Skip to main content
Log in

Anthropogenic Space Weather

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

Anthropogenic effects on the space environment started in the late 19th century and reached their peak in the 1960s when high-altitude nuclear explosions were carried out by the USA and the Soviet Union. These explosions created artificial radiation belts near Earth that resulted in major damages to several satellites. Another, unexpected impact of the high-altitude nuclear tests was the electromagnetic pulse (EMP) that can have devastating effects over a large geographic area (as large as the continental United States). Other anthropogenic impacts on the space environment include chemical release experiments, high-frequency wave heating of the ionosphere and the interaction of VLF waves with the radiation belts. This paper reviews the fundamental physical process behind these phenomena and discusses the observations of their impacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35

Similar content being viewed by others

References

  • B. Abel, R.M. Thorne, Electron scattering loss in Earth’s inner magnetosphere: 1. Dominant physical processes. J. Geophys. Res. 103(A2), 2385–2396 (1998). doi:10.1029/97JA02919

    Article  ADS  Google Scholar 

  • L. Allen, J.L. Beavers, W.A. Whitaker, J.A. Welch, R.B. Walton, Project Jason measurement of trapped electrons from a nuclear device by sounding rockets. Proc. Natl. Acad. Sci. USA 45(8), 1171–1190 (1959)

    Article  ADS  Google Scholar 

  • D.N. Baker, How to cope with space weather. Science 297(5586), 1486–1487 (2002). doi:10.1126/science.1074956

    Article  Google Scholar 

  • R.C. Baker, W.M. Strome, Magnetic disturbance from a high-altitude nuclear explosion. J. Geophys. Res. 67(12), 4927–4928 (1962)

    Article  ADS  Google Scholar 

  • D.N. Baker, R. Balstad, J.M. Bodeau, E. Cameron, J.F. Fennell, G.M. Fisher, K.F. Forbes, P.M. Kintner, L.G. Leffler, W.S. Lewis, J.B. Reagan, A.A. Small III, T.A. Stansell, L. Strachan Jr., Severe Space Weather Events-Understanding Societal and Economic Impacts Workshop Report. Technical report ISBN: 0-309-12770-X, Committee on the Societal and Economic Impacts of Severe Space Weather Events, National Research Council (2008)

  • D.N. Baker, A.N. Jaynes, V.C. Hoxie, R.M. Thorne, J.C. Foster, X. Li, J.F. Fennell, J.R. Wygant, S.G. Kanekal, P.J. Erickson, W. Kurth, W. Li, Q. Ma, Q. Schiller, L. Blum, D.M. Malaspina, A. Gerrard, L.J. Lanzerotti, An impenetrable barrier to ultrarelativistic electrons in the Van Allen radiation belts. Nature 515(7528), 531–534 (2014). doi:10.1038/nature13956

    Article  ADS  Google Scholar 

  • D.N. Baker, A.N. Jaynes, S.G. Kanekal, J.C. Foster, P.J. Erickson, J.F. Fennell, J.B. Blake, H. Zhao, X. Li, S.R. Elkington, M.G. Henderson, G.D. Reeves, H.E. Spence, C.A. Kletzing, J.R. Wygant, Highly relativistic radiation belt electron acceleration, transport, and loss: large solar storm events of March and June 2015. J. Geophys. Res. 121(7), 6647–6660 (2016). doi:10.1002/2016JA022502

    Article  Google Scholar 

  • R.C. Baumann, Ariel I: The First International Satellite. Technical report NASA SP-43, NASA (1963)

  • T.F. Bell, H.G. James, U.S. Inan, J.P. Katsufrakis, The apparent spectral broadening of VLF transmitter signals during transionospheric propagation. J. Geophys. Res. 88(A6), 4813 (1983). doi:10.1029/JA088iA06p04813

