eloise Stump, Warren Tolson, Miles Newman, Steve Tanner;

ICON Team: Thomas Immel;

Bach Research (gratings): Eric Bach;

JenOptik Inc. (non-interferometer optics): Jay Kumler, Dan Sykora;

St. Cloud State University (AFM grating measurements): Russel Lidberg;

Space Systems Research Corp (Grating modeling): John Seely;

ICON is supported by NASA’s Explorers Program through contracts NNG12FA45C and NNG12FA42I.

References

  1. A.B. Christensen, R.L. Bishop, S.A. Budzien, J.H. Hecht, M.G. Mlynczak, J.M. Russell III., A.W. Stephan, R.W. Walterscheid, J. Geophys. Res. (2013). doi: 10.1002/jgra.50317 Google Scholar
  2. C.R. Englert, D.D. Babcock, J.M. Harlander, Appl. Opt. 46, 7297 (2007) ADSCrossRefGoogle Scholar
  3. C.R. Englert, M.H. Stevens, D.E. Siskind, J.M. Harlander, F.L. Roesler, H.M. Pickett, C. von Savigny, A.J. Kochenash, Geophys. Res. Lett. (2008). doi: 10.1029/2008GL035420 Google Scholar
  4. C.R. Englert, M.H. Stevens, D.E. Siskind, J.M. Harlander, F.L. Roesler, J. Geophys. Res. (2010). doi: 10.1029/2010JD014398 Google Scholar
  5. C.R. Englert, C.M. Brown, B. Bach, E. Bach, K. Bach, J.M. Harlander, J.F. Seeley, K.D. Marr, I. Miller, High efficiency echelle gratings for MIGHTI, the spatial heterodyne interferometers for the ICON mission. Appl. Opt. (2017a). doi: 10.1364/AO.56.002090 Google Scholar
  6. C.R. Englert, J.M. Harlander, C.M. Brown, K.D. Marr, I.J. Miller, J.E. Stump, J. Hancock, J. Peterson, J. Kumler, W. Morrow, T. Mooney, S. Ellis, S.B. Mende, S.E. Harris, M.H. Stevens, T. Immel, Space Sci. Rev. (2017b). doi: 10.1007/s11214-017-0358-4 Google Scholar
  7. W.A. Gault, J.F. Brun, D.L. Desaulniers, D.W. Miller, F. Pasternak, Y. Rochon, J.M. Rupil, G.G. Shepherd, SPIE, vol. 1753. Stray Radiat. Opt. Syst. 11, 189 (1992) ADSGoogle Scholar
  8. J.M. Harlander, R.J. Reynolds, F.L. Roesler, Astrophys. J. 396, 730 (1992) ADSCrossRefGoogle Scholar
  9. J.M. Harlander, C.R. Englert, D.D. Babcock, F.L. Roesler, Opt. Express 18, 26430 (2010) ADSCrossRefGoogle Scholar
  10. J.E. Lawler, Z.E. Labby, J.M. Harlander, F.L. Roesler, Appl. Opt. 47, 6371–6384 (2008) ADSCrossRefGoogle Scholar
  11. K.D. Marr, C.R. Englert, J.M. Harlander, K.W. Miller, Appl. Opt. 52, 8082-8 (2013). doi: 10.1364/AO.52.008082 ADSCrossRefGoogle Scholar
  12. S.B. Mende, G.R. Swenson, E.J. Llewellyn, W.F. Denig, D.J.W. Kendall, T.G. Slanger, J. Geophys. Res. 93, 12,861 (1988) ADSCrossRefGoogle Scholar
  13. P.E. Sheese, E.J. Llewellyn, R.L. Gattinger, A.E. Bourassa, D.A. Degenstein, N.D. Lloyd, I.C. McDade, Can. J. Phys. 88, 919 (2010) ADSCrossRefGoogle Scholar
  14. P.E. Sheese, E.J. Llewellyn, R.L. Gattinger, A.E. Bourassa, D.A. Degenstein, N.D. Lloyd, I.C. McDade, Geophys. Res. Lett. (2011). doi: 10.1029/2011GL047437 Google Scholar
  15. G.G. Shepherd, G. Thuillier, Y.-M. Cho, M.-L. Duboin, W.F.J. Evans, W.A. Gault, C. Hersom, D.J.W. Kendall, C. Lathuillère, R.P. Lowe, I.C. McDade, Y.J. Rochon, M.G. Shepherd, B.H. Solheim, D.-Y. Wang, W.E. Ward, Rev. Geophys. (2012). doi: 10.1029/2012RG000390 Google Scholar
  16. G.G. Shepherd, D. Desaulniers, W.A. Gault, C. Hersom, K. Smith, A. Scott, B. Solheim, J. Wimperis, Wind imaging interferometer on NASA’s Upper Atmosphere Research Satellite, Chap. 18, in Optical Payloads for Space Missions, ed. by S.-E. Qian (Wiley, London, 2016). ISBN 978-1-118-94514-8 Google Scholar
  17. M.H. Stevens, C.R. Englert, J.M. Harlander, S.L. England, K.D. Marr, C.M. Brown, T. Immel, Space Sci. Rev. (2016, this issue) Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Space Systems Research CorporationAlexandriaUS
  2. 2.Space Science DivisionUS Naval Research LaboratoryWashingtonUS
  3. 3.LightMachinery Inc.NepeanCanada
  4. 4.Bach Research Inc.BoulderUS
  5. 5.Space Sciences LaboratoryUniversity of California-BerkeleyBerkeleyUS

Personalised recommendations