Space Science Reviews

, Volume 212, Issue 1–2, pp 585–600 | Cite as

The MIGHTI Wind Retrieval Algorithm: Description and Verification

  • Brian J. HardingEmail author
  • Jonathan J. Makela
  • Christoph R. Englert
  • Kenneth D. Marr
  • John M. Harlander
  • Scott L. England
  • Thomas J. Immel
Part of the following topical collections:
  1. The Ionospheric Connection Explorer (ICON) mission


We present an algorithm to retrieve thermospheric wind profiles from measurements by the Michelson Interferometer for Global High-resolution Thermospheric Imaging (MIGHTI) instrument on NASA’s Ionospheric Connection Explorer (ICON) mission. MIGHTI measures interferometric limb images of the green and red atomic oxygen emissions at 557.7 nm and 630.0 nm, spanning 90–300 km. The Doppler shift of these emissions represents a remote measurement of the wind at the tangent point of the line of sight. Here we describe the algorithm which uses these images to retrieve altitude profiles of the line-of-sight wind. By combining the measurements from two MIGHTI sensors with perpendicular lines of sight, both components of the vector horizontal wind are retrieved. A comprehensive truth model simulation that is based on TIME-GCM winds and various airglow models is used to determine the accuracy and precision of the MIGHTI data product. Accuracy is limited primarily by spherical asymmetry of the atmosphere over the spatial scale of the limb observation, a fundamental limitation of space-based wind measurements. For 80% of the retrieved wind samples, the accuracy is found to be better than 5.8 m/s (green) and 3.5 m/s (red). As expected, significant errors are found near the day/night boundary and occasionally near the equatorial ionization anomaly, due to significant variations of wind and emission rate along the line of sight. The precision calculation includes pointing uncertainty and shot, read, and dark noise. For average solar minimum conditions, the expected precision meets requirements, ranging from 1.2 to 4.7 m/s.


Thermospheric winds Limb imaging Interferometry Inverse theory 



B.J.H. was supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1144245. ICON is supported by NASA’s Explorers Program through contracts NNG12FA45C and NNG12FA42I. This work uses pyglow, a Python package that wraps several upper atmosphere climatological models. The pyglow package is open-sourced and available at The authors thank the ICON team for helpful comments. The primary contact for the ICON MIGHTI Level 2 wind products is Jonathan J. Makela (