    Article  ADS  Google Scholar 

  • P.A. Bernhardt, R.A. Roussel-Dupre, M.B. Pongratz, G. Haerendel, A. Valenzuela, D.A. Gurnett, R.R. Anderson, Observations and theory of the AMPTE magnetotail barium releases. J. Geophys. Res. 92(A6), 5777–5794 (1987). doi:10.1029/JA092iA06p05777

    Article  ADS  Google Scholar 

  • P.A. Bernhardt, L.M. Duncan, C.A. Tepley, Artificial airglow excited by high-power radio waves. Science 242(4881), 1022–1027 (1988). doi:10.1126/science.242.4881.1022

    Article  ADS  Google Scholar 

  • P.A. Bernhardt, L.M. Duncan, C.A. Tepley, Heater-induced cavities as optical tracers of plasma drifts. J. Geophys. Res. 94(A6), 7003–7010 (1989). doi:10.1029/JA094iA06p07003

    Article  ADS  Google Scholar 

  • W.K. Berthold, A.K. Harris, H.J. Hope, World-wide effects of hydromagnetic waves due to Argus. J. Geophys. Res. 65(8), 2233–2239 (1960)

    Article  ADS  Google Scholar 

  • L. Biermann, Kometenschweife und Solare Korpuskularstrahlung. Z. Astrophys. 29, 274–286 (1951)

    ADS  Google Scholar 

  • H.A. Bomke, I.A. Balton, H.H. Grote, A.K. Harris, Near and distant observations of the 1962 Johnston Island high-altitude nuclear tests. J. Geophys. Res. 69(15), 3125–3136 (1964)

    Article  ADS  Google Scholar 

  • H.A. Bomke, A.K. Harris, J.W. Walker, W.J. Ramm, The nature of worldwide geomagnetic disturbances generated by the Starfish explosion of July 9, 1962. J. Geophys. Res. 71(11), 2777–2789 (1966). doi:10.1029/JZ071i011p02777

    Article  ADS  Google Scholar 

  • S. Breiner, Effect of nuclear detonation on the geomagnetic field at Palo Alto, California. J. Geophys. Res. 68(1), 335–337 (1963). doi:10.1029/JZ068i001p00335

    Article  ADS  Google Scholar 

  • W.L. Brown, in Observations of the Transient Behavior of Electrons in the Artificial Radiation Belts, ed. by B.M. McCormac (Springer, Dordrecht, 1966), pp. 610–633. doi:10.1007/978-94-010-3553-8_44

    Google Scholar 

  • W.L. Brown, J.D. Gabbe, The electron distribution in the Earth’s radiation belts during July 1962 as measured by Telstar. J. Geophys. Res. 68(3), 607–618 (1963). doi:10.1029/JZ068i003p00607

    Article  ADS  Google Scholar 

  • W.L. Brown, J.D. Gabbe, W. Rosenzweig, Results of the Telstar radiation experiments. Bell Syst. Tech. J. 42(4), 1505–1560 (1963)

    Article  Google Scholar 

  • K. Bullough, Satellite observations of power line harmonic radiation. Space Sci. Rev. 35(2), 175–183 (1983). doi:10.1007/BF00242242

    Article  ADS  Google Scholar 

  • B. Caner, Prompt world-wide geomagnetic effects of high-latitude nuclear explosions, Master’s thesis, The University of British Columbia, Vancouver, BC Canada, 1964. https://open.library.ubc.ca/cIRcle/collections/ubctheses/831/items/1.0053563

  • D.L. Carpenter, Whistler studies of the plasmapause in the magnetosphere: 1. Temporal variations in the position of the knee and some evidence on plasma motions near the knee. J. Geophys. Res. 71(3), 693–709 (1966). doi:10.1029/JZ071i003p00693

    Article  ADS  Google Scholar 

  • D.L. Carpenter, Very Low Frequency Space Radio Research at Stanford 1950–1990, 1st edn. (Lulu.com, Stanford, 2015). ISBN 9781329884106

    Google Scholar 

  • D. Carpenter, J. Lemaire, The plasmasphere boundary layer. Ann. Geophys. 22, 4291–4298 (2004)

