Anthropogenic Space Weather

Abstract

Anthropogenic effects on the space environment started in the late 19th century and reached their peak in the 1960s when high-altitude nuclear explosions were carried out by the USA and the Soviet Union. These explosions created artificial radiation belts near Earth that resulted in major damages to several satellites. Another, unexpected impact of the high-altitude nuclear tests was the electromagnetic pulse (EMP) that can have devastating effects over a large geographic area (as large as the continental United States). Other anthropogenic impacts on the space environment include chemical release experiments, high-frequency wave heating of the ionosphere and the interaction of VLF waves with the radiation belts. This paper reviews the fundamental physical process behind these phenomena and discusses the observations of their impacts.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35

References

  1. B. Abel, R.M. Thorne, Electron scattering loss in Earth’s inner magnetosphere: 1. Dominant physical processes. J. Geophys. Res. 103(A2), 2385–2396 (1998). doi:10.1029/97JA02919

    ADS  Article  Google Scholar 

  2. L. Allen, J.L. Beavers, W.A. Whitaker, J.A. Welch, R.B. Walton, Project Jason measurement of trapped electrons from a nuclear device by sounding rockets. Proc. Natl. Acad. Sci. USA 45(8), 1171–1190 (1959)

    ADS  Article  Google Scholar 

  3. D.N. Baker, How to cope with space weather. Science 297(5586), 1486–1487 (2002). doi:10.1126/science.1074956

    Article  Google Scholar 

  4. R.C. Baker, W.M. Strome, Magnetic disturbance from a high-altitude nuclear explosion. J. Geophys. Res. 67(12), 4927–4928 (1962)

    ADS  Article  Google Scholar 

  5. D.N. Baker, R. Balstad, J.M. Bodeau, E. Cameron, J.F. Fennell, G.M. Fisher, K.F. Forbes, P.M. Kintner, L.G. Leffler, W.S. Lewis, J.B. Reagan, A.A. Small III, T.A. Stansell, L. Strachan Jr., Severe Space Weather Events-Understanding Societal and Economic Impacts Workshop Report. Technical report ISBN: 0-309-12770-X, Committee on the Societal and Economic Impacts of Severe Space Weather Events, National Research Council (2008)

  6. D.N. Baker, A.N. Jaynes, V.C. Hoxie, R.M. Thorne, J.C. Foster, X. Li, J.F. Fennell, J.R. Wygant, S.G. Kanekal, P.J. Erickson, W. Kurth, W. Li, Q. Ma, Q. Schiller, L. Blum, D.M. Malaspina, A. Gerrard, L.J. Lanzerotti, An impenetrable barrier to ultrarelativistic electrons in the Van Allen radiation belts. Nature 515(7528), 531–534 (2014). doi:10.1038/nature13956

    ADS  Article  Google Scholar 

  7. D.N. Baker, A.N. Jaynes, S.G. Kanekal, J.C. Foster, P.J. Erickson, J.F. Fennell, J.B. Blake, H. Zhao, X. Li, S.R. Elkington, M.G. Henderson, G.D. Reeves, H.E. Spence, C.A. Kletzing, J.R. Wygant, Highly relativistic radiation belt electron acceleration, transport, and loss: large solar storm events of March and June 2015. J. Geophys. Res. 121(7), 6647–6660 (2016). doi:10.1002/2016JA022502

    Article  Google Scholar 

  8. R.C. Baumann, Ariel I: The First International Satellite. Technical report NASA SP-43, NASA (1963)

  9. T.F. Bell, H.G. James, U.S. Inan, J.P. Katsufrakis, The apparent spectral broadening of VLF transmitter signals during transionospheric propagation. J. Geophys. Res. 88(A6), 4813 (1983). doi:10.1029/JA088iA06p04813

    ADS  Article  Google Scholar 

  10. P.A. Bernhardt, R.A. Roussel-Dupre, M.B. Pongratz, G. Haerendel, A. Valenzuela, D.A. Gurnett, R.R. Anderson, Observations and theory of the AMPTE magnetotail barium releases. J. Geophys. Res. 92(A6), 5777–5794 (1987). doi:10.1029/JA092iA06p05777

    ADS  Article  Google Scholar 

  11. P.A. Bernhardt, L.M. Duncan, C.A. Tepley, Artificial airglow excited by high-power radio waves. Science 242(4881), 1022–1027 (1988). doi:10.1126/science.242.4881.1022

    ADS  Article  Google Scholar 

  12. P.A. Bernhardt, L.M. Duncan, C.A. Tepley, Heater-induced cavities as optical tracers of plasma drifts. J. Geophys. Res. 94(A6), 7003–7010 (1989). doi:10.1029/JA094iA06p07003

    ADS  Article  Google Scholar 

  13. W.K. Berthold, A.K. Harris, H.J. Hope, World-wide effects of hydromagnetic waves due to Argus. J. Geophys. Res. 65(8), 2233–2239 (1960)

    ADS  Article  Google Scholar 

  14. L. Biermann, Kometenschweife und Solare Korpuskularstrahlung. Z. Astrophys. 29, 274–286 (1951)

    ADS  Google Scholar 

  15. H.A. Bomke, I.A. Balton, H.H. Grote, A.K. Harris, Near and distant observations of the 1962 Johnston Island high-altitude nuclear tests. J. Geophys. Res. 69(15), 3125–3136 (1964)

    ADS  Article  Google Scholar 

  16. H.A. Bomke, A.K. Harris, J.W. Walker, W.J. Ramm, The nature of worldwide geomagnetic disturbances generated by the Starfish explosion of July 9, 1962. J. Geophys. Res. 71(11), 2777–2789 (1966). doi:10.1029/JZ071i011p02777

    ADS  Article  Google Scholar 

  17. S. Breiner, Effect of nuclear detonation on the geomagnetic field at Palo Alto, California. J. Geophys. Res. 68(1), 335–337 (1963). doi:10.1029/JZ068i001p00335

    ADS  Article  Google Scholar 

  18. W.L. Brown, in Observations of the Transient Behavior of Electrons in the Artificial Radiation Belts, ed. by B.M. McCormac (Springer, Dordrecht, 1966), pp. 610–633. doi:10.1007/978-94-010-3553-8_44

    Google Scholar 

  19. W.L. Brown, J.D. Gabbe, The electron distribution in the Earth’s radiation belts during July 1962 as measured by Telstar. J. Geophys. Res. 68(3), 607–618 (1963). doi:10.1029/JZ068i003p00607