  1. C.A. Barth, Three-body reactions. Ann. Géophys. 20, 182 (1964) Google Scholar
  2. D. Bilitza, B.W. Reinisch, International reference ionosphere 2007: improvements and new parameters. Adv. Space Res. 42(4), 599–609 (2008). doi: 10.1016/j.asr.2007.07.048 ADSCrossRefGoogle Scholar
  3. C.R. Englert, D.D. Babcock, J.M. Harlander, Doppler asymmetric spatial heterodyne spectroscopy (DASH): concept and experimental demonstration. Appl. Opt. 46(29), 7297–7307 (2007). ADSCrossRefGoogle Scholar
  4. C.R. Englert, M.H. Stevens, D.E. Siskind, J.M. Harlander, F.L. Roesler, Spatial heterodyne imager for mesospheric radicals on STPSat-1. J. Geophys. Res. 115(D20), D20306 (2010). doi: 10.1029/2010JD014398 ADSCrossRefGoogle Scholar
  5. C.R. Englert, J.M. Harlander, C.M. Brown, K.D. Marr, I. Miller, J.E. Stump, J. Hancock, J. Peterson, J. Kumler, W. Morrow, T. Mooney, S. Ellis, S. Mende, S.E. Harris, M.H. Stevens, J.J. Makela, B.J. Harding, T.J. Immel, Michelson Interferometer for Global High-resolution Thermospheric Imaging (MIGHTI): instrument design and calibration. Space Sci. Rev. (2017, this issue). doi: 10.1007/s11214-017-0358-4 Google Scholar
  6. W. Gault, G. Thuillier, G. Shepherd, Validation of O (1S) wind measurements by WINDII: the WIND imaging interferometer on UARS. J. Geophys. Res. 101 (1996).
  7. G. Hernandez, Lower-thermosphere temperatures determined from the line profiles of the O I 17,924-K (5577 Å) emission in the night sky, 1. Long-term behavior. J. Geophys. Res. 81(28), 5165–5172 (1976). doi: 10.1029/JA081i028p05165 ADSCrossRefGoogle Scholar
  8. G. Hernandez, R.G. Roble, Direct measurements of nighttime thermospheric winds and temperatures, 2. Geomagnetic storms. J. Geophys. Res. 81(28), 5173–5181 (1976). doi: 10.1029/JA081i028p05173 ADSCrossRefGoogle Scholar
  9. T. Immel, S.L. England, S.B. Mende, R.A. Heelis, C.R. Englert, J. Edelstein, H.U. Frey, E.R. Taylor, W.W. Craig, G.S. Bust, G. Crowley, J.M. Forbes, J.C. Gerard, J.M. Harlander, J.D. Huba, B. Hubert, F. Kamalabadi, J.J. Makela, A.I. Maute, R.R. Meier, C. Raftery, P. Rochus, O.H.W. Siegmund, A.W. Stephan, G.R. Swenson, S. Frey, D.L. Hysell, A. Saito, The Ionospheric Connection Explorer mission: mission goals and design. Space Sci. Rev. (2017, this issue) Google Scholar
  10. M.F. Larsen, Winds and shears in the mesosphere and lower thermosphere: results from four decades of chemical release wind measurements. J. Geophys. Res. 107(A8), 1215 (2002). doi: 10.1029/2001JA000218 CrossRefGoogle Scholar
  11. R. Link, L.L. Cogger, A reexamination of the O I 6300-Å nightglow. J. Geophys. Res. 93(A9), 9883 (1988). doi: 10.1029/JA093iA09p09883 ADSCrossRefGoogle Scholar
  12. R. Link, L.L. Cogger, Correction to “A reexamination of the O I 6300-Å nightglow” by R. Link and L.L. Cogger. J. Geophys. Res. 94(A2), 1556 (1989). doi: 10.1029/JA094iA02p01556 ADSCrossRefGoogle Scholar
  13. I.C. McDade, D. Murtagh, R. Greer, P. Dickinson, G. Witt, J. Stegman, E. Llewellyn, L. Thomas, D. Jenkins, ETON 2: quenching parameters for the proposed precursors of \(O_{2}(b^{1}\varSigma_{g}^{+})\) and O(1S) in the terrestrial nightglow. Planet. Space Sci. 34(9), 789–800 (1986). doi: 10.1016/0032-0633(86)90075-9. ADSCrossRefGoogle Scholar
  14. W. Menke, Geophysical Data Analysis: Discrete Inverse Theory. International Geophysics (Elsevier, Amsterdam, 1989). zbMATHGoogle Scholar
  15. D. Murtagh, G. Witt, J. Stegman, I. McDade, E. Llewellyn, F. Harris, R. Greer, An assessment of proposed O(1S) and \(O_{2}(b^{1}\varSigma_{g}^{+})\) nightglow excitation parameters. Planet. Space Sci. 38(1), 43–53 (1990). doi: 10.1016/0032-0633(90)90004-A. ADSCrossRefGoogle Scholar
  16. J.M. Picone, A.E. Hedin, D.P. Drob, A.C. Aikin, NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues. J. Geophys. Res. Space Phys. 107(A12), 1–16 (2002). doi: 10.1029/2002JA009430 CrossRefGoogle Scholar
  17. R.G. Roble, The NCAR thermosphere-ionosphere-mesosphere-electrodynamics general circulation model (TIME-GCM), in STEP Handbook on Ionospheric Models, ed. by R. Schunk (Utah State University, Logan 1996), pp. 281–288 Google Scholar
  18. R.G. Roble, E.C. Ridley, A thermosphere-ionosphere-mesosphere-electrodynamics general circulation model (time-GCM): equinox solar cycle minimum simulations (30–500 km). Geophys. Res. Lett. 21(6), 417–420 (1994). doi: 10.1029/93GL03391 ADSCrossRefGoogle Scholar
  19. Y.J. Rochon, The retrieval of winds, Doppler temperatures, and emission rates for the WINDII experiment. Ph.D. thesis, York University, 2000.
  20. G. Shepherd, G. Thuillier, WINDII, the wind imaging interferometer on the Upper Atmosphere Research Satellite. J. Geophys. Res. 98(2), 10725–10750 (1993). ADSCrossRefGoogle Scholar
  21. G.G. Shepherd, G. Thuillier, Y.M. Cho, M.L. Duboin, W.F.J. Evans, W.A. Gault, C. Hersom, D.J.W. Kendall, C. Lathuillère, R.P. Lowe, I.C. McDade, Y.J. Rochon, M.G. Shepherd, B.H. Solheim, D.Y. Wang, W.E. Ward, The Wind Imaging Interferometer (WINDII) on the Upper Atmosphere Research Satellite: a 20 year perspective. Rev. Geophys. 50(2), RG2007 (2012). doi: 10.1029/2012RG000390 ADSCrossRefGoogle Scholar
  22. M.H. Stevens, C.R. Englert, K.D. Marr, J. Harlander, S.L. England, T.J. Immel, The retrieval of lower thermospheric temperatures using MIGHTI observations of the O2 A band. Space Sci. Rev. (2017, this issue) Google Scholar
  23. F. Vargas, G. Swenson, A. Liu, D. Gobbi, O(1S), OH, and O2(b) airglow layer perturbations due to AGWs and their implied effects on the atmosphere. J. Geophys. Res. 112(D14), 1–11 (2007). doi: 10.1029/2006JD007642. CrossRefGoogle Scholar
  24. S.P. Zhang, G.G. Shepherd, On the response of the atomic oxygen red line emission rates to the Sun’s energy input: an empirical model deduced from WINDII/UARS global measurements, in Proc. SPIE, vol. 5979 (2005a), p. 597912. doi: 10.1117/12.627150. Google Scholar
  25. S.P. Zhang, G.G. Shepherd, On the response of the O(1S) dayglow emission rate to the Sun’s energy input: an empirical model deduced from WINDII/UARS global measurements. J. Geophys. Res. 110(A3), A03304 (2005b). doi: 10.1029/2004JA010887 ADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Brian J. Harding
    • 1
    Email author
  • Jonathan J. Makela
    • 1
  • Christoph R. Englert
    • 2
  • Kenneth D. Marr
    • 2
  • John M. Harlander
    • 3
    • 6
  • Scott L. England
    • 4
  • Thomas J. Immel
    • 5
  1. 1.Department of Electrical and Computer EngineeringUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  2. 2.Space Science DivisionNaval Research LaboratoryWashingtonUSA
  3. 3.Department of PhysicsSt. Cloud State UniversitySt. CloudUSA
  4. 4.Department of Aerospace and Ocean EngineeringVirginia Polytechnic Institute and State UniversityBlacksburgUSA
  5. 5.Space Sciences LaboratoryUniversity of California BerkeleyBerkeleyUSA
  6. 6.Space Systems Research CorporationAlexandriaUSA

Personalised recommendations