    Article  ADS  Google Scholar 

  • M. Casaverde, A. Giesecke, R. Cohen, Effects of the nuclear explosion over Johnston Island observed in Peru on July 9, 1962. J. Geophys. Res. 68(9), 2603–2611 (1963). doi:10.1029/JZ068i009p02603

    Article  ADS  Google Scholar 

  • D.M. Chapin, C.S. Fuller, G.L. Pearson, A new silicon p-n junction photocell for converting solar radiation into electrical power. J. Appl. Phys. 25(5), 676–677 (1954). doi:10.1063/1.1721711

    Article  ADS  Google Scholar 

  • N. Christofilos, The Argus experiment. Proc. Natl. Acad. Sci. 45, 1144–1152 (1959a)

    Article  ADS  Google Scholar 

  • N.C. Christofilos, The Argus experiment. J. Geophys. Res. 64(8), 869–875 (1959b). doi:10.1029/JZ064i008p00869

    Article  ADS  Google Scholar 

  • M.A. Clilverd, C.J. Rodger, N.R. Thomson, J.B. Brundell, T. Ulich, J. Lichtenberger, N. Cobbett, A.B. Collier, F.W. Menk, A. Seppälä, P.T. Verronen, E. Turunen, Remote sensing space weather events: Antarctic-Arctic Radiation-Belt (Dynamic) Deposition-VLF Atmospheric Research Konsortium network. Space Weather 7(4), S04001 (2009). doi:10.1029/2008SW000412

    Article  ADS  Google Scholar 

  • M.B. Cohen, N.G. Lehtinen, U.S. Inan, Models of ionospheric VLF absorption of powerful ground based transmitters. Geophys. Res. Lett. 39(24), L24101 (2012). doi:10.1029/2012GL054437

    Article  ADS  Google Scholar 

  • S.A. Colgate, The phenomenology of the mass motion of a high altitude nuclear explosion. J. Geophys. Res. 70(13), 3161–3173 (1965). doi:10.1029/jz070i013p03161

    Article  ADS  Google Scholar 

  • E.E. Conrad, G.A. Gurtman, G. Kweder, M.J. Mandell, W.W. White, Collateral Damage to Satellites from an EMP Attack. Technical report DTRA-IR-10-22, Defense Threat Reduction Agency, Fort Belvoir, Virginia (2010)

  • A.L. Cullington, A man-made or artifical aurora. Nature 182(4646), 1365–1366 (1958). doi:10.1038/1821365a0

    Article  ADS  Google Scholar 

  • R.J. Danchik, An overview of transit development. APL Tech. Dig. 1(1), 18–26 (1998)

    Google Scholar 

  • R.G. D’Arcy, S.A. Colgate, Measurements at the southern magnetic conjugate region of the fission debris from the Starfish nuclear detonation. J. Geophys. Res. 70(13), 3147–3159 (1965). doi:10.1029/JZ070i013p03147

    Article  ADS  Google Scholar 

  • A.C. Dickieson, The Telstar experiment. Bell Syst. Tech. J. 42, 739–746 (1963)

    Article  Google Scholar 

  • A.C. Durney, H. Elliot, R.J. Hynds, J.J. Quenby, Satellite observations of the energetic particle flux produced by the high-altitude nuclear explosion of July 9, 1962. Nature 195, 1245–1248 (1962). doi:10.1038/1951245a0

    Article  ADS  Google Scholar 

  • A.C. Durney, H. Elliot, R.J. Hynds, J.J. Quenby, The artificial radiation belt produced by the Starfish nuclear explosion. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 281(1384), 565–583 (1964)

    Article  ADS  Google Scholar 

  • P. Dyal, Particle and field measurements of the starfish diamagnetic cavity. J. Geophys. Res. 111(A12), 12211 (2006). doi:10.1029/2006JA011827