    ADS  Article  Google Scholar 

  20. W.L. Brown, J.D. Gabbe, W. Rosenzweig, Results of the Telstar radiation experiments. Bell Syst. Tech. J. 42(4), 1505–1560 (1963)

    Article  Google Scholar 

  21. K. Bullough, Satellite observations of power line harmonic radiation. Space Sci. Rev. 35(2), 175–183 (1983). doi:10.1007/BF00242242

    ADS  Article  Google Scholar 

  22. B. Caner, Prompt world-wide geomagnetic effects of high-latitude nuclear explosions, Master’s thesis, The University of British Columbia, Vancouver, BC Canada, 1964. https://open.library.ubc.ca/cIRcle/collections/ubctheses/831/items/1.0053563

  23. D.L. Carpenter, Whistler studies of the plasmapause in the magnetosphere: 1. Temporal variations in the position of the knee and some evidence on plasma motions near the knee. J. Geophys. Res. 71(3), 693–709 (1966). doi:10.1029/JZ071i003p00693

    ADS  Article  Google Scholar 

  24. D.L. Carpenter, Very Low Frequency Space Radio Research at Stanford 1950–1990, 1st edn. (Lulu.com, Stanford, 2015). ISBN 9781329884106

    Google Scholar 

  25. D. Carpenter, J. Lemaire, The plasmasphere boundary layer. Ann. Geophys. 22, 4291–4298 (2004)

    ADS  Article  Google Scholar 

  26. M. Casaverde, A. Giesecke, R. Cohen, Effects of the nuclear explosion over Johnston Island observed in Peru on July 9, 1962. J. Geophys. Res. 68(9), 2603–2611 (1963). doi:10.1029/JZ068i009p02603

    ADS  Article  Google Scholar 

  27. D.M. Chapin, C.S. Fuller, G.L. Pearson, A new silicon p-n junction photocell for converting solar radiation into electrical power. J. Appl. Phys. 25(5), 676–677 (1954). doi:10.1063/1.1721711

    ADS  Article  Google Scholar 

  28. N. Christofilos, The Argus experiment. Proc. Natl. Acad. Sci. 45, 1144–1152 (1959a)

    ADS  Article  Google Scholar 

  29. N.C. Christofilos, The Argus experiment. J. Geophys. Res. 64(8), 869–875 (1959b). doi:10.1029/JZ064i008p00869

    ADS  Article  Google Scholar 

  30. M.A. Clilverd, C.J. Rodger, N.R. Thomson, J.B. Brundell, T. Ulich, J. Lichtenberger, N. Cobbett, A.B. Collier, F.W. Menk, A. Seppälä, P.T. Verronen, E. Turunen, Remote sensing space weather events: Antarctic-Arctic Radiation-Belt (Dynamic) Deposition-VLF Atmospheric Research Konsortium network. Space Weather 7(4), S04001 (2009). doi:10.1029/2008SW000412

    ADS  Article  Google Scholar 

  31. M.B. Cohen, N.G. Lehtinen, U.S. Inan, Models of ionospheric VLF absorption of powerful ground based transmitters. Geophys. Res. Lett. 39(24), L24101 (2012). doi:10.1029/2012GL054437

    ADS  Article  Google Scholar 

  32. S.A. Colgate, The phenomenology of the mass motion of a high altitude nuclear explosion. J. Geophys. Res. 70(13), 3161–3173 (1965). doi:10.1029/jz070i013p03161

    ADS  Article  Google Scholar 

  33. E.E. Conrad, G.A. Gurtman, G. Kweder, M.J. Mandell, W.W. White, Collateral Damage to Satellites from an EMP Attack. Technical report DTRA-IR-10-22, Defense Threat Reduction Agency, Fort Belvoir, Virginia (2010)

  34. A.L. Cullington, A man-made or artifical aurora. Nature 182(4646), 1365–1366 (1958). doi:10.1038/1821365a0

    ADS  Article  Google Scholar 

  35. R.J. Danchik, An overview of transit development. APL Tech. Dig. 1(1), 18–26 (1998)

    Google Scholar 

  36. R.G. D’Arcy, S.A. Colgate, Measurements at the southern magnetic conjugate region of the fission debris from the Starfish nuclear detonation. J. Geophys. Res. 70(13), 3147–3159 (1965). doi:10.1029/JZ070i013p03147

    ADS  Article  Google Scholar 

  37. A.C. Dickieson, The Telstar experiment. Bell Syst. Tech. J. 42, 739–746 (1963)

    Article  Google Scholar 

  38. A.C. Durney, H. Elliot, R.J. Hynds, J.J. Quenby, Satellite observations of the energetic particle flux produced by the high-altitude nuclear explosion of July 9, 1962. Nature 195, 1245–1248 (1962). doi:10.1038/1951245a0

    ADS  Article  Google Scholar 

  39. A.C. Durney, H. Elliot, R.J. Hynds, J.J. Quenby, The artificial radiation belt produced by the Starfish nuclear explosion. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 281(1384), 565–583 (1964)

    ADS  Article  Google Scholar 

  40. P. Dyal, Particle and field measurements of the starfish diamagnetic cavity. J. Geophys. Res. 111(A12), 12211 (2006). doi:10.1029/2006JA011827

    Article  Google Scholar 

  41. P.J. Edwards, J.S. Reid, Effects of nuclear explosion starfish prime observed at Hobart, Tasmania, July 9, 1962. J. Geophys. Res. 69(17), 3607–3612 (1964). doi:10.1029/JZ069i017p03607

    ADS  Article  Google Scholar 

  42. H. Elliot, in Some Cosmic Ray and Radiation Belt Observations Based on Data from the Anton 302 G-M Counter in Ariel I, ed. by B.M. McCormac (Springer, Dordrecht, 1966), pp. 76–99. doi:10.1007/978-94-010-3553-8_7

    Google Scholar 

  43. H. Elliot, J.J. Quenby, The Samoan artificial aurora. Nature 83, 810 (1959). doi:10.1038/183810a0

    ADS  Article  Google Scholar 

  44. J.F. Fennell, H.C. Koons, J.L. Roeder, J.B. Blake, Spacecraft charging: observations and relationship to satellite anomalies, in Spacecraft Charging Technology, Proceedings of the Seventh International Conference, ed. by R.A. Harris (European Space Agency ESTEC, Noordwijk, 2001), pp. 279–285

