Michelson Interferometer for Global High-Resolution Thermospheric Imaging (MIGHTI): Instrument Design and Calibration

Abstract

The Michelson Interferometer for Global High-resolution Thermospheric Imaging (MIGHTI) instrument was built for launch and operation on the NASA Ionospheric Connection Explorer (ICON) mission. The instrument was designed to measure thermospheric horizontal wind velocity profiles and thermospheric temperature in altitude regions between 90 km and 300 km, during day and night. For the wind measurements it uses two perpendicular fields of view pointed at the Earth’s limb, observing the Doppler shift of the atomic oxygen red and green lines at 630.0 nm and 557.7 nm wavelength. The wavelength shift is measured using field-widened, temperature compensated Doppler Asymmetric Spatial Heterodyne (DASH) spectrometers, employing low order échelle gratings operating at two different orders for the different atmospheric lines. The temperature measurement is accomplished by a multichannel photometric measurement of the spectral shape of the molecular oxygen A-band around 762 nm wavelength. For each field of view, the signals of the two oxygen lines and the A-band are detected on different regions of a single, cooled, frame transfer charge coupled device (CCD) detector. On-board calibration sources are used to periodically quantify thermal drifts, simultaneously with observing the atmosphere. The MIGHTI requirements, the resulting instrument design and the calibration are described.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

References

  1. ASTM 2000 Standard Extraterrestrial Spectrum Reference E-490-00, National Renewable Energy Laboratory (2000). http://rredc.nrel.gov/solar/spectra/am0/ASTM2000.html. Accessed 17 June 2016

  2. G.A. Barrick, J. Ward, J.-C. Cuillandre, Proc. SPIE (2012). doi:10.1117/12.926409

    Google Scholar 

  3. W. Cheung, H.M. Borowski, J.R. Troll, P.D. Wienhold, Development of Solar Array Substrates for the RBSP Spacecraft, Society for the Advancement of Material and Process Engineering Conference (2011). http://rbspgway.jhuapl.edu/sites/default/files/webform/dropbox/SAMPE_Spring_2011_RBSP_Solar_Array_Substrates_final.pdf. Accessed 13 May 2016

    Google Scholar 

  4. S. Buchman, W. Bencze, R. Brumley, B. Keiser, G.M. Clarke (Am. Inst. of Phys., New York, 1998), pp. 178–187. 1-56396-848-7/98

  5. A.B. Christensen, R.L. Bishop, S.A. Budzien, J.H. Hecht, M.G. Mlynczak, J.M. Russell III., A.W. Stephan, R.W. Walterscheid, J. Geophys. Res. (2013). doi:10.1002/jgra.50317

    Google Scholar 

  6. E.N. Borson, Proc. SPIE 5526 (2004). doi:10.1117/12.562179

  7. e2v technologies, CCD42-80 Back Illuminated High Performance CCD Sensor, E2v technologies, A1A-100025 Issue 9 (2006). http://www.e2v.com/shared/content/resources/File/documents/imaging-space-and-scientific-sensors/12-42-80.pdf. Accessed 05 May 2016

  8. S. Ellis, MIGHTI Stray Light Analysis Update. Photon Engineering LLC (2014)

  9. C.R. Englert, J.M. Harlander, J.G. Cardon, F.L. Roesler, Appl. Opt. (2004). doi:10.1364/AO.43.006680

    Google Scholar 

  10. C.R. Englert, J.M. Harlander, Appl. Opt. 45, 4583 (2006)

    ADS  Article  Google Scholar 

  11. C.R. Englert, D.D. Babcock, J.M. Harlander, Appl. Opt. 46, 7297 (2007)

    ADS  Article  Google Scholar 

  12. C.R. Englert, M.H. Stevens, D.E. Siskind, J.M. Harlander, F.L. Roesler, J. Geophys. Res. (2010a). doi:10.1029/2010JD014398

    Google Scholar 

  13. C.R. Englert, J.M. Harlander, J.T. Emmert, D.D. Babcock, F.L. Roesler, Opt. Express 18, 27416 (2010b)

    ADS  Article  Google Scholar 

  14. C.R. Englert, J.M. Harlander, C.M. Brown, J.W. Meriwether, J.J. Makela, M. Castelaz, J.T. Emmert, D.P. Drob, K.D. Marr, J. Atmos. Sol.-Terr. Phys. (2012). doi:10.1016/j.jastp.2012.07.002