    Article  Google Scholar 

  • P.J. Edwards, J.S. Reid, Effects of nuclear explosion starfish prime observed at Hobart, Tasmania, July 9, 1962. J. Geophys. Res. 69(17), 3607–3612 (1964). doi:10.1029/JZ069i017p03607

    Article  ADS  Google Scholar 

  • H. Elliot, in Some Cosmic Ray and Radiation Belt Observations Based on Data from the Anton 302 G-M Counter in Ariel I, ed. by B.M. McCormac (Springer, Dordrecht, 1966), pp. 76–99. doi:10.1007/978-94-010-3553-8_7

    Google Scholar 

  • H. Elliot, J.J. Quenby, The Samoan artificial aurora. Nature 83, 810 (1959). doi:10.1038/183810a0

    Article  ADS  Google Scholar 

  • J.F. Fennell, H.C. Koons, J.L. Roeder, J.B. Blake, Spacecraft charging: observations and relationship to satellite anomalies, in Spacecraft Charging Technology, Proceedings of the Seventh International Conference, ed. by R.A. Harris (European Space Agency ESTEC, Noordwijk, 2001), pp. 279–285

    Google Scholar 

  • J.F. Fennell, S.G. Claudepierre, J.B. Blake, T.P. O’Brien, J.H. Clemmons, D.N. Baker, H.E. Spence, G.D. Reeves, Van Allen probes show that the inner radiation zone contains no MeV electrons: ECT/MagEIS data. Geophys. Res. Lett. 42(5), 1283–1289 (2015). doi:10.1002/2014GL062874

    Article  ADS  Google Scholar 

  • A. Finkbeiner, The Jasons: The Secret History of Science’s Postwar Elite (Viking, New York, 2006)

    Google Scholar 

  • R.E. Fischell, Effect of the artificial radiation belt on solar power systems. APL Tech. Dig. 2(2), 8–13 (1962a)

    Google Scholar 

  • R.E. Fischell, The TRAAC satellite. APL Tech. Dig. 1(3), 2–9 (1962b)

    Google Scholar 

  • J.C. Foster, T.J. Rosenberg, Electron precipitation and VLF emissions associated with cyclotron resonance interactions near the plasmapause. J. Geophys. Res. 81(13), 2183–2192 (1976). doi:10.1029/JA081i013p02183

    Article  ADS  Google Scholar 

  • J.S. Foster, E. Gjelde, W.R. Graham, R.J. Hermann, H.M. Kluepfel, R.L. Lawson, G.K. Soper, L.L. Wood, J.B. Woodard, Report of the Commission to Assess the Threat to the United States from Electromagnetic Pulse (EMP) Attack: Executive Report. Technical report, United States Congress, Washington, DC (2004)

  • J.S. Foster, E. Gjelde, W.R. Graham, R.J. Hermann, H.M. Kluepfel, R.L. Lawson, G.K. Soper, L.L. Wood, J.B. Woodard, Report of the Commission to Assess the Threat to the United States from Electromagnetic Pulse (EMP) Attack: Critical National Infrastructures. Technical report A2473, United States Congress, Washington, DC (2008)

  • J.C. Foster, P.J. Erickson, D.N. Baker, A.N. Jaynes, E.V. Mishin, J.F. Fennel, X. Li, M.G. Henderson, S.G. Kanekal, Observations of the impenetrable barrier, the plasmapause, and the VLF bubble during the 17 March 2015 storm. J. Geophys. Res. Space Phys. 121(6), 5537–5548 (2016). doi:10.1002/2016JA022509

    Article  ADS  Google Scholar 

  • A.C. Fraser-Smith, A weekend increase in geomagnetic activity. J. Geophys. Res. 84(A5), 2089–2096 (1979). doi:10.1029/JA084iA05p02089

    Article  ADS  Google Scholar 

  • A.C. Fraser-Smith, Effects of man on geomagnetic activity and pulsations. Adv. Space Res. 1(2), 455–466 (1981). doi:10.1016/0273-1177(81)90321-5