    Google Scholar 

  45. J.F. Fennell, S.G. Claudepierre, J.B. Blake, T.P. O’Brien, J.H. Clemmons, D.N. Baker, H.E. Spence, G.D. Reeves, Van Allen probes show that the inner radiation zone contains no MeV electrons: ECT/MagEIS data. Geophys. Res. Lett. 42(5), 1283–1289 (2015). doi:10.1002/2014GL062874

    ADS  Article  Google Scholar 

  46. A. Finkbeiner, The Jasons: The Secret History of Science’s Postwar Elite (Viking, New York, 2006)

    Google Scholar 

  47. R.E. Fischell, Effect of the artificial radiation belt on solar power systems. APL Tech. Dig. 2(2), 8–13 (1962a)

    Google Scholar 

  48. R.E. Fischell, The TRAAC satellite. APL Tech. Dig. 1(3), 2–9 (1962b)

    Google Scholar 

  49. J.C. Foster, T.J. Rosenberg, Electron precipitation and VLF emissions associated with cyclotron resonance interactions near the plasmapause. J. Geophys. Res. 81(13), 2183–2192 (1976). doi:10.1029/JA081i013p02183

    ADS  Article  Google Scholar 

  50. J.S. Foster, E. Gjelde, W.R. Graham, R.J. Hermann, H.M. Kluepfel, R.L. Lawson, G.K. Soper, L.L. Wood, J.B. Woodard, Report of the Commission to Assess the Threat to the United States from Electromagnetic Pulse (EMP) Attack: Executive Report. Technical report, United States Congress, Washington, DC (2004)

  51. J.S. Foster, E. Gjelde, W.R. Graham, R.J. Hermann, H.M. Kluepfel, R.L. Lawson, G.K. Soper, L.L. Wood, J.B. Woodard, Report of the Commission to Assess the Threat to the United States from Electromagnetic Pulse (EMP) Attack: Critical National Infrastructures. Technical report A2473, United States Congress, Washington, DC (2008)

  52. J.C. Foster, P.J. Erickson, D.N. Baker, A.N. Jaynes, E.V. Mishin, J.F. Fennel, X. Li, M.G. Henderson, S.G. Kanekal, Observations of the impenetrable barrier, the plasmapause, and the VLF bubble during the 17 March 2015 storm. J. Geophys. Res. Space Phys. 121(6), 5537–5548 (2016). doi:10.1002/2016JA022509

    ADS  Article  Google Scholar 

  53. A.C. Fraser-Smith, A weekend increase in geomagnetic activity. J. Geophys. Res. 84(A5), 2089–2096 (1979). doi:10.1029/JA084iA05p02089

    ADS  Article  Google Scholar 

  54. A.C. Fraser-Smith, Effects of man on geomagnetic activity and pulsations. Adv. Space Res. 1(2), 455–466 (1981). doi:10.1016/0273-1177(81)90321-5

    ADS  Article  Google Scholar 

  55. A.C. Fraser-Smith, D.B. Coates, Large-amplitude ULF electromagnetic fields from bart. Radio Sci. 13(4), 661–668 (1978). doi:10.1029/RS013i004p00661

    ADS  Article  Google Scholar 

  56. J.F. Gabites, D.S. Rowles, Summary of visual observations of the aurora following the nuclear explosion above Johnston island on 9 July 1962. N.Z. J. Geol. Geophys. 5(6), 920–924 (1962). doi:10.1080/00288306.1962.10420041

    Article  Google Scholar 

  57. Y.I. Galperin, A.D. Boliunova, Recording of effects of high-altitude thermonuclear explosion of July 9, 1962, on the Cosmos 5 satellite. Kosm. Issled. (Cosm. Res.) 2(5), 763–772 (1964)

    Google Scholar 

  58. L.A. Gebhard, Evolution of Naval Radio-Electronics and Contributions of the Naval Research Laboratory. Technical report, Naval Research Laboratory, Washington, DC (1979)

  59. J. Gilbert, J. Kapperman, W. Radasky, E. Savage, The Late Time (E3) High-Altitude Electromagnetic Pulse (HEMP) and Its Impact on the US Power Grid. Technical report Meta-R-321, Metatech Corporation, Goleta, California (2010)

  60. J.L. Green, S. Boardsen, L. Garcia, W.W.L. Taylor, S.F. Fung, B.W. Reinisch, On the origin of whistler mode radiation in the plasmasphere. J. Geophys. Res. 110(A3), 03201 (2005). doi:10.1029/2004JA010495

    Article  Google Scholar 

  61. G. Haerendel, A. Valenzuela, O.H. Bauer, M. Ertl, H. Foppl, K.-H. Kaiser, W. Lieb, J. Loidl, F. Melzner, B. Merz, H. Neuss, P. Parigger, E. Rieger, R. Schoning, J. Stocker, E. Wiezorrek, E. Molona, The Li/Ba release experiments of the ion release module. IEEE Trans. Geosci. Remote Sens. GE-23(3), 253–258 (1985). doi:10.1109/TGRS.1985.289523

    ADS  Article  Google Scholar 

  62. D. Hambling, US Air Force wants to plasma bomb the sky using tiny satellites. New Sci. (August 20, 2016)

  63. J.B. Harold, A.B. Hassam, Two ion fluid numerical investigations of solar wind gas releases. J. Geophys. Res. 99(A10), 19325–19340 (1994). doi:10.1029/94JA00790

    ADS  Article  Google Scholar 

  64. A.B. Hassam, J.D. Huba, Structuring of the AMPTE magnetotail barium releases. Geophys. Res. Lett. 14(1), 60–63 (1987). doi:10.1029/GL014i001p00060

    ADS  Article  Google Scholar 

  65. R.A. Helliwell, Whistlers and Related Ionospheric Phenomena, 1st edn. (Stanford University Press, Stanford, 1965). ISBN 0486445720

    Google Scholar 

  66. R.A. Helliwell, VLF wave stimulation experiments in the magnetosphere from Siple Station, Antarctica. Rev. Geophys. 26(3), 551 (1988). doi:10.1029/RG026i003p00551

    ADS  Article  Google Scholar 

  67. R. Helliwell, E. Gehrels, Observations of magneto-ionic duct propagation using man-made signals of very low frequency. Proc. Inst. Radio Eng. 46(4), 785–787 (1958)