    Google Scholar 

  15. M. Fruit, A. Gusarov, D. Doyle, Proc. SPIE 4823, 132 (2002)

    ADS  Article  Google Scholar 

  16. W.A. Gault, J.-F. Brun, D.-L. Desaulniers, D.W. Miller, F. Pasternak, Y. Rochon, J.M. Rupil, G.G. Shepherd, Proc. SPIE 1753, 189 (1992)

    ADS  Article  Google Scholar 

  17. B.J. Harding, J.J. Makela, C.R. Englert, K.D. Marr, J.M. Harlander, S.L. England, T.J. Immel, Space Sci. Rev. (2017). doi:10.1007/s11214-017-0359-3

    Google Scholar 

  18. J.M. Harlander, R.J. Reynolds, F.L. Roesler, Astrophys. J. 396, 730 (1992)

    ADS  Article  Google Scholar 

  19. J.M. Harlander, C.R. Englert, D.D. Babcock, F.L. Roesler, Opt. Express 18, 26430 (2010)

    ADS  Article  Google Scholar 

  20. J.M. Harlander, C.R. Englert, C.M. Brown, K.D. Marr, I. Miller, V. Zastera, T.J. Immel, Space Sci. Rev. (2017, this issue)

  21. P.B. Hays, V.J. Abreu, M.E. Dobbs, D.A. Gell, H.J. Grassl, W.R. Skinner, J. Geophys. Res. 98, 10713 (1993)

    ADS  Article  Google Scholar 

  22. T.J. Immel et al., Space Sci. Rev. (2017, this issue)

  23. T.L. Killeen, Q. Wu, S.C. Solomon, D.A. Ortland, W.R. Skinner, R.J. Niciejewski, D.A. Gell, J. Geophys. Res. (2006). doi:10.1029/2005JA011484

    Google Scholar 

  24. C. Lathuillière, W.A. Gault, B. Lamballais, Y.J. Rochon, B.H. Solheim, Ann. Geophys. 20, 203 (2002)

    ADS  Article  Google Scholar 

  25. G. Liu PhD Dissertation, York University, Toronto, Ontario, Canada (2006)

  26. R.A. Lucas et al. ACS Data Handbook, Version 8.0 (STScI, Baltimore, 2016)

  27. K.D. Marr, C.R. Englert, J.M. Harlander, Opt. Express (2012). doi:10.1364/OE.20.009535

    Google Scholar 

  28. K.D. Marr, C.R. Englert, J.M. Harlander, K.W. Miller, Appl. Opt. (2013). doi:10.1364/AO.52.008082

    Google Scholar 

  29. C.A. McLinden, J.C. McConnell, E. Griffioen, C.T. McElroy, Can. J. Phys. (2002). doi:10.1139/P01-156

    Google Scholar 

  30. S.B. Mende, G.R. Swenson, E.J. Llewellyn, W.F. Denig, D.J.W. Kendall, T.G. Slanger, J. Geophys. Res. 93, 12861 (1988)

    ADS  Article  Google Scholar 

  31. MIGHTI Flight Model Calibration Report, SSD-RPT-MI013 Rev. (2016)

  32. M.L. Morrow, W.H. Morrow, L. Majorana, SPIE J. 1945, 478–483 (1993)

    ADS  Google Scholar 

  33. J.F. Noxon, A. Vallence Jones, Nature (1962). doi:10.1038/196157a0

    Google Scholar 

  34. K.W. Ogilvie et al., Space Sci. Rev. 71, 55–77 (1995)

    ADS  Article  Google Scholar 

  35. J.Q. Peterson, J.G. Cardon, P. Sevilla, J. Hancock, C.R. Englert, J.M. Harlander, C.M. Brown, K.D. Marr, Logan UT (2016). MIGHTI Spectral Calibration, CALCON Technical Meeting, 22-25

