Pulsar Wind Nebulae with Bow Shocks: Non-thermal Radiation and Cosmic Ray Leptons

Abstract

Pulsars with high spin-down power produce relativistic winds radiating a non-negligible fraction of this power over the whole electromagnetic range from radio to gamma-rays in the pulsar wind nebulae (PWNe). The rest of the power is dissipated in the interactions of the PWNe with the ambient interstellar medium (ISM). Some of the PWNe are moving relative to the ambient ISM with supersonic speeds producing bow shocks. In this case, the ultrarelativistic particles accelerated at the termination surface of the pulsar wind may undergo reacceleration in the converging flow system formed by the plasma outflowing from the wind termination shock and the plasma inflowing from the bow shock. The presence of magnetic perturbations in the flow, produced by instabilities induced by the accelerated particles themselves, is essential for the process to work. A generic outcome of this type of reacceleration is the creation of particle distributions with very hard spectra, such as are indeed required to explain the observed spectra of synchrotron radiation with photon indices \(\varGamma\lesssim 1.5\). The presence of this hard spectral component is specific to PWNe with bow shocks (BSPWNe). The accelerated particles, mainly electrons and positrons, may end up containing a substantial fraction of the shock ram pressure. In addition, for typical ISM and pulsar parameters, the \(e^{+}\) released by these systems in the Galaxy are numerous enough to contribute a substantial fraction of the positrons detected as cosmic ray (CR) particles above few tens of GeV and up to several hundred GeV. The escape of ultrarelativistic particles from a BSPWN—and hence, its appearance in the far-UV and X-ray bands—is determined by the relative directions of the interstellar magnetic field, the velocity of the astrosphere and the pulsar rotation axis. In this respect we review the observed appearance and multiwavelength spectra of three different types of BSPWNe: PSR J0437-4715, the Guitar and Lighthouse nebulae, and Vela-like objects. We argue that high resolution imaging of such objects provides unique information both on pulsar winds and on the ISM. We discuss the interpretation of imaging observations in the context of the model outlined above and estimate the BSPWN contribution to the positron flux observed at the Earth.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

References

  1. A.A. Abdo, B.T. Allen, T. Aune, et al., Milagro observations of multi-TeV emission from galactic sources in the Fermi bright source list. Astrophys. J. 700, 127–131 (2009). doi:10.1088/0004-637X/700/2/L127

    ADS  Article  Google Scholar 

  2. A.A. Abdo, M. Ackermann, M. Ajello, et al., Fermi Large Area Telescope observations of the Vela-X pulsar wind nebula. Astrophys. J. 713, 146–153 (2010). doi:10.1088/0004-637X/713/1/146

    ADS  Article  Google Scholar 

  3. A.A. Abdo, M. Ajello, A. Allafort, et al., The second Fermi Large Area Telescope catalog of gamma-ray pulsars. Astrophys. J. Suppl. Ser. 208, 17 (2013). doi:10.1088/0067-0049/208/2/17

    ADS  Article  Google Scholar 

  4. A.U. Abeysekara, A. Albert, R. Alfaro, et al., The 2HWC HAWC observatory gamma ray catalog. ArXiv e-prints (2017)

  5. A. Abramowski, F. Acero, F. Aharonian, et al., Probing the extent of the non-thermal emission from the Vela X region at TeV energies with H.E.S.S. Astron. Astrophys. 548, 38 (2012). doi:10.1051/0004-6361/201219919

    Article  Google Scholar 

  6. F. Acero, Y. Gallant, J. Ballet, et al., A new nearby pulsar wind nebula overlapping the RX J0852.0-4622 supernova remnant. Astron. Astrophys. 551, 7 (2013a). doi:10.1051/0004-6361/201220799

    ADS  Article  Google Scholar 

  7. F. Acero, M. Ackermann, M. Ajello, et al., Constraints on the galactic population of TeV pulsar wind nebulae using Fermi Large Area Telescope observations. Astrophys. J. 773, 77 (2013b). doi:10.1088/0004-637X/773/1/77

    ADS  Article  Google Scholar 

  8. A. Achterberg, Y.A. Gallant, J.G. Kirk, et al., Particle acceleration by ultrarelativistic shocks: theory and simulations. Mon. Not. R. Astron. Soc. 328, 393–408 (2001). doi:10.1046/j.1365-8711.2001.04851.x

    ADS  Article  Google Scholar 

  9. O. Adriani, G.C. Barbarino, G.A. Bazilevskaya, et al., An anomalous positron abundance in cosmic rays with energies 1.5–100 GeV. Nature 458, 607–609 (2009). doi:10.1038/nature07942

    ADS  Article  Google Scholar 

  10. O. Adriani, G.C. Barbarino, G.A. Bazilevskaya, et al., Cosmic-ray electron flux measured by the PAMELA experiment between 1 and 625 GeV. Phys. Rev. Lett. 106(20), 201101 (2011). doi:10.1103/PhysRevLett.106.201101

    ADS  Article  Google Scholar 

  11. M. Aguilar, G. Alberti, B. Alpat, et al., First result from the alpha magnetic spectrometer on the International Space Station: precision measurement of the positron fraction in primary cosmic rays of 0.5–350 GeV. Phys. Rev. Lett. 110(14), 141102 (2013). doi:10.1103/PhysRevLett.110.141102

    ADS  Article  Google Scholar 

  12. M. Aguilar, D. Aisa, A. Alvino, et al., Electron and positron fluxes in primary cosmic rays measured with the Alpha Magnetic Spectrometer on the International Space Station. Phys. Rev. Lett. 113(12), 121102 (2014). doi:10.1103/PhysRevLett.113.121102

    ADS  Article  Google Scholar 

  13. M. Aguilar, D. Aisa, B. Alpat, et al., Precision measurement of the proton flux in primary cosmic rays from rigidity 1 GV to 1.8 TV with the alpha magnetic spectrometer on the International Space Station. Phys. Rev. Lett. 114(17), 171103 (2015). doi:10.1103/PhysRevLett.114.171103

    ADS  Article  Google Scholar 

  14. M. Aguilar, L. Ali Cavasonza, G. Ambrosi, et al., Precision measurement of the boron to carbon flux ratio in cosmic rays from 1.9 GV to 2.6 TV with the alpha magnetic spectrometer on the International Space Station. Phys. Rev. Lett. 117(23), 231102 (2016). doi:10.1103/PhysRevLett.117.231102

    ADS  Article  Google Scholar 

  15. F. Aharonian, A.G. Akhperjanian, A.R. Bazer-Bachi, et al., First detection of a VHE gamma-ray spectral maximum from a cosmic source: HESS discovery of the Vela X nebula. Astron. Astrophys. 448, 43–47 (2006). doi:10.1051/0004-6361:200600014

    ADS  Article  Google Scholar 

  16. G.E. Allen, K. Chow, T. DeLaney, et al., On the expansion rate, age, and distance of the supernova remnant G266.2-1.2 (Vela Jr.). Astrophys. J. 798, 82 (2015). doi:10.1088/0004-637X/798/2/82