    Article  ADS  Google Scholar 

  • A.C. Fraser-Smith, D.B. Coates, Large-amplitude ULF electromagnetic fields from bart. Radio Sci. 13(4), 661–668 (1978). doi:10.1029/RS013i004p00661

    Article  ADS  Google Scholar 

  • J.F. Gabites, D.S. Rowles, Summary of visual observations of the aurora following the nuclear explosion above Johnston island on 9 July 1962. N.Z. J. Geol. Geophys. 5(6), 920–924 (1962). doi:10.1080/00288306.1962.10420041

    Article  Google Scholar 

  • Y.I. Galperin, A.D. Boliunova, Recording of effects of high-altitude thermonuclear explosion of July 9, 1962, on the Cosmos 5 satellite. Kosm. Issled. (Cosm. Res.) 2(5), 763–772 (1964)

    Google Scholar 

  • L.A. Gebhard, Evolution of Naval Radio-Electronics and Contributions of the Naval Research Laboratory. Technical report, Naval Research Laboratory, Washington, DC (1979)

  • J. Gilbert, J. Kapperman, W. Radasky, E. Savage, The Late Time (E3) High-Altitude Electromagnetic Pulse (HEMP) and Its Impact on the US Power Grid. Technical report Meta-R-321, Metatech Corporation, Goleta, California (2010)

  • J.L. Green, S. Boardsen, L. Garcia, W.W.L. Taylor, S.F. Fung, B.W. Reinisch, On the origin of whistler mode radiation in the plasmasphere. J. Geophys. Res. 110(A3), 03201 (2005). doi:10.1029/2004JA010495

    Article  Google Scholar 

  • G. Haerendel, A. Valenzuela, O.H. Bauer, M. Ertl, H. Foppl, K.-H. Kaiser, W. Lieb, J. Loidl, F. Melzner, B. Merz, H. Neuss, P. Parigger, E. Rieger, R. Schoning, J. Stocker, E. Wiezorrek, E. Molona, The Li/Ba release experiments of the ion release module. IEEE Trans. Geosci. Remote Sens. GE-23(3), 253–258 (1985). doi:10.1109/TGRS.1985.289523

    Article  ADS  Google Scholar 

  • D. Hambling, US Air Force wants to plasma bomb the sky using tiny satellites. New Sci. (August 20, 2016)

  • J.B. Harold, A.B. Hassam, Two ion fluid numerical investigations of solar wind gas releases. J. Geophys. Res. 99(A10), 19325–19340 (1994). doi:10.1029/94JA00790

    Article  ADS  Google Scholar 

  • A.B. Hassam, J.D. Huba, Structuring of the AMPTE magnetotail barium releases. Geophys. Res. Lett. 14(1), 60–63 (1987). doi:10.1029/GL014i001p00060

    Article  ADS  Google Scholar 

  • R.A. Helliwell, Whistlers and Related Ionospheric Phenomena, 1st edn. (Stanford University Press, Stanford, 1965). ISBN 0486445720

    Google Scholar 

  • R.A. Helliwell, VLF wave stimulation experiments in the magnetosphere from Siple Station, Antarctica. Rev. Geophys. 26(3), 551 (1988). doi:10.1029/RG026i003p00551

    Article  ADS  Google Scholar 

  • R. Helliwell, E. Gehrels, Observations of magneto-ionic duct propagation using man-made signals of very low frequency. Proc. Inst. Radio Eng. 46(4), 785–787 (1958)

    Google Scholar 

  • R.A. Helliwell, J.P. Katsufrakis, M.L. Trimpi, Whistler-induced amplitude perturbation in VLF propagation. J. Geophys. Res. 78(22), 4679–4688 (1973). doi:10.1029/JA078i022p04679

    Article  ADS  Google Scholar 

  • R.A. Helliwell, J.P. Katsufrakis, T.F. Bell, R. Raghuram, VLF line radiation in the Earth’s magnetosphere and its association with power system radiation. J. Geophys. Res. 80(31), 4249–4258 (1975). doi:10.1029/JA080i031p04249