    Google Scholar 

  68. R.A. Helliwell, J.P. Katsufrakis, M.L. Trimpi, Whistler-induced amplitude perturbation in VLF propagation. J. Geophys. Res. 78(22), 4679–4688 (1973). doi:10.1029/JA078i022p04679

    ADS  Article  Google Scholar 

  69. R.A. Helliwell, J.P. Katsufrakis, T.F. Bell, R. Raghuram, VLF line radiation in the Earth’s magnetosphere and its association with power system radiation. J. Geophys. Res. 80(31), 4249–4258 (1975). doi:10.1029/JA080i031p04249

    ADS  Article  Google Scholar 

  70. W.N. Hess, The artificial radiation belt made on July 9, 1962. J. Geophys. Res. 68(3), 667–683 (1963). doi:10.1029/JZ068i003p00667

    ADS  Article  Google Scholar 

  71. W.N. Hess, P. Nakada, Artificial radiation belt discussed in symposium at Goddard Space Center. Science 138(3536), 53–54 (1962)

    ADS  Article  Google Scholar 

  72. R.L. Heyborne, R.L. Smith, R.A. Helliwell, Latitudinal cutoff of VLF signals in the ionosphere. J. Geophys. Res. 74(9), 2393–2397 (1969). doi:10.1029/JA074i009p02393

    ADS  Article  Google Scholar 

  73. R.B. Horne, M. Lam, J.C. Green, Energetic electron precipitation from the outer radiation belt during geomagnetic storms. Geophys. Res. Lett. 36(19), L19104 (2009). doi:10.1029/2009gl040236

    ADS  Article  Google Scholar 

  74. W.L. Imhof, H.D. Voss, M. Walt, E.E. Gaines, J. Mobilia, D.W. Datlowe, J.B. Reagan, Slot region electron precipitation by lightning, VLF chorus, and plasmaspheric hiss. J. Geophys. Res. 91(A8), 8883 (1986). doi:10.1029/JA091iA08p08883

    ADS  Article  Google Scholar 

  75. U.S. Inan, R.A. Helliwell, DE-1 observations of VLF transmitter signals and wave-particle interactions in the magnetosphere. Geophys. Res. Lett. 9(9), 917–920 (1982). doi:10.1029/GL009i009p00917

    ADS  Article  Google Scholar 

  76. U.S. Inan, T.F. Bell, D.L. Carpenter, R.R. Anderson, Explorer 45 and Imp 6 observations in the magnetosphere of injected waves from the Siple Station VLF transmitter. J. Geophys. Res. 82(7), 1177–1187 (1977). doi:10.1029/JA082i007p01177

    ADS  Article  Google Scholar 

  77. U.S. Inan, T.F. Bell, H.C. Chang, Particle precipitation induced by short-duration VLF waves in the magnetosphere. J. Geophys. Res. 87(A8), 6243 (1982). doi:10.1029/JA087iA08p06243

    ADS  Article  Google Scholar 

  78. U.S. Inan, H.C. Chang, R.A. Helliwell, Electron precipitation zones around major ground-based VLF signal sources. J. Geophys. Res. 89(A5), 2891 (1984). doi:10.1029/JA089iA05p02891

    ADS  Article  Google Scholar 

  79. U.S. Inan, H.C. Chang, R.A. Helliwell, W.L. Imhof, J.B. Reagan, M. Walt, Precipitation of radiation belt electrons by man-made waves: a comparison between theory and measurement. J. Geophys. Res. 90(A1), 359–369 (1985). doi:10.1029/JA090iA01p00359

    ADS  Article  Google Scholar 

  80. U.S. Inan, J.V. Rodriguez, S. Lev-Tov, J. Oh, ionospheric modification with a VLF transmitter. Geophys. Res. Lett. 19(20), 2071–2074 (1992). doi:10.1029/92GL02378

    ADS  Article  Google Scholar 

  81. U.S. Inan, T.F. Bell, J. Bortnik, J.M. Albert, Controlled precipitation of radiation belt electrons. J. Geophys. Res. 108(A5), 051186 (2003). doi:10.1029/2002JA009580

    Article  Google Scholar 

  82. A.N. Jaynes, D.N. Baker, H.J. Singer, J.V. Rodriguez, T.M. Loto’aniu, A.F. Ali, S.R. Elkington, X. Li, S.G. Kanekal, S.G. Claudepierre, J.F. Fennell, W. Li, R.M. Thorne, C.A. Kletzing, H.E. Spence, G.D. Reeves, Source and seed populations for relativistic electrons: their roles in radiation belt changes. J. Geophys. Res. 120(9), 7240–7254 (2015). doi:10.1002/2015JA021234

    Article  Google Scholar 

  83. C.B. Jones, M.K. Doyle, L.H. Berkhouse, F.S. Calhoun, E.J. Martin, Operation ARGUS 1958, Technical report DNA 6039F, Defense Nuclear Agency, Washington, DC (1982)

  84. S.L. Kahalas, P. Newman, Interpretation of early magnetic transients caused by high-altitude nuclear detonations. J. Res. Natl. Bur. Stand. D 69, 1179–1183 (1965)

    Google Scholar 

  85. A. Karinen, K. Mursula, T. Ulich, J. Manninen, Does the magnetosphere behave differently on weekends? Ann. Geophys. 20(8), 1137–1142 (2002). doi:10.5194/angeo-20-1137-2002

    ADS  Article  Google Scholar 

  86. W.J. Karzas, R. Latter, Electromagnetic radiation from a nuclear explosion in space. Phys. Rev. 126, 1919–1926 (1962). doi:10.1103/PhysRev.126.1919

    ADS  MATH  Article  Google Scholar 

  87. P.J. Kellogg, E.P. Ney, J.R. Winckler, Geophysical effects associated with high-altitude explosions. Nature 183(4658), 358–361 (1959). doi:10.1038/183358a0

    ADS  Article  Google Scholar 

  88. D.J. Kessler, B.G. Cour-Palais, Collision frequency of artificial satellites: the creation of a debris belt. J. Geophys. Res. 83(A6), 2637–2646 (1978). doi:10.1029/JA083iA06p02637

    ADS  Article  Google Scholar 

  89. G. Klawitter, K. Herold, M. Oexner, Langwellen- und Längstwellenfunk, 3rd edn. (Siebel: Verlag für Technik und Handwerk, Amazon.com, 2000). ISBN 3896320432