    ADS  Article  Google Scholar 

  17. E. Amato, P. Blasi, A kinetic approach to cosmic-ray-induced streaming instability at supernova shocks. Mon. Not. R. Astron. Soc. 392, 1591–1600 (2009). doi:10.1111/j.1365-2966.2008.14200.x

    ADS  Article  Google Scholar 

  18. E. Amato, M. Salvati, R. Bandiera, et al., Inhomogeneous models for plerions: the surface brightness profile of the Crab Nebula. Astron. Astrophys. 359, 1107–1110 (2000)

    ADS  Google Scholar 

  19. AMS-01 Collaboration, M. Aguilar, J. Alcaraz, et al., Cosmic-ray positron fraction measurement from 1 to 30 GeV with AMS-01. Phys. Lett. B 646, 145–154 (2007). doi:10.1016/j.physletb.2007.01.024

    ADS  Article  Google Scholar 

  20. J. Arons, Theory of pulsar winds, in Neutron Stars in Supernova Remnants, ed. by P.O. Slane, B.M. Gaensler Astronomical Society of the Pacific Conference Series, vol. 271, 2002, p. 71

    Google Scholar 

  21. J. Arons, Pulsar wind nebulae as cosmic pevatrons: a current sheet’s tale. Space Sci. Rev. 173, 341–367 (2012). doi:10.1007/s11214-012-9885-1

    ADS  Google Scholar 

  22. Z. Arzoumanian, D.F. Chernoff, J.M. Cordes, The velocity distribution of isolated radio pulsars. Astrophys. J. 568, 289–301 (2002). doi:10.1086/338805

    ADS  Article  Google Scholar 

  23. A.M. Atoyan, F.A. Aharonian, On the mechanisms of gamma radiation in the Crab Nebula. Mon. Not. R. Astron. Soc. 278, 525–541 (1996). doi:10.1093/mnras/278.2.525

    ADS  Article  Google Scholar 

  24. K. Auchettl, P. Slane, R.W. Romani, et al., X-ray analysis of the proper motion and pulsar wind nebula for PSR J1741-2054. Astrophys. J. 802, 68 (2015). doi:10.1088/0004-637X/802/1/68

    ADS  Article  Google Scholar 

  25. W.I. Axford, The interaction of the solar wind with the interstellar medium. NASA Spec. Publ. 308, 609 (1972)

    ADS  Google Scholar 

  26. W.I. Axford, E. Leer, G. Skadron, The acceleration of cosmic rays by shock waves, in Proc. 15th ICRC (Plovdiv), vol. 11, 1977, p. 132

    Google Scholar 

  27. A. Bamba, T. Anada, T. Dotani, et al., X-ray evolution of pulsar wind nebulae. Astrophys. J. 719, 116–120 (2010). doi:10.1088/2041-8205/719/2/L116

    ADS  Article  Google Scholar 

  28. R. Bandiera, Modelling non-axisymmetric bow shocks. Astron. Astrophys. 276, 648 (1993)

    ADS  Google Scholar 

  29. R. Bandiera, On the X-ray feature associated with the Guitar nebula. Astron. Astrophys. 490, 3–6 (2008). doi:10.1051/0004-6361:200810666

    ADS  Article  Google Scholar 

  30. V.B. Baranov, K.V. Krasnobaev, A.G. Kulikovskii, A model of the interaction of the solar wind with the interstellar medium. Sov. Phys. Dokl. 15, 791 (1971)

    ADS  Google Scholar 

  31. J.J. Beatty, A. Bhattacharyya, C. Bower, et al., New measurement of the cosmic-ray positron fraction from 5 to 15 GeV. Phys. Rev. Lett. 93(24), 241102 (2004). doi:10.1103/PhysRevLett.93.241102

    ADS  Article  Google Scholar 

  32. M.C. Begelman, Z.-Y. Li, An axisymmetric magnetohydrodynamic model for the Crab pulsar wind bubble. Astrophys. J. 397, 187–195 (1992). doi:10.1086/171778

    ADS  Article  Google Scholar 

  33. A.R. Bell, The acceleration of cosmic rays in shock fronts. I. Mon. Not. R. Astron. Soc. 182, 147–156 (1978)

    ADS  Article  Google Scholar 

  34. A.R. Bell, Turbulent amplification of magnetic field and diffusive shock acceleration of cosmic rays. Mon. Not. R. Astron. Soc. 353, 550–558 (2004)

    ADS  Article  Google Scholar 

  35. A.R. Bell, The interaction of cosmic rays and magnetized plasma. Mon. Not. R. Astron. Soc. 358, 181–187 (2005)

    ADS  Article  Google Scholar 

  36. A.R. Bell, Cosmic ray acceleration. Astropart. Phys. 43, 56–70 (2013). doi:10.1016/j.astropartphys.2012.05.022

    ADS  Article  Google Scholar 

  37. V.S. Berezinskii, S.V. Bulanov, V.A. Dogiel, et al., Astrophysics of Cosmic Rays 1990

    Google Scholar 

  38. A.J. Bird, A. Bazzano, L. Bassani, et al., The fourth IBIS/ISGRI soft gamma-ray survey catalog. Astrophys. J. Suppl. Ser. 186, 1–9 (2010). doi:10.1088/0067-0049/186/1/1

    ADS  Article  Google Scholar 

  39. J. Birn, E.R. Priest, Reconnection of Magnetic Fields 2007

    Google Scholar 

  40. R. Blandford, D. Eichler, Particle acceleration at astrophysical shocks: a theory of cosmic ray origin. Phys. Rep. 154, 1–75 (1987). doi:10.1016/0370-1573(87)90134-7

    ADS  Google Scholar 

  41. R.D. Blandford, J.P. Ostriker, Particle acceleration by astrophysical shocks. Astrophys. J. 221, 29–32 (1978)

    ADS  Article  Google Scholar 

  42. P. Blasi, E. Amato, Positrons from Pulsar Winds. Astrophysics and Space Science Proceedings, vol. 21, 2011, p. 624

    Google Scholar 

  43. P. Blasi, E. Amato, Diffusive propagation of cosmic rays from supernova remnants in the Galaxy. I: spectrum and chemical composition. J. Cosmol. Astropart. Phys. 1, 010 (2012a). doi:10.1088/1475-7516/2012/01/010

    ADS  Article  Google Scholar 

  44. P. Blasi, E. Amato, Diffusive propagation of cosmic rays from supernova remnants in the Galaxy. II: anisotropy. J. Cosmol. Astropart. Phys. 1, 011 (2012b). doi:10.1088/1475-7516/2012/01/011

    ADS  Article  Google Scholar 

  45. J.M. Blondin, R.A. Chevalier, D.M. Frierson, Pulsar wind nebulae in evolved supernova remnants. Astrophys. J. 563, 806–815 (2001). doi:10.1086/324042