    Article  ADS  Google Scholar 

  • W.N. Hess, The artificial radiation belt made on July 9, 1962. J. Geophys. Res. 68(3), 667–683 (1963). doi:10.1029/JZ068i003p00667

    Article  ADS  Google Scholar 

  • W.N. Hess, P. Nakada, Artificial radiation belt discussed in symposium at Goddard Space Center. Science 138(3536), 53–54 (1962)

    Article  ADS  Google Scholar 

  • R.L. Heyborne, R.L. Smith, R.A. Helliwell, Latitudinal cutoff of VLF signals in the ionosphere. J. Geophys. Res. 74(9), 2393–2397 (1969). doi:10.1029/JA074i009p02393

    Article  ADS  Google Scholar 

  • R.B. Horne, M. Lam, J.C. Green, Energetic electron precipitation from the outer radiation belt during geomagnetic storms. Geophys. Res. Lett. 36(19), L19104 (2009). doi:10.1029/2009gl040236

    Article  ADS  Google Scholar 

  • W.L. Imhof, H.D. Voss, M. Walt, E.E. Gaines, J. Mobilia, D.W. Datlowe, J.B. Reagan, Slot region electron precipitation by lightning, VLF chorus, and plasmaspheric hiss. J. Geophys. Res. 91(A8), 8883 (1986). doi:10.1029/JA091iA08p08883

    Article  ADS  Google Scholar 

  • U.S. Inan, R.A. Helliwell, DE-1 observations of VLF transmitter signals and wave-particle interactions in the magnetosphere. Geophys. Res. Lett. 9(9), 917–920 (1982). doi:10.1029/GL009i009p00917

    Article  ADS  Google Scholar 

  • U.S. Inan, T.F. Bell, D.L. Carpenter, R.R. Anderson, Explorer 45 and Imp 6 observations in the magnetosphere of injected waves from the Siple Station VLF transmitter. J. Geophys. Res. 82(7), 1177–1187 (1977). doi:10.1029/JA082i007p01177

    Article  ADS  Google Scholar 

  • U.S. Inan, T.F. Bell, H.C. Chang, Particle precipitation induced by short-duration VLF waves in the magnetosphere. J. Geophys. Res. 87(A8), 6243 (1982). doi:10.1029/JA087iA08p06243

    Article  ADS  Google Scholar 

  • U.S. Inan, H.C. Chang, R.A. Helliwell, Electron precipitation zones around major ground-based VLF signal sources. J. Geophys. Res. 89(A5), 2891 (1984). doi:10.1029/JA089iA05p02891

    Article  ADS  Google Scholar 

  • U.S. Inan, H.C. Chang, R.A. Helliwell, W.L. Imhof, J.B. Reagan, M. Walt, Precipitation of radiation belt electrons by man-made waves: a comparison between theory and measurement. J. Geophys. Res. 90(A1), 359–369 (1985). doi:10.1029/JA090iA01p00359

    Article  ADS  Google Scholar 

  • U.S. Inan, J.V. Rodriguez, S. Lev-Tov, J. Oh, ionospheric modification with a VLF transmitter. Geophys. Res. Lett. 19(20), 2071–2074 (1992). doi:10.1029/92GL02378

    Article  ADS  Google Scholar 

  • U.S. Inan, T.F. Bell, J. Bortnik, J.M. Albert, Controlled precipitation of radiation belt electrons. J. Geophys. Res. 108(A5), 051186 (2003). doi:10.1029/2002JA009580

    Article  Google Scholar 

  • A.N. Jaynes, D.N. Baker, H.J. Singer, J.V. Rodriguez, T.M. Loto’aniu, A.F. Ali, S.R. Elkington, X. Li, S.G. Kanekal, S.G. Claudepierre, J.F. Fennell, W. Li, R.M. Thorne, C.A. Kletzing, H.E. Spence, G.D. Reeves, Source and seed populations for relativistic electrons: their roles in radiation belt changes. J. Geophys. Res. 120(9), 7240–7254 (2015). doi:10.1002/2015JA021234