  36. D. Rees, T.J. Fuller-Rowell, A. Lyons, T.L. Killeen, P.B. Hays, Appl. Opt. 21, 3896 (1982)

    ADS  Article  Google Scholar 

  37. P.E. Sheese, E.J. Llewellyn, R.L. Gattinger, A.E. Bourassa, D.A. Degenstein, N.D. Lloyd, I.C. McDade, Can. J. Phys. 88, 919 (2010)

    ADS  Article  Google Scholar 

  38. P.E. Sheese, E.J. Llewellyn, R.L. Gattinger, A.E. Bourassa, D.A. Degenstein, N.D. Lloyd, I.C. McDade, Geophys. Res. Lett. (2011). doi:10.1029/2011GL047437

    Google Scholar 

  39. G.G. Shepherd, G. Thuillier, W.A. Gault, B.H. Solheim, C. Hersom, J.M. Alunni, J.-F. Brun, S. Brune, P. Charlot, L.L. Cogger, D.-L. Desaulniers, W.F.J. Evans, R.L. Gattinger, F. Girod, D. Harvie, R.H. Hum, D.J.W. Kendall, E.J. Llewellyn, R.P. Lowe, J. Ohrt, F. Pasternak, O. Peillet, I. Powell, Y. Rochon, W.E. Ward, R.H. Wiens, J. Wimperis, J. Geophys. Res. (1993). doi:10.1029/93JD00227

    Google Scholar 

  40. G.G. Shepherd, G. Thuillier, Y.-M. Cho, M.-L. Duboin, W.F.J. Evans, W.A. Gault, C. Hersom, D.J.W. Kendall, C. Lathuillère, R.P. Lowe, I.C. McDade, Y.J. Rochon, M.G. Shepherd, B.H. Solheim, D.-Y. Wang, W.E. Ward, Rev. Geophys. (2012). doi:10.1029/2012RG000390

    Google Scholar 

  41. W.J. Smith, Modern Optical Engineering, 2nd edn. (McGraw-Hill, New York, (1990). 139ff

    Google Scholar 

  42. M.H. Stevens, C.R. Englert, J.M. Harlander, S.L. England, K.D. Marr, C.M. Brown, T.J. Immel, Space Sci. Rev. (2017, this issue)

  43. G. Thuillier, W. Gault, J.-F. Brun, M. Hersé, W. Ward, C. Hersom, Appl. Opt. 37, 1356 (1998)

    ADS  Article  Google Scholar 

  44. L. Wallace, D.M. Hunten, J. Geophys. Res. 15, 4813 (1968)

    ADS  Article  Google Scholar 

  45. D.L. Wu, M.J. Schwartz, J.W. Waters, V. Limpasuvan, Q. Wu, T.L. Killeen, Adv. Space Res. (2007). doi:10.1016/j.asr.2007.06.014

    Google Scholar 

Download references

Acknowledgements

ICON is supported by NASA’s Explorers Program through contracts NNG12FA45C and NNG12FA42I. We acknowledge helpful discussions and advice from Prof. Gordon Shepherd (York University). We acknowledge the dedication and tireless work of all engineers, technicians and administrative support on the MIGHTI and larger ICON team, including Rebecca Baugh, Patrick Bell, Joel Cardon, Angel Cerrato, James Cook, John Dancheck, Tori Fae, Tracy Heard, Steve Hershner, Lynn Hutting, Steve Kinaman, Will Marchant, Sally McCann, Miles Newman, David Nolan, John Pindell, Mark Ponton, Roger Prokic, Jack Sanders, John Shaw, Pedro Sevilla, Linda Smith, Tabetha Sykes, Steven Tanner, Warren Tolson, Emory Toomey, Drew Uhl, Mike Watson, Glenn Weigle, Vaz Zastera, and Dallas Zurcher.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Christoph R. Englert.

Additional information

The Ionospheric Connection Explorer (ICON) mission

Edited by Doug Rowland and Thomas J. Immel

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Englert, C.R., Harlander, J.M., Brown, C.M. et al. Michelson Interferometer for Global High-Resolution Thermospheric Imaging (MIGHTI): Instrument Design and Calibration. Space Sci Rev 212, 553–584 (2017). https://doi.org/10.1007/s11214-017-0358-4

Download citation

Keywords

  • ICON Explorer mission
  • Thermospheric wind
  • Thermospheric temperature
  • Limb sounding
  • Spatial Heterodyne Spectroscopy