    ADS  Article  Google Scholar 

  46. F. Bocchino, A.M. Bykov, The plerion nebula in IC 443: the XMM-Newton view. Astron. Astrophys. 376, 248–253 (2001). doi:10.1051/0004-6361:20010882

    ADS  Article  Google Scholar 

  47. F. Bocchino, A. Maggio, S. Sciortino, ROSAT PSPC observation of the NE region of the VELA supernova remnant. III. The two-component nature of the X-ray emission and its implications on the ISM. Astron. Astrophys. 342, 839–853 (1999)

    ADS  Google Scholar 

  48. M. Boezio, G. Barbiellini, V. Bonvicini, et al., Measurements of cosmic-ray electrons and positrons by the Wizard/CAPRICE collaboration. Adv. Space Res. 27, 669–674 (2001). doi:10.1016/S0273-1177(01)00108-9

    ADS  Article  Google Scholar 

  49. S. Brownsberger, R.W. Romani, A survey for H\(\alpha\) pulsar bow shocks. Astrophys. J. 784, 154 (2014). doi:10.1088/0004-637X/784/2/154

    ADS  Article  Google Scholar 

  50. N. Bucciantini, Review of the theory of pulsar-wind nebulae. Astron. Nachr. 335, 234–239 (2014). doi:10.1002/asna.201312024

    ADS  Article  Google Scholar 

  51. N. Bucciantini, R. Bandiera, Pulsar bow-shock nebulae. I. Physical regimes and detectability conditions. Astron. Astrophys. 375, 1032–1039 (2001). doi:10.1051/0004-6361:20010900

    ADS  Article  Google Scholar 

  52. N. Bucciantini, E. Amato, L. Del Zanna, Relativistic MHD simulations of pulsar bow-shock nebulae. Astron. Astrophys. 434, 189–199 (2005). doi:10.1051/0004-6361:20042205

    ADS  Article  Google Scholar 

  53. N. Bucciantini, J. Arons, E. Amato, Modelling spectral evolution of pulsar wind nebulae inside supernova remnants. Mon. Not. R. Astron. Soc. 410, 381–398 (2011). doi:10.1111/j.1365-2966.2010.17449.x

    ADS  Article  Google Scholar 

  54. R. Bühler, R. Blandford, The surprising Crab pulsar and its nebula: a review. Rep. Prog. Phys. 77(6), 066901 (2014). doi:10.1088/0034-4885/77/6/066901

    ADS  Article  Google Scholar 

  55. R. Bühler, M. Giomi, The imprint of pulsar parameters on the morphology of pulsar wind nebulae. Mon. Not. R. Astron. Soc. 462, 2762–2776 (2016). doi:10.1093/mnras/stw1773

    ADS  Article  Google Scholar 

  56. A.M. Bykov, Energetic processes and nonthermal emission of starforming complexes, in Massive Stars and High-Energy Emission in OB Associations, ed. by G. Rauw, Y. Nazé, R. Blomme, et al., 2005, pp. 95–98

    Google Scholar 

  57. A.M. Bykov, D.C. Ellison, M. Renaud, Magnetic fields in cosmic particle acceleration sources. Space Sci. Rev. 166, 71–95 (2012). doi:10.1007/s11214-011-9761-4

    ADS  Google Scholar 

  58. A.M. Bykov, P.E. Gladilin, S.M. Osipov, Non-linear model of particle acceleration at colliding shock flows. Mon. Not. R. Astron. Soc. 429, 2755–2762 (2013). doi:10.1093/mnras/sts553

    ADS  Article  Google Scholar 

  59. A.M. Bykov, Y.A. Uvarov, D.C. Ellison, Dots, clumps, and filaments: the intermittent images of synchrotron emission in random magnetic fields of young supernova remnants. Astrophys. J. 689, 133 (2008). doi:10.1086/595868

    ADS  Article  Google Scholar 

  60. A.M. Bykov, G.G. Pavlov, A.V. Artemyev, et al., Twinkling pulsar wind nebulae in the synchrotron cut-off regime and the \(\gamma\)-ray flares in the Crab Nebula. Mon. Not. R. Astron. Soc. 421, 67–71 (2012). doi:10.1111/j.1745-3933.2011.01208.x

    ADS  Article  Google Scholar 

  61. A.M. Bykov, M.A. Malkov, J.C. Raymond, et al., Collisionless shocks in partly ionized plasma with cosmic rays: microphysics of non-thermal components. Space Sci. Rev. 178, 599–632 (2013a). doi:10.1007/s11214-013-9984-7

    ADS  Google Scholar 

  62. A.M. Bykov, A. Brandenburg, M.A. Malkov, et al., Microphysics of cosmic ray driven plasma instabilities. Space Sci. Rev. (2013b). doi:10.1007/s11214-013-9988-3

    Google Scholar 

  63. A.M. Bykov, D.C. Ellison, S.M. Osipov, et al., Magnetic field amplification in nonlinear diffusive shock acceleration including resonant and non-resonant cosmic-ray driven instabilities. Astrophys. J. 789, 137 (2014). doi:10.1088/0004-637X/789/2/137

    ADS  Article  Google Scholar 

  64. A. Bykov, N. Gehrels, H. Krawczynski, et al., Particle acceleration in relativistic outflows. Space Sci. Rev. 173, 309–339 (2012). doi:10.1007/s11214-012-9896-y

    ADS  Google Scholar 

  65. F. Camilo, B.M. Gaensler, E.V. Gotthelf, et al., Chandra detection of a synchrotron nebula around the Vela-like pulsar J1016-5857. Astrophys. J. 616, 1118–1123 (2004). doi:10.1086/424924

    ADS  Article  Google Scholar 

  66. P.A. Caraveo, G.F. Bignami, A. De Luca, et al., Geminga’s tails: a pulsar bow shock probing the interstellar medium. Science 301, 1345–1348 (2003). doi:10.1126/science.1086973

    ADS  Article  Google Scholar 

  67. C.J. Cesarsky, Cosmic-ray confinement in the galaxy. Annu. Rev. Astron. Astrophys. 18, 289–319 (1980). doi:10.1146/annurev.aa.18.090180.001445

    ADS  Article  Google Scholar 

  68. S. Chatterjee, J.M. Cordes, Smashing the Guitar: an evolving neutron star bow shock. Astrophys. J. 600, 51–54 (2004). doi:10.1086/381498

    ADS  Article  Google Scholar 

  69. R.A. Chevalier, A model for the X-ray luminosity of pulsar nebulae. Astrophys. J. 539, 45–48 (2000). doi:10.1086/312835

    ADS  Article  Google Scholar 

  70. R.A. Chevalier, D. Luo, Magnetic shaping of planetary nebulae and other stellar wind bubbles. Astrophys. J. 421, 225–235 (1994). doi:10.1086/173640

    ADS  Article  Google Scholar 

  71. R.A. Chevalier, S.P. Reynolds, Pulsar wind nebulae with thick toroidal structure. Astrophys. J. 740, 26 (2011). doi:10.1088/2041-8205/740/1/L26