    Google Scholar 

  90. C.A. Kletzing, W.S. Kurth, M. Acuna, R.J. MacDowall, R.B. Torbert, T. Averkamp, D. Bodet, S.R. Bounds, M. Chutter, J. Connerney, D. Crawford, J.S. Dolan, R. Dvorsky, G.B. Hospodarsky, J. Howard, V. Jordanova, R.A. Johnson, D.L. Kirchner, B. Mokrzycki, G. Needell, J. Odom, D. Mark, R. Pfaff, J.R. Phillips, C.W. Piker, S.L. Remington, D. Rowland, O. Santolik, R. Schnurr, D. Sheppard, C.W. Smith, R.M. Thorne, J. Tyler, The Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) on RBSP, in The Van Allen Probes Mission (Springer, Boston, 2013), pp. 127–181. doi:10.1007/978-1-4899-7433-4_5

    Google Scholar 

  91. H. Klinkrad, Space Debris (Wiley, New York, 2010). doi:10.1002/9780470686652.eae325

    Google Scholar 

  92. H.C. Koons, B.C. Edgar, A.L. Vampola, Precipitation of inner zone electrons by whistler mode waves from the VLF transmitters UMS and NWC. J. Geophys. Res. 86(A2), 640 (1981). doi:10.1029/JA086iA02p00640

    ADS  Article  Google Scholar 

  93. S.M. Krimigis, G. Haerendel, G. Gloeckler, R.W. Mcentire, E.G. Shelley, R.B. Decker, G. Paschmann, A. Valenzuela, T.A. Potemra, F.L. Scarf, A.L. Brinca, H. Lühr, AMPTE lithium tracer releases in the solar wind: observations inside the magnetosphere. J. Geophys. Res. 91(A2), 1339–1353 (1986). doi:10.1029/JA091iA02p01339

    ADS  Article  Google Scholar 

  94. P. Kulkarni, U.S. Inan, T.F. Bell, J. Bortnik, Precipitation signatures of ground-based VLF transmitters. J. Geophys. Res. Space Phys. 113(A7), A07214 (2008). doi:10.1029/2007JA012569

    ADS  Google Scholar 

  95. M.F. Larsen, Winds and shears in the mesosphere and lower thermosphere: results from four decades of chemical release wind measurements. J. Geophys. Res. 107(A8), 28–12814 (2002). doi:10.1029/2001JA000218

    Article  Google Scholar 

  96. J.A. Lawrie, V.B. Gerard, P.J. Gill, Magnetic effects resulting from the Johnston island high altitude nuclear explosions. N.Z. J. Geol. Geophys. 4(2), 109–124 (1961). doi:10.1080/00288306.1961.10423131

    Article  Google Scholar 

  97. J. Leiphart, R. Zeek, L. Bearce, E. Toth, Penetration of the ionosphere by very-low-frequency radio signals-interim results of the LOFTI I experiment. Proc. IRE 50(1), 6–17 (1962). doi:10.1109/JRPROC.1962.288269

    Article  Google Scholar 

  98. X. Li, R.S. Selesnick, D.N. Baker, A.N. Jaynes, S.G. Kanekal, Q. Schiller, L. Blum, J. Fennell, J.B. Blake, Upper limit on the inner radiation belt MeV electron intensity. J. Geophys. Res. 120(2), 1215–1228 (2015). doi:10.1002/2014JA020777

    Article  Google Scholar 

  99. C.L. Longmire, Justification and Verification of High-Altitude EMP Theory: Part I. Technical report Technical Note 368, Mission Research Corporation, Santa Barbara, California (1986)

  100. J.P. Luette, C.G. Park, R.A. Helliwell, The control of the magnetosphere by power line radiation. J. Geophys. Res. 84(A6), 2657–2660 (1979). doi:10.1029/JA084iA06p02657

    ADS  Article  Google Scholar 

  101. R. Lüst, in Barium Cloud Experiments in the Upper Atmosphere, ed. by J.A.M. Bleeker, J. Geiss, M.C.E. Huber (Springer, Dordrecht, 2001), pp. 179–187. doi:10.1007/978-94-010-0320-9_6

    Google Scholar 

  102. H. Maeda, Geomagnetic disturbances due to nuclear explosion. J. Geophys. Res. 64(7), 863–864 (1959). doi:10.1029/JZ064i007p00863

    ADS  Article  Google Scholar 

  103. B.H. Mauk, N.J. Fox, S.G. Kanekal, R.L. Kessel, D.G. Sibeck, A. Ukhorskiy, Science objectives and rationale for the Radiation Belt Storm Probes mission. Space Sci. Rev. 179(1–4), 3–27 (2013). doi:10.1007/s11214-012-9908-y

    ADS  Article  Google Scholar 

  104. J.S. Mayo, H. Mann, F.J. Witt, D.S. Peck, H.K. Gummel, W.L. Brown, The command system malfunction. Bell Syst. Tech. J. 42, 1631–1657 (1963)

    Article  Google Scholar 

  105. C.E. McIlwain, Coordinates for mapping the distribution of magnetically trapped particles. J. Geophys. Res. 66(11), 3681–3691 (1961). doi:10.1029/JZ066i011p03681

    ADS  Article  Google Scholar 

  106. C.E. McIlwain, The radiation belts, natural and artificial. Science 142(3590), 355–361 (1963). doi:10.1126/science.142.3590.355

    ADS  Article  Google Scholar 

  107. K.G. McKay, A germanium counter. Phys. Rev. 76, 1537 (1949). doi:10.1103/PhysRev.76.1537

    ADS  Article  Google Scholar 

  108. R.R. Meier, M.H. Stevens, J.M.C. Plane, J.T. Emmert, G. Crowley, I. Azeem, L.J. Paxton, A.B. Christensen, A study of space shuttle plumes in the lower thermosphere. J. Geophys. Res. 116(A12), 12322 (2011). doi:10.1029/2011JA016987

    Article  Google Scholar 

  109. S.B. Mende, G.R. Swenson, S.P. Geller, J.H. Doolittle, G. Haerendel, A. Valenzuela, O.H. Bauer, Dynamics of a barium release in the magnetospheric tail. J. Geophys. Res. 94(A12), 17063–17083 (1989). doi:10.1029/JA094iA12p17063

    ADS  Article  Google Scholar 

  110. M. Mendillo, The effect of rocket launches on the ionosphere. Adv. Space Res. 1(2), 275–290 (1981). doi:10.1016/0273-1177(81)90302-1