    ADS  Article  Google Scholar 

  72. J.M. Cordes, R.W. Romani, S.C. Lundgren, The Guitar nebula—a bow shock from a slow-spin, high-velocity neutron star. Nature 362, 133–135 (1993). doi:10.1038/362133a0

    ADS  Article  Google Scholar 

  73. A. Danilenko, P. Shternin, A. Karpova, et al., The \(\gamma\)-ray pulsar J0633+0632 in X-rays. Publ. Astron. Soc. Aust. 32, 038 (2015). doi:10.1017/pasa.2015.40

    ADS  Article  Google Scholar 

  74. W. Daughton, V. Roytershteyn, H. Karimabadi, et al., Role of electron physics in the development of turbulent magnetic reconnection in collisionless plasmas. Nat. Phys. 7, 539–542 (2011). doi:10.1038/nphys1965

    Article  Google Scholar 

  75. O.C. de Jager, P.O. Slane, S. LaMassa, Probing the radio to X-ray connection of the Vela X pulsar wind nebula with Fermi LAT and H.E.S.S. Astrophys. J. 689, 125 (2008). doi:10.1086/595959

    Article  Google Scholar 

  76. A. De Luca, R.P. Mignani, M. Marelli, et al., PSR J0357+3205: a fast-moving pulsar with a very unusual X-ray trail. Astrophys. J. 765, 19 (2013). doi:10.1088/2041-8205/765/1/L19

    Article  Google Scholar 

  77. L. Del Zanna, E. Amato, N. Bucciantini, Axially symmetric relativistic MHD simulations of pulsar wind nebulae in supernova remnants. On the origin of torus and jet-like features. Astron. Astrophys. 421, 1063–1073 (2004). doi:10.1051/0004-6361:20035936

    ADS  Article  Google Scholar 

  78. L. Del Zanna, D. Volpi, E. Amato, et al., Simulated synchrotron emission from pulsar wind nebulae. Astron. Astrophys. 453, 621–633 (2006). doi:10.1051/0004-6361:20064858

    ADS  MATH  Article  Google Scholar 

  79. M. Di Mauro, F. Donato, N. Fornengo, et al., Interpretation of AMS-02 electrons and positrons data. J. Cosmol. Astropart. Phys. 4, 006 (2014). doi:10.1088/1475-7516/2014/04/006

    Article  Google Scholar 

  80. M. Di Mauro, F. Donato, N. Fornengo, et al., Dark matter vs. astrophysics in the interpretation of AMS-02 electron and positron data. J. Cosmol. Astropart. Phys. 5, 031 (2016). doi:10.1088/1475-7516/2016/05/031

    Article  Google Scholar 

  81. M. Di Mauro, S. Manconi, A. Vittino, et al., Theoretical interpretation of Pass 8 Fermi-LAT \(e^{+} + e^{-}\) data. ArXiv e-prints (2017)

  82. R. Dodson, D. Lewis, D. McConnell, et al., The radio nebula surrounding the Vela pulsar. Mon. Not. R. Astron. Soc. 343, 116–124 (2003a). doi:10.1046/j.1365-8711.2003.06653.x

    ADS  Article  Google Scholar 

  83. R. Dodson, D. Legge, J.E. Reynolds, et al., The Vela pulsar’s proper motion and parallax derived from VLBI observations. Astrophys. J. 596, 1137–1141 (2003b). doi:10.1086/378089

    ADS  Article  Google Scholar 

  84. J.F. Drake, M. Swisdak, M. Opher, A model of the heliosphere with jets. Astrophys. J. 808, 44 (2015). doi:10.1088/2041-8205/808/2/L44

    ADS  Article  Google Scholar 

  85. M. Durant, O. Kargaltsev, G.G. Pavlov, et al., The helical jet of the Vela pulsar. Astrophys. J. 763, 72 (2013). doi:10.1088/0004-637X/763/2/72

    ADS  Article  Google Scholar 

  86. J. Eastwood, M. Goldman, D. Newman, et al., Ion and electron kinetic physics associated with magnetotail dipolarization fronts, in EGU General Assembly Conference Abstracts. EGU General Assembly Conference Abstracts, vol. 18, 2016, p. 3535

    Google Scholar 

  87. D.C. Ellison, G.P. Double, Diffusive shock acceleration in unmodified relativistic, oblique shocks. Astropart. Phys. 22, 323–338 (2004). doi:10.1016/j.astropartphys.2004.08.005

    ADS  Article  Google Scholar 

  88. C.-A. Faucher-Giguère, V.M. Kaspi, Birth and evolution of isolated radio pulsars. Astrophys. J. 643, 332–355 (2006). doi:10.1086/501516

    ADS  Article  Google Scholar 

  89. D.A. Frail, M.F. Bietenholz, C.B. Markwardt, A radio/X-ray comparison of the Vela X region. Astrophys. J. 475, 224–230 (1997)

    ADS  Article  Google Scholar 

  90. D.A. Frail, E.B. Giacani, W.M. Goss, et al., The pulsar wind nebula around PSR B1853+01 in the supernova remnant W44. Astrophys. J. 464, 165 (1996). doi:10.1086/310103

    ADS  Article  Google Scholar 

  91. B.M. Gaensler, P.O. Slane, The evolution and structure of pulsar wind nebulae. Annu. Rev. Astron. Astrophys. 44, 17–47 (2006). doi:10.1146/annurev.astro.44.051905.092528

    ADS  Article  Google Scholar 

  92. B.M. Gaensler, N.S. Schulz, V.M. Kaspi, et al., XMM-Newton observations of PSR B1823-13: an asymmetric synchrotron nebula around a Vela-like pulsar. Astrophys. J. 588, 441–451 (2003). doi:10.1086/368356

    ADS  Article  Google Scholar 

  93. B.M. Gaensler, E. van der Swaluw, F. Camilo, et al., The mouse that soared: high-resolution X-ray imaging of the pulsar-powered bow shock G359.23-0.82. Astrophys. J. 616, 383–402 (2004). doi:10.1086/424906

    ADS  Article  Google Scholar 

  94. J.D. Gelfand, P.O. Slane, W. Zhang, A dynamical model for the evolution of a pulsar wind nebula inside a nonradiative supernova remnant. Astrophys. J. 703, 2051–2067 (2009). doi:10.1088/0004-637X/703/2/2051

    ADS  Article  Google Scholar 

  95. E.A. Golikov, V.V. Izmodenov, D.B. Alexashov, et al., Two-jet astrosphere model: effect of azimuthal magnetic field. Mon. Not. R. Astron. Soc. 464, 1065–1076 (2017). doi:10.1093/mnras/stw2402

    ADS  Article  Google Scholar 

  96. M.E. Gonzalez, V.M. Kaspi, M.J. Pivovaroff, et al., Chandra and XMM-Newton observations of the Vela-like pulsar B1046-58. Astrophys. J. 652, 569–575 (2006). doi:10.1086/507125

    ADS  Article  Google Scholar 

  97. D.A. Green, Constraints on the distribution of supernova remnants with galactocentric radius. Mon. Not. R. Astron. Soc. 454, 1517–1524 (2015). doi:10.1093/mnras/stv1885

    ADS  Article  Google Scholar 

  98. M.-H. Grondin, R.W. Romani, M. Lemoine-Goumard, et al., The Vela-X pulsar wind nebula revisited with four years of Fermi Large Area Telescope observations. Astrophys. J. 774, 110 (2013). doi:10.1088/0004-637X/774/2/110

    ADS  Article  Google Scholar 

  99. H.E.S.S. Collaboration, H. Abdalla, A. Abramowski, et al., Deeper H.E.S.S. observations of Vela Junior (RX J0852.0-4622): morphology studies and resolved spectroscopy. ArXiv e-prints (2016)

  100. A.S. Hales, S. Casassus, H. Alvarez, et al., Vela X at 31 GHz. Astrophys. J. 613, 977–985 (2004). doi:10.1086/422598

    ADS  Article  Google Scholar 

  101. C.A. Hales, B.M. Gaensler, S. Chatterjee, et al., A proper motion for the pulsar wind nebula G359.23-0.82, the ”Mouse,” associated with the energetic radio pulsar J1747-2958. Astrophys. J. 706, 1316–1322 (2009). doi:10.1088/0004-637X/706/2/1316

    ADS  Article  Google Scholar 

  102. J.P. Halpern, E.V. Gotthelf, K.M. Leighly, et al., A possible X-ray and radio counterpart of the high-energy gamma-ray source 3EG J2227+6122. Astrophys. J. 547, 323–333 (2001a). doi:10.1086/318361

    ADS  Article  Google Scholar 

  103. J.P. Halpern, F. Camilo, E.V. Gotthelf, et al., PSR J2229+6114: discovery of an energetic young pulsar in the error box of the EGRET source 3EG J2227+6122. Astrophys. J. 552, 125–128 (2001b). doi:10.1086/320347

    ADS  Article  Google Scholar 

  104. P.A. Harrison, A.G. Lyne, B. Anderson, New determinations of the proper motions of 44 pulsars. Mon. Not. R. Astron. Soc. 261, 113–124 (1993). doi:10.1093/mnras/261.1.113

    ADS  Article  Google Scholar 

  105. E.A. Helder, J. Vink, A.M. Bykov, et al., Observational signatures of particle acceleration in supernova remnants. Space Sci. Rev. 173, 369–431 (2012). doi:10.1007/s11214-012-9919-8

    ADS  Google Scholar 

  106. D.J. Helfand, E.V. Gotthelf, J.P. Halpern, Vela pulsar and its synchrotron nebula. Astrophys. J. 556, 380–391 (2001). doi:10.1086/321533

    ADS  Article  Google Scholar 

  107. J.J. Hester, S.R. Kulkarni, The origin and energetics of CTB 80. Astrophys. J. 331, 121–125 (1988). doi:10.1086/185249

    ADS  Article  Google Scholar 

  108. J.A. Hinton, S. Funk, R.D. Parsons, et al., Escape from Vela X. Astrophys. J. 743, 7 (2011). doi:10.1088/2041-8205/743/1/L7

    ADS  Article  Google Scholar 

  109. G. Hobbs, D.R. Lorimer, A.G. Lyne, et al., A statistical study of 233 pulsar proper motions. Mon. Not. R. Astron. Soc. 360, 974–992 (2005). doi:10.1111/j.1365-2966.2005.09087.x

    ADS  Article  Google Scholar 

  110. D. Hooper, I. Cholis, T. Linden, et al., HAWC observations strongly favor pulsar interpretations of the cosmic-ray positron excess. ArXiv e-prints (2017)

  111. C.Y. Hui, W. Becker, X-ray emission properties of the old pulsar PSR B2224+65. Astron. Astrophys. 467, 1209–1214 (2007). doi:10.1051/0004-6361:20066562

    ADS  Article  Google Scholar 

  112. C.Y. Hui, R.H.H. Huang, L. Trepl, et al., XMM-Newton observation of PSR B2224+65 and its jet. Astrophys. J. 747, 74 (2012). doi:10.1088/0004-637X/747/1/74

    ADS  Article  Google Scholar 

  113. S.P. Johnson, Q.D. Wang, The pulsar B2224+65 and its jets: a two epoch X-ray analysis. Mon. Not. R. Astron. Soc. 408, 1216–1224 (2010). doi:10.1111/j.1365-2966.2010.17200.x

    ADS  Article  Google Scholar 

  114. J.R. Jokipii, Rate of energy gain and maximum energy in diffusive shock acceleration. Astrophys. J. 313, 842–846 (1987). doi:10.1086/165022

    ADS  Article  Google Scholar 

  115. O. Kargaltsev, G.G. Pavlov, Pulsar wind nebulae in the Chandra era, in 40 Years of Pulsars: Millisecond Pulsars, Magnetars and More, ed. by C. Bassa, Z. Wang, A. Cumming, et al.American Institute of Physics Conference Series, vol. 983, 2008, pp. 171–185. doi:10.1063/1.2900138

    Google Scholar 

  116. O. Kargaltsev, B. Rangelov, G.G. Pavlov, Gamma-ray and X-ray properties of pulsar wind nebulae and unidentified galactic TeV sources. ArXiv e-prints (2013)

  117. O. Kargaltsev, B. Cerutti, Y. Lyubarsky, et al., Pulsar-wind nebulae. Recent progress in observations and theory. Space Sci. Rev. 191, 391–439 (2015). doi:10.1007/s11214-015-0171-x

    ADS  Google Scholar 

  118. S. Katsuda, K. Mori, R. Petre, et al., Suzaku detection of diffuse hard X-ray emission outside Vela X. Publ. Astron. Soc. Jpn. 63, 827–836 (2011). doi:10.1093/pasj/63.sp3.S827

    Article  Google Scholar 

  119. C.F. Kennel, F.V. Coroniti, Confinement of the Crab pulsar’s wind by its supernova remnant. Astrophys. J. 283, 694–709 (1984). doi:10.1086/162356

    ADS  Article  Google Scholar 

  120. U. Keshet, E. Waxman, Energy spectrum of particles accelerated in relativistic collisionless shocks. Phys. Rev. Lett. 94(11), 111102 (2005). doi:10.1103/PhysRevLett.94.111102

    ADS  Article  Google Scholar 

  121. J.G. Kirk, Y. Lyubarsky, J. Petri, The theory of pulsar winds and nebulae, in Astrophysics and Space Science Library, ed. by W. Becker Astrophysics and Space Science Library, vol. 357, 2009, p. 421. doi:10.1007/978-3-540-76965-1_16

    Google Scholar 

  122. S.S. Komissarov, Y.E. Lyubarsky, The origin of peculiar jet-torus structure in the Crab nebula. Mon. Not. R. Astron. Soc. 344, 93–96 (2003). doi:10.1046/j.1365-8711.2003.07097.x