    ADS  Article  Google Scholar 

  111. M. Mendillo, J. Baumgardner, D.P. Allen, J. Foster, J. Holt, G.R.A. Ellis, A. Klekociuk, G. Reber, Spacelab-2 plasma depletion experiments for ionospheric and radio astronomical studies. Science 238(4831), 1260–1264 (1987). doi:10.1126/science.238.4831.1260

    ADS  Article  Google Scholar 

  112. D.P. Miles, R.P. Lepping, Magnetic disturbances due to the high-altitude nuclear explosion of July 9, 1962. J. Geophys. Res. 69(3), 547–548 (1964). doi:10.1029/JZ069i003p00547

    ADS  Article  Google Scholar 

  113. S. Millman (ed.), A History of Engineering and Science in the Bell System: Physical Sciences (1925–1980) (Bell Telephone Laboratories, New Jersey, 1983)

    Google Scholar 

  114. O. Molchanov, A. Rozhnoi, M. Solovieva, O. Akentieva, J.J. Berthelier, M. Parrot, F. Lefeuvre, P.F. Biagi, L. Castellana, M. Hayakawa, Global diagnostics of the ionospheric perturbations related to the seismic activity using the VLF radio signals collected on the DEMETER satellite. Nat. Hazards Earth Syst. Sci. 6(5), 745–753 (2006)

    ADS  Article  Google Scholar 

  115. R.C. Moore, U.S. Inan, T.F. Bell, E.J. Kennedy, ELF waves generated by modulated HF heating of the auroral electrojet and observed at a ground distance of ∼4400 km. J. Geophys. Res. 112(A5), 05309 (2007). doi:10.1029/2006JA012063

    Article  Google Scholar 

  116. B.J. O’Brien, C.D. Laughlin, J.A. Van Allen, Geomagnetically trapped radiation produced by a high-altitude nuclear explosion on July 9, 1962. Nature 195(4845), 939–943 (1962a). doi:10.1038/195939a0

    ADS  Article  Google Scholar 

  117. B.J. O’Brien, C.D. Laughlin, J.A. Van Allen, L.A. Frank, Measurements of the intensity and spectrum of electrons at 1000-kilometer altitude and high latitudes. J. Geophys. Res. 67(4), 1209–1225 (1962b). doi:10.1029/JZ067i004p01209

    ADS  Article  Google Scholar 

  118. Y. Omura, D. Nunn, H. Matsumoto, M.J. Rycroft, A review of observational, theoretical, and numerical studies of VLF triggered emissions. J. Atmos. Terr. Phys. 53(5), 351–368 (1991)

    ADS  Article  Google Scholar 

  119. K. Papadopoulos, A.S. Sharma, C.L. Chang, On the efficient operation of a plasma ELF antenna driven by modulation of ionospheric currents. Comments Plasma Phys. Control. Fusion 13, 1 (1989)

    Google Scholar 

  120. C.G. Park, R.A. Helliwell, Whistler precursors: a possible catalytic role of power line radiation. J. Geophys. Res. 82(25), 3634–3642 (1977). doi:10.1029/JA082i025p03634

    ADS  Article  Google Scholar 

  121. C.G. Park, T.R. Miller, Sunday decreases in magnetospheric VLF wave activity. J. Geophys. Res. 84(A3), 943–950 (1979). doi:10.1029/JA084iA03p00943

    ADS  Article  Google Scholar 

  122. M. Parrot, World map of ELF/VLF emissions as observed by a low-orbiting satellite. Ann. Geophys., Atmos. Hydrospheres Space Sci. 8(2), 135–146 (1990)

    Google Scholar 

  123. M. Parrot, Observations of power line harmonic radiation by the low-altitude AUREOL 3 satellite. J. Geophys. Res. 99(A3), 3961–3969 (1994). doi:10.1029/93JA02544

    ADS  Article  Google Scholar 

  124. M. Parrot, Y. Zaslavski, Physical mechanisms of man-made influences on the magnetosphere. Surv. Geophys. 17(1), 67–100 (1996). doi:10.1007/BF01904475

    ADS  Article  Google Scholar 

  125. M. Parrot, J.A. Sauvaud, J.J. Berthelier, J.P. Lebreton, First in-situ observations of strong ionospheric perturbations generated by a powerful VLF ground-based transmitter. Geophys. Res. Lett. 34(11), 11111 (2007). doi:10.1029/2007GL029368

    ADS  Article  Google Scholar 

  126. T.R. Pedersen, E.A. Gerken, Creation of visible artificial optical emissions in the aurora by high-power radio waves. Nature 433(7025), 498–500 (2005). doi:10.1038/nature03243

    ADS  Article  Google Scholar 

  127. T. Pedersen, B. Gustavsson, E. Mishin, E. MacKenzie, H.C. Carlson, M. Starks, T. Mills, Optical ring formation and ionization production in high-power HF heating experiments at HAARP. Geophys. Res. Lett. 36(18), 18107 (2009). doi:10.1029/2009GL040047

    ADS  Article  Google Scholar 

  128. G.F. Pieper, Injun: a radiation research satellite. APL Tech. Dig. 1(1), 3–7 (1961)

    Google Scholar 

  129. G.F. Pieper, The artificial radiation belt. APL Tech. Dig. 2(2), 3–7 (1962)

    Google Scholar 

  130. G.F. Pieper, A second radiation belt from the July 9, 1962, nuclear detonation. J. Geophys. Res. 68(3), 651–655 (1963). doi:10.1029/JZ068i003p00651

    ADS  Article  Google Scholar 

  131. P.R. Pisharoty, Geomagnetic disturbances associated with the nuclear explosion of July 9. Nature 196, 822–824 (1962). doi:10.1038/196822b0

    ADS  Article  Google Scholar 

  132. R. Raghuram, T.F. Bell, R.A. Helliwell, J.P. Katsufrakis, A quiet band produced by VLF transmitter signals in the magnetosphere. Geophys. Res. Lett. 4(5), 199–202 (1977). doi:10.1029/GL004i005p00199

    ADS  Article  Google Scholar 

  133. K. Rastani, U.S. Inan, R.A. Helliwell, DE 1 observations of siple transmitter signals and associated sidebands. J. Geophys. Res. 90(A5), 4128 (1985). doi:10.1029/JA090iA05p04128