    ADS  Article  Google Scholar 

  123. S.S. Komissarov, Y.E. Lyubarsky, Synchrotron nebulae created by anisotropic magnetized pulsar winds. Mon. Not. R. Astron. Soc. 349, 779–792 (2004). doi:10.1111/j.1365-2966.2004.07597.x

    ADS  Article  Google Scholar 

  124. R. Kothes, B. Uyaniker, S. Pineault, The supernova remnant G106.3+2.7 and its pulsar-wind nebula: relics of triggered star formation in a complex environment. Astrophys. J. 560, 236–243 (2001). doi:10.1086/322511

    ADS  Article  Google Scholar 

  125. G.F. Krymskii, A regular mechanism for the acceleration of charged particles on the front of a shock wave. Akad. Nauk SSSR Dokl. 234, 1306–1308 (1977)

    ADS  Google Scholar 

  126. S.R. Kulkarni, J.J. Hester, Discovery of a nebula around PSR1957+20. Nature 335, 801–803 (1988). doi:10.1038/335801a0

    ADS  Article  Google Scholar 

  127. M. Lemoine, E. Waxman, Anisotropy vs chemical composition at ultra-high energies. J. Cosmol. Astropart. Phys. 11, 009 (2009). doi:10.1088/1475-7516/2009/11/009

    ADS  Article  Google Scholar 

  128. K.P. Levenfish, A.M. Bykov, M. Durant, et al., Finest persistent structures in the Vela PWN. Mem. Soc. Astron. Ital. 84, 588 (2013)

    ADS  Google Scholar 

  129. X.H. Li, F.J. Lu, T.P. Li, X-ray spectroscopy of PSR B1951+32 and its pulsar wind nebula. Astrophys. J. 628, 931–937 (2005). doi:10.1086/430941

    ADS  Article  Google Scholar 

  130. X.-H. Li, F.-J. Lu, Z. Li, Nonthermal X-ray properties of rotation-powered pulsars and their wind nebulae. Astrophys. J. 682, 1166–1176 (2008). doi:10.1086/589495

    ADS  Article  Google Scholar 

  131. S.G. Lucek, A.R. Bell, Non-linear amplification of a magnetic field driven by cosmic ray streaming. Mon. Not. R. Astron. Soc. 314, 65–74 (2000)

    ADS  Article  Google Scholar 

  132. Y.E. Lyubarsky, On the structure of the inner Crab nebula. Mon. Not. R. Astron. Soc. 329, 34–36 (2002). doi:10.1046/j.1365-8711.2002.05151.x

    ADS  Article  Google Scholar 

  133. C. Maitra, F. Acero, C. Venter, Constraining the geometry of PSR J0855-4644: a nearby pulsar wind nebula with double torus/jet morphology. ArXiv e-prints (2016)

  134. A. Marcowith, A. Bret, A. Bykov, et al., The microphysics of collisionless shock waves. Rep. Prog. Phys. 79(4), 046901 (2016). doi:10.1088/0034-4885/79/4/046901

    ADS  Article  Google Scholar 

  135. M. Marelli, D. Pizzocaro, A. De Luca, et al., The tale of the two tails of the oldish PSR J2055+2539. Astrophys. J. 819, 40 (2016). doi:10.3847/0004-637X/819/1/40

    ADS  Article  Google Scholar 

  136. C.B. Markwardt, H.B. Ögelman, The X-ray bow shock nebula of the Vela pulsar. Mem. Soc. Astron. Ital. 69, 927 (1998)

    ADS  Google Scholar 

  137. T.E. Marubini, R.R. Sefako, C. Venter, et al., A search for optical counterparts of the complex Vela X system. ArXiv e-prints (2015)

  138. F. Mattana, D. Götz, R. Terrier, et al., The emerging population of pulsar wind nebulae in hard X-rays, in American Institute of Physics Conference Series, ed. by J. Rodriguez, P. Ferrando American Institute of Physics Conference Series, vol. 1126, 2009, pp. 259–262. doi:10.1063/1.3149427

    Google Scholar 

  139. F. Mattana, D. Götz, R. Terrier, et al., Extended hard X-ray emission from the Vela pulsar wind nebula. Astrophys. J. 743, 18 (2011). doi:10.1088/2041-8205/743/1/L18

    ADS  Article  Google Scholar 

  140. R.P. Mignani, N. Rea, V. Testa, et al., Observations of three young \(\gamma\)-ray pulsars with the Gran Telescopio Canarias. Mon. Not. R. Astron. Soc. 461, 4317–4328 (2016). doi:10.1093/mnras/stw1629

    ADS  Article  Google Scholar 

  141. D.-S. Moon, J.-J. Lee, S.S. Eikenberry, et al., PSR B1951+32: a bow shock-confined X-ray nebula, a synchrotron knot, and an optical counterpart candidate. Astrophys. J. 610, 33–36 (2004). doi:10.1086/423238

    ADS  Article  Google Scholar 

  142. K. Mori, E.V. Gotthelf, F. Dufour, et al., A broadband X-ray study of the Geminga pulsar with NuSTAR and XMM-Newton. Astrophys. J. 793, 88 (2014). doi:10.1088/0004-637X/793/2/88

    ADS  Article  Google Scholar 

  143. C.-Y. Ng, N. Bucciantini, B.M. Gaensler, et al., An extreme pulsar tail protruding from the frying pan supernova remnant. Astrophys. J. 746, 105 (2012). doi:10.1088/0004-637X/746/1/105

    ADS  Article  Google Scholar 

  144. C.A. Norman, D.B. Melrose, A. Achterberg, The origin of cosmic rays above 10 18.5 eV. Astrophys. J. 454, 60 (1995). doi:10.1086/176465

    ADS  Article  Google Scholar 

  145. B. Olmi, L. Del Zanna, E. Amato, et al., Multi-D magnetohydrodynamic modelling of pulsar wind nebulae: recent progress and open questions. J. Plasma Phys. 82(6), 635820601 (2016). doi:10.1017/S0022377816000957

    Article  Google Scholar 

  146. M. Opher, J.F. Drake, B. Zieger, et al., Magnetized jets driven by the Sun: the structure of the heliosphere revisited. Astrophys. J. 800, 28 (2015). doi:10.1088/2041-8205/800/2/L28

    ADS  Article  Google Scholar 

  147. M. Ostrowski, Monte Carlo simulations of energetic particle transport in weakly inhomogeneous magnetic fields. I—particle acceleration in relativistic shock waves with oblique magnetic fields. Mon. Not. R. Astron. Soc. 249, 551–559 (1991)

    ADS  MATH  Article  Google Scholar 

  148. L. Pavan, E. Bozzo, G. Pühlhofer, et al., IGR J11014-6103: a newly discovered pulsar wind nebula? Astron. Astrophys. 533, 74 (2011). doi:10.1051/0004-6361/201117379