    ADS  Article  Google Scholar 

  134. D.L. Reasoner, Chemical-release mission of CRRES. J. Spacecr. Rockets 29(4), 580–584 (1992). doi:10.2514/3.25502

    ADS  Article  Google Scholar 

  135. C.S. Roberts, Coordinates for the study of particles trapped in the Earth’s magnetic field: a method of converting from B, L to R, \(\lambda\) coordinates. J. Geophys. Res. 69(23), 5089–5090 (1964). doi:10.1029/JZ069i023p05089

    ADS  Article  Google Scholar 

  136. C.J. Rodger, M.A. Clilverd, T. Ulich, P.T. Verronen, E. Turunen, N.R. Thomson, The atmospheric implications of radiation belt remediation. Ann. Geophys. 24(7), 2025–2041 (2006). doi:10.5194/angeo-24-2025-2006

    ADS  Article  Google Scholar 

  137. J. Roquet, R. Schlich, E. Selzer, Evidence of two distinct synchronous world impetuses for the magnetic effects of the nuclear high-altitude detonation of July 9, 1962. J. Geophys. Res. 68(12), 3731–3732 (1963). doi:10.1029/JZ068i012p03731

    ADS  Article  Google Scholar 

  138. W. Rosenzweig, H.K. Gummel, F.M. Smits, Solar cell degradation under 1 MeV electron bombardment. Bell Syst. Tech. J. 42(2), 399–414 (1963)

    Article  Google Scholar 

  139. J.A. Sauvaud, T. Moreau, R. Maggiolo, J.-P. Treilhou, C. Jacquey, A. Cros, J. Coutelier, J. Rouzaud, E. Penou, M. Gangloff, High-energy electron detection onboard DEMETER: the IDP spectrometer, description and first results on the inner belt. Planet. Space Sci. 54(5), 502–511 (2006). doi:10.1016/j.pss.2005.10.019

    ADS  Article  Google Scholar 

  140. J.-A. Sauvaud, R. Maggiolo, C. Jacquey, M. Parrot, J.-J. Berthelier, R.J. Gamble, C.J. Rodger, Radiation belt electron precipitation due to VLF transmitters: satellite observations. Geophys. Res. Lett. 35(9), 09101 (2008). doi:10.1029/2008GL033194

    ADS  Article  Google Scholar 

  141. E. Savage, J. Gilbert, W. Radasky, The Early Time (E1) High-Altitude Electromagnetic Pulse (HEMP) and Its Impact on the US Power Grid. Technical report Meta-R-320, Metatech Corporation, Goleta, California (2010)

  142. R.R. Scarabucci, Interpretation of VLF Signals Observed on the OGO-4 Satellite (Stanford University, Stanford, 1969)

    Google Scholar 

  143. R.L. Smith, Propagation characteristics of whistlers trapped in field-aligned columns of enhanced ionization. J. Geophys. Res. 66(11), 3699–3707 (1961). doi:10.1029/JZ066i011p03699

    ADS  Article  Google Scholar 

  144. A.J. Smith, M.A. Clilverd, Magnetic storm effects on the mid-latitude plasmasphere. Planet. Space Sci. 39(7), 1069–1079 (1991). doi:10.1016/0032-0633(91)90114-P

    ADS  Article  Google Scholar 

  145. V.S. Sonwalkar, U.S. Inan, Measurements of siple transmitter signals on the DE 1 satellite: wave normal direction and antenna effective length. J. Geophys. Res. 91(A1), 154 (1986). doi:10.1029/JA091iA01p00154

    ADS  Article  Google Scholar 

  146. V.S. Sonwalkar, U.S. Inan, T.F. Bell, R.A. Helliwell, V.M. Chmyrev, Y.P. Sobolev, O.Y. Ovcharenko, V. Selegej, Simultaneous observations of VLF ground transmitter signals on the DE 1 and COSMOS 1809 satellites: detection of a magnetospheric caustic and a duct. J. Geophys. Res. 99(A9), 17511 (1994). doi:10.1029/94JA00866

    ADS  Article  Google Scholar 

  147. M.J. Starks, R.A. Quinn, G.P. Ginet, J.M. Albert, G.S. Sales, B.W. Reinisch, P. Song, Illumination of the plasmasphere by terrestrial very low frequency transmitters: model validation. J. Geophys. Res. Space Phys. 113(A9), A09320 (2008). doi:10.1029/2008JA013112

    ADS  Google Scholar 

  148. M.J. Starks, T.F. Bell, R.A. Quinn, U.S. Inan, D. Piddyachiy, M. Parrot, Modeling of Doppler-shifted terrestrial VLF transmitter signals observed by DEMETER. Geophys. Res. Lett. 36(12), 12103 (2009). doi:10.1029/2009GL038511

    ADS  Article  Google Scholar 

  149. A.V. Streltsov, M. Gołkowski, U.S. Inan, K.D. Papadopoulos, Propagation of whistler mode waves with a modulated frequency in the magnetosphere. J. Geophys. Res. 115(A9), 09209 (2010). doi:10.1029/2009JA015155

    Article  Google Scholar 

  150. B.T. Tsurutani, R.M. Thorne, A skeptic’s view of PLR effects in the magnetosphere. Adv. Space Res. 1(2), 439–444 (1981). doi:10.1016/0273-1177(81)90318-5

    ADS  Article  Google Scholar 

  151. B.T. Tsurutani, E.J. Smith, S.R. Church, R.M. Thorne, R.E. Holzer, in Does ELF Chorus Show Evidence of Power Line Stimulation? ed. by P.J. Palmadesso, K. Papadopoulos (Springer, Dordrecht, 1979), pp. 51–54. doi:10.1007/978-94-009-9500-0_5

    Google Scholar 

  152. R.R. Unterberger, P.E. Byerly, Magnetic effects of a high-altitude nuclear explosion. J. Geophys. Res. 67(12), 4929–4932 (1962). doi:10.1029/JZ067i012p04929

    ADS  Article  Google Scholar 

  153. A.L. Vampola, Electron precipitation in the vicinity of a VLF transmitter. J. Geophys. Res. 92(A5), 4525 (1987). doi:10.1029/JA092iA05p04525

    ADS  Article  Google Scholar 

  154. A.L. Vampola, In-situ observations of magnetospheric electron scattering by a VLF transmitter. J. Atmos. Terr. Phys. 52(5), 377–384 (1990). doi:10.1016/0021-9169(90)90106-W

    ADS  Article  Google Scholar 

  155. J.A. Van Allen, The geomagnetically trapped corpuscular radiation. J. Geophys. Res. 64(11), 1683–1689 (1959). doi:10.1029/JZ064i011p01683

    ADS  Article  Google Scholar 

  156. J.A. Van Allen, Lifetimes of geomagnetically trapped electrons of several MeV energy. Nature 203(4949), 1006–1007 (1964). doi:10.1038/2031006a0.