    Article  Google Scholar 

  149. L. Pavan, P. Bordas, G. Pühlhofer, et al., The long helical jet of the Lighthouse nebula, IGR J11014-6103. Astron. Astrophys. 562, 122 (2014). doi:10.1051/0004-6361/201322588

    Article  Google Scholar 

  150. L. Pavan, G. Pühlhofer, P. Bordas, et al., Closer view of the IGR J11014-6103 outflows. Astron. Astrophys. 591, 91 (2016). doi:10.1051/0004-6361/201527703

    Article  Google Scholar 

  151. G.G. Pavlov, V.E. Zavlin, D. Sanwal, et al., The X-ray spectrum of the Vela pulsar resolved with the Chandra X-ray observatory. Astrophys. J. 552, 129–133 (2001a). doi:10.1086/320342

    ADS  Article  Google Scholar 

  152. G.G. Pavlov, O.Y. Kargaltsev, D. Sanwal, et al., Variability of the Vela pulsar wind nebula observed with Chandra. Astrophys. J. 554, 189–192 (2001b). doi:10.1086/321721

    ADS  Article  Google Scholar 

  153. G.G. Pavlov, M.A. Teter, O. Kargaltsev, et al., The variable jet of the Vela pulsar. Astrophys. J. 591, 1157–1171 (2003). doi:10.1086/375531

    ADS  Article  Google Scholar 

  154. G. Pelletier, M. Lemoine, A. Marcowith, On Fermi acceleration and magnetohydrodynamic instabilities at ultra-relativistic magnetized shock waves. Mon. Not. R. Astron. Soc. 393, 587–597 (2009)

    ADS  Article  Google Scholar 

  155. A. Pellizzoni, F. Mattana, S. Mereghetti, et al., Pulsar bow-shocks. Mem. Soc. Astron. Ital. 5, 195 (2004)

    Google Scholar 

  156. A. Pellizzoni, A. Trois, M. Tavani, et al., Detection of gamma-ray emission from the Vela pulsar wind nebula with AGILE. Science 327, 663 (2010). doi:10.1126/science.1183844

    ADS  Article  Google Scholar 

  157. R. Petre, K.D. Kuntz, R.L. Shelton, The X-ray structure and spectrum of the pulsar wind nebula surrounding PSR B1853+01 in W44. Astrophys. J. 579, 404–410 (2002). doi:10.1086/342672

    ADS  Article  Google Scholar 

  158. O. Porth, S.S. Komissarov, R. Keppens, Three-dimensional magnetohydrodynamic simulations of the Crab nebula. Mon. Not. R. Astron. Soc. 438, 278–306 (2014). doi:10.1093/mnras/stt2176

    ADS  Article  Google Scholar 

  159. O. Porth, M.J. Vorster, M. Lyutikov, et al., Diffusion in pulsar wind nebulae: an investigation using magnetohydrodynamic and particle transport models. Mon. Not. R. Astron. Soc. 460, 4135–4149 (2016). doi:10.1093/mnras/stw1152

    ADS  Article  Google Scholar 

  160. B. Posselt, G.G. Pavlov, P.O. Slane, et al., Geminga’s puzzling pulsar wind nebula. Astrophys. J. 835, 66 (2017). doi:10.3847/1538-4357/835/1/66

    ADS  Article  Google Scholar 

  161. B. Rangelov, G.G. Pavlov, O. Kargaltsev, et al., First detection of a pulsar bow shock nebula in far-UV: PSR J0437-4715. Astrophys. J. 831, 129 (2016). doi:10.3847/0004-637X/831/2/129

    ADS  Article  Google Scholar 

  162. P.S. Ray, M. Kerr, D. Parent, et al., Precise \(\gamma\)-ray timing and radio observations of 17 Fermi \(\gamma\)-ray pulsars. Astrophys. J. Suppl. Ser. 194, 17 (2011). doi:10.1088/0067-0049/194/2/17

    ADS  Article  Google Scholar 

  163. M.J. Rees, J.E. Gunn, The origin of the magnetic field and relativistic particles in the Crab nebula. Mon. Not. R. Astron. Soc. 167, 1–12 (1974). doi:10.1093/mnras/167.1.1

    ADS  Article  Google Scholar 

  164. B. Reville, S. O’Sullivan, P. Duffy, et al., The transport of cosmic rays in self-excited magnetic turbulence. Mon. Not. R. Astron. Soc. 386, 509–515 (2008). doi:10.1111/j.1365-2966.2008.13059.x

    ADS  Article  Google Scholar 

  165. S.P. Reynolds, R.A. Chevalier, Evolution of pulsar-driven supernova remnants. Astrophys. J. 278, 630–648 (1984). doi:10.1086/161831

    ADS  Article  Google Scholar 

  166. R.W. Romani, J.M. Cordes, I.-A. Yadigaroglu, X-ray emission from the Guitar nebula. Astrophys. J. 484, 137–140 (1997). doi:10.1086/310796

    ADS  Article  Google Scholar 

  167. R.W. Romani, M.S. Shaw, F. Camilo, et al., The Balmer-dominated bow shock and wind nebula structure of \(\gamma\)-ray pulsar PSR J1741-2054. Astrophys. J. 724, 908–914 (2010). doi:10.1088/0004-637X/724/2/908

    ADS  Article  Google Scholar 

  168. C.T. Russell, E.R. Priest, L.C. Lee, Physics of Magnetic Flux Ropes. Washington DC American Geophysical Union Geophysical Monograph Series, vol. 58, 1990. doi:10.1029/GM058

    Google Scholar 

  169. K.M. Schure, A.R. Bell, L. O’C Drury, et al., Diffusive shock acceleration and magnetic field amplification. Space Sci. Rev. 173, 491–519 (2012)

    ADS  Google Scholar 

  170. P.D. Serpico, Astrophysical models for the origin of the positron “excess”. Astropart. Phys. 39, 2–11 (2012). doi:10.1016/j.astropartphys.2011.08.007

    ADS  Article  Google Scholar 

  171. L. Sironi, A. Spitkovsky, Acceleration of particles at the termination shock of a relativistic striped wind. Astrophys. J. 741, 39 (2011). doi:10.1088/0004-637X/741/1/39

    ADS  Article  Google Scholar 

  172. L. Sironi, D. Giannios, M. Petropoulou, Plasmoids in relativistic reconnection, from birth to adulthood: first they grow, then they go. Mon. Not. R. Astron. Soc. 462, 48–74 (2016). doi:10.1093/mnras/stw1620

    ADS  Article  Google Scholar 

  173. L. Sironi, U. Keshet, M. Lemoine, Relativistic shocks: particle acceleration and magnetization. Space Sci. Rev. 191, 519–544 (2015). doi:10.1007/s11214-015-0181-8

    ADS  Article  Google Scholar 

  174. L. Sironi, A. Spitkovsky, J. Arons, The maximum energy of accelerated particles in relativistic collisionless shocks. Astrophys. J. 771, 54 (2013). doi:10.1088/0004-637X/771/1/54

    ADS  Article  Google Scholar 

  175. A.W. Strong, I.V. Moskalenko, V.S. Ptuskin, Cosmic-ray propagation and interactions in the galaxy. Annu. Rev. Nucl. Part. Sci. 57, 285–327 (2007)

    ADS  Article  Google Scholar 

  176. D.A. Swartz, G.G. Pavlov, T. Clarke, et al., High spatial resolution X-ray spectroscopy of the IC 443 pulsar wind nebula and environs. Astrophys. J. 808, 84 (2015). doi:10.1088/0004-637X/808/1/84

    ADS  Article  Google Scholar 

  177. S.I. Syrovatskii, The distribution of relativistic electrons in the galaxy and the spectrum of synchrotron radio emission. Sov. Astron. 3, 22 (1959)

    ADS  Google Scholar 

  178. M. Takamoto, J.G. Kirk, Rapid cosmic-ray acceleration at perpendicular shocks in supernova remnants. Astrophys. J. 809, 29 (2015). doi:10.1088/0004-637X/809/1/29

    ADS  Article  Google Scholar 

  179. H. Tananbaum, M.C. Weisskopf, W. Tucker, et al., Highlights and discoveries from the Chandra X-ray observatory. Rep. Prog. Phys. 77(6), 066902 (2014). doi:10.1088/0034-4885/77/6/066902

    ADS  Article  Google Scholar 

  180. X. Tang, R.A. Chevalier, Particle transport in young pulsar wind nebulae. Astrophys. J. 752, 83 (2012). doi:10.1088/0004-637X/752/2/83

    ADS  Article  Google Scholar 

  181. V. Tatischeff, M. Tavani, P. von Ballmoos, et al., The e-ASTROGAM gamma-ray space mission, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series. Proc. SPIE, vol. 9905, 2016, p. 99052. doi:10.1117/12.2231601

    Google Scholar 

  182. R. Trotta, G. Jóhannesson, I.V. Moskalenko, et al., Constraints on cosmic-ray propagation models from a global Bayesian analysis. Astrophys. J. 729, 106 (2011). doi:10.1088/0004-637X/729/2/106

    ADS  Article  Google Scholar 

  183. J.K. Truelove, C.F. McKee, Evolution of nonradiative supernova remnants. Astrophys. J. Suppl. Ser. 120, 299–326 (1999). doi:10.1086/313176

    ADS  Article  Google Scholar 

  184. E. van der Swaluw, Interaction of a magnetized pulsar wind with its surroundings. MHD simulations of pulsar wind nebulae. Astron. Astrophys. 404, 939–947 (2003). doi:10.1051/0004-6361:20030452

    ADS  Article  Google Scholar 

  185. E. van der Swaluw, T.P. Downes, R. Keegan, An evolutionary model for pulsar-driven supernova remnants. A hydrodynamical model. Astron. Astrophys. 420, 937–944 (2004). doi:10.1051/0004-6361:20035700

    ADS  Article  Google Scholar 

  186. E. van der Swaluw, A. Achterberg, Y.A. Gallant, et al., Interaction of high-velocity pulsars with supernova remnant shells. Astron. Astrophys. 397, 913–920 (2003). doi:10.1051/0004-6361:20021488

    ADS  Article  Google Scholar 

  187. J.P.W. Verbiest, J.M. Weisberg, A.A. Chael, et al., On pulsar distance measurements and their uncertainties. Astrophys. J. 755, 39 (2012). doi:10.1088/0004-637X/755/1/39

    ADS  Article  Google Scholar 

  188. A.A. Vinogradov, I.Y. Vasko, A.V. Artemyev, et al., Kinetic models of magnetic flux ropes observed in the Earth magnetosphere. Phys. Plasmas 23(7), 072901 (2016). doi:10.1063/1.4958319

    ADS  Article  Google Scholar 

  189. A. Vladimirov, Modeling magnetic field amplification in nonlinear diffusive shock acceleration, PhD thesis, North Carolina State University, 2009

  190. D. Volpi, L. Del Zanna, E. Amato, et al., Non-thermal emission from relativistic MHD simulations of pulsar wind nebulae: from synchrotron to inverse Compton. Astron. Astrophys. 485, 337–349 (2008). doi:10.1051/0004-6361:200809424

    ADS  MATH  Article  Google Scholar 

  191. E. Waxman, Cosmological gamma-ray bursts and the highest energy cosmic rays. Phys. Rev. Lett. 75, 386–389 (1995). doi:10.1103/PhysRevLett.75.386

    ADS  Article  Google Scholar 

  192. R. Weaver, R. McCray, J. Castor, et al., Interstellar bubbles. II—structure and evolution. Astrophys. J. 218, 377–395 (1977). doi:10.1086/155692

    ADS  Article  Google Scholar 

  193. K.W. Weiler, N. Panagia, VELA X and the evolution of plerions. Astron. Astrophys. 90, 269–282 (1980)

    ADS  Google Scholar 

  194. D.G. Wentzel, Cosmic-ray propagation in the galaxy—collective effects. Annu. Rev. Astron. Astrophys. 12, 71–96 (1974). doi:10.1146/annurev.aa.12.090174.000443

    ADS  Article  Google Scholar 

  195. F.P. Wilkin, Exact analytic solutions for stellar wind bow shocks. Astrophys. J. 459, 31 (1996). doi:10.1086/309939

    ADS  Article  Google Scholar 

  196. D. Yoon, S. Heinz, Bow-shock pulsar-wind nebulae passing through density discontinuities. Mon. Not. R. Astron. Soc. 464, 3297–3308 (2017). doi:10.1093/mnras/stw2590

    ADS  Article  Google Scholar 

  197. V.N. Zirakashvili, F. Aharonian, Analytical solutions for energy spectra of electrons accelerated by nonrelativistic shock-waves in shell type supernova remnants. Astron. Astrophys. 465, 695–702 (2007). doi:10.1051/0004-6361:20066494

    ADS  MATH  Article  Google Scholar 

Download references

Acknowledgements

The authors thank a referee for a constructive comment. A.M. Bykov and E. Amato thank the staff of ISSI for their generous hospitality and assistance. A.M. Bykov and A.E. Petrov were supported by the RSF grant 16-12-10225. A.B. thanks A.V. Artemyev, S.M. Osipov, and G.G. Pavlov for discussions. Some of the modeling was performed at the “Tornado” subsystem of the St. Petersburg Polytechnic University supercomputing center.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. M. Bykov.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bykov, A.M., Amato, E., Petrov, A.E. et al. Pulsar Wind Nebulae with Bow Shocks: Non-thermal Radiation and Cosmic Ray Leptons. Space Sci Rev 207, 235–290 (2017). https://doi.org/10.1007/s11214-017-0371-7

Download citation

Keywords

  • Pulsar wind nebulae
  • Supernova remnants
  • Relativistic winds
  • Shocks
  • Positrons