    ADS  Article  Google Scholar 

  157. J.A. Van Allen, in Spatial Distribution and Time Decay of the Intensities of Geomagnetically Trapped Electrons from the High Altitude Nuclear Burst of July 1962, ed. by B.M. McCormac (Springer, Dordrecht, 1966), pp. 575–592. doi:10.1007/978-94-010-3553-8_42

    Google Scholar 

  158. J.A. Van Allen, in Energetic Particles in the Earth’s External Magnetic Field, ed. by C.S. Gillmor, J.R. Spreiter (American Geophysical Union, Washington, 1997), pp. 235–251. doi:10.1029/HG007p0235

    Google Scholar 

  159. J.A. Van Allen, L.A. Frank, Radiation around the Erth to a radial distance of 107,400 km. Nature 183(4659), 430–434 (1959). doi:10.1038/183430a0

    ADS  Article  Google Scholar 

  160. J.A. Van Allen, G.H. Ludwig, E.C. Ray, C.E. McIlwain, Observation of high intensity radiation by satellites 1958 alpha and gamma (Explorers I and III). Jet Propuls. 28(9), 588–592 (1958). doi:10.2514/8.7396

    Article  Google Scholar 

  161. J.A. Van Allen, C.E. McIlwain, G.H. Ludwig, Satellite observations of electrons artificially injected into the geomagnetic field. Proc. Natl. Acad. Sci. USA 45(8), 1152–1171 (1959a)

    ADS  Article  Google Scholar 

  162. J.A. Van Allen, C.E. McIlwain, G.H. Ludwig, Radiation observations with satellite 1958 \(\varepsilon\). J. Geophys. Res. 64(3), 271–286 (1959b). doi:10.1029/JZ064i003p00271

    ADS  Article  Google Scholar 

  163. J.A. Van Allen, C.E. McIlwain, G.H. Ludwig, Satellite observations of electrons artificially injected into the geomagnetic field. J. Geophys. Res. 64(8), 877–891 (1959c). doi:10.1029/JZ064i008p00877

    ADS  Article  Google Scholar 

  164. J.A. Van Allen, L.A. Frank, B.J. O’Brien, Satellite observations of the artificial radiation belt of July 1962. J. Geophys. Res. 68(3), 619–627 (1963). doi:10.1029/JZ068i003p00619

    ADS  Article  Google Scholar 

  165. C.N. Vittitoe, Did high-altitude EMP cause the Hawaiian streetlight incident? System Design and Assessment Notes (1989)

  166. J. Wait, Propagation of ELF electromagnetic waves and project Sanguine/Seafarer. IEEE J. Ocean. Eng. 2(2), 161–172 (1977). doi:10.1109/JOE.1977.1145337

    Article  Google Scholar 

  167. M. Walt, The effects of atmospheric collisions on geomagnetically trapped electrons. J. Geophys. Res. 69(19), 3947–3958 (1964). doi:10.1029/jz069i019p03947.

    ADS  Article  Google Scholar 

  168. M. Walt, in From Nuclear Physics to Space Physics by Way of High Altitude Nuclear Tests, ed. by C.S. Gillmor, J.R. Spreiter (American Geophysical Union, Washington 1997), pp. 253–263. doi:10.1029/HG007p0253

    Google Scholar 

  169. E.P. Wenaas, Spacecraft Charging Effects on Satellites Following Starfish Events. Technical report RE-78-2044-057, JAYCOR, Alexandria, Virginia (1978)

  170. Wikipedia Contributors, High-altitude nuclear explosion (Wikipedia, The Free Encyclopedia, 2016)

  171. D.J. Williams, J.F. Arens, L.J. Lanzerotti, Observations of trapped electrons at low and high altitudes. J. Geophys. Res. 73(17), 5673–5696 (1968). doi:10.1029/ja073i017p05673

    ADS  Article  Google Scholar 

  172. G. Xin, F. Zhan-zu, C. Xin-yu, Y. Sheng-sheng, Z. Lei, Performance evaluation and prediction of single-junction and triple-junction GaAs solar cells induced by electron and proton irradiations. IEEE Trans. Nucl. Sci. 61(4), 1838–1842 (2014). doi:10.1109/TNS.2014.2306991

    ADS  Article  Google Scholar 

  173. K.A. Zawdie, J.D. Huba, D.P. Drob, P.A. Bernhardt, A coupled ionosphere-raytrace model for high-power HF heating. Geophys. Res. Lett. 42(22), 9650–9656 (2015). doi:10.1002/2015GL066673

    ADS  Article  Google Scholar 

  174. A.J. Zmuda, B.W. Shaw, C.R. Haave, VLF disturbances caused by the nuclear detonation of October 26, 1962. J. Geophys. Res. 68(13), 4105–4114 (1963). doi:10.1029/JZ068i013p04105

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank the International Space Science Institute, Bern, Switzerland and its staff for organizing and supporting the Workshop on the Scientific Foundations of Space Weather that motivated the work in this paper. The work performed at the University of Michigan was supported by National Science Foundation grant AGS-1322543. JDH was supported by NRL Base Funds. Work at the Massachusetts Institute of Technology was sponsored by US National Science Foundation grant AGS-1242204. Work at the University of Colorado/LASP was supported by funding from NASA and the National Science Foundation. The authors thank Vaughn Hoxie, Scot Elkington, Hong Zhao, and Tom Mason for extraordinary efforts in adapting and portraying data from the Explorer XV and Van Allen Probes missions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to T. I. Gombosi.

Additional information

The Scientific Foundation of Space Weather

Edited by Rudolf von Steiger, Daniel Baker, André Balogh, Tamás Gombosi, Hannu Koskinen and Astrid Veronig

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gombosi, T.I., Baker, D.N., Balogh, A. et al. Anthropogenic Space Weather. Space Sci Rev 212, 985–1039 (2017). https://doi.org/10.1007/s11214-017-0357-5

Download citation

Keywords

  • High-altitude nuclear explosions
  • Artificial radiation belts
  • Electromagnetic pulse (EMP)
  • Damage to satellites
  • Space Debris
  • Chemical releases
  • HF heating
  • VLF waves and radiation belts