    Article  Google Scholar 

  • C.B. Jones, M.K. Doyle, L.H. Berkhouse, F.S. Calhoun, E.J. Martin, Operation ARGUS 1958, Technical report DNA 6039F, Defense Nuclear Agency, Washington, DC (1982)

  • S.L. Kahalas, P. Newman, Interpretation of early magnetic transients caused by high-altitude nuclear detonations. J. Res. Natl. Bur. Stand. D 69, 1179–1183 (1965)

    Google Scholar 

  • A. Karinen, K. Mursula, T. Ulich, J. Manninen, Does the magnetosphere behave differently on weekends? Ann. Geophys. 20(8), 1137–1142 (2002). doi:10.5194/angeo-20-1137-2002

    Article  ADS  Google Scholar 

  • W.J. Karzas, R. Latter, Electromagnetic radiation from a nuclear explosion in space. Phys. Rev. 126, 1919–1926 (1962). doi:10.1103/PhysRev.126.1919

    Article  ADS  MATH  Google Scholar 

  • P.J. Kellogg, E.P. Ney, J.R. Winckler, Geophysical effects associated with high-altitude explosions. Nature 183(4658), 358–361 (1959). doi:10.1038/183358a0

    Article  ADS  Google Scholar 

  • D.J. Kessler, B.G. Cour-Palais, Collision frequency of artificial satellites: the creation of a debris belt. J. Geophys. Res. 83(A6), 2637–2646 (1978). doi:10.1029/JA083iA06p02637

    Article  ADS  Google Scholar 

  • G. Klawitter, K. Herold, M. Oexner, Langwellen- und Längstwellenfunk, 3rd edn. (Siebel: Verlag für Technik und Handwerk, Amazon.com, 2000). ISBN 3896320432

    Google Scholar 

  • C.A. Kletzing, W.S. Kurth, M. Acuna, R.J. MacDowall, R.B. Torbert, T. Averkamp, D. Bodet, S.R. Bounds, M. Chutter, J. Connerney, D. Crawford, J.S. Dolan, R. Dvorsky, G.B. Hospodarsky, J. Howard, V. Jordanova, R.A. Johnson, D.L. Kirchner, B. Mokrzycki, G. Needell, J. Odom, D. Mark, R. Pfaff, J.R. Phillips, C.W. Piker, S.L. Remington, D. Rowland, O. Santolik, R. Schnurr, D. Sheppard, C.W. Smith, R.M. Thorne, J. Tyler, The Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) on RBSP, in The Van Allen Probes Mission (Springer, Boston, 2013), pp. 127–181. doi:10.1007/978-1-4899-7433-4_5

    Chapter  Google Scholar 

  • H. Klinkrad, Space Debris (Wiley, New York, 2010). doi:10.1002/9780470686652.eae325

    Book  Google Scholar 

  • H.C. Koons, B.C. Edgar, A.L. Vampola, Precipitation of inner zone electrons by whistler mode waves from the VLF transmitters UMS and NWC. J. Geophys. Res. 86(A2), 640 (1981). doi:10.1029/JA086iA02p00640

    Article  ADS  Google Scholar 

  • S.M. Krimigis, G. Haerendel, G. Gloeckler, R.W. Mcentire, E.G. Shelley, R.B. Decker, G. Paschmann, A. Valenzuela, T.A. Potemra, F.L. Scarf, A.L. Brinca, H. Lühr, AMPTE lithium tracer releases in the solar wind: observations inside the magnetosphere. J. Geophys. Res. 91(A2), 1339–1353 (1986). doi:10.1029/JA091iA02p01339

    Article  ADS  Google Scholar 

  • P. Kulkarni, U.S. Inan, T.F. Bell, J. Bortnik, Precipitation signatures of ground-based VLF transmitters. J. Geophys. Res. Space Phys. 113(A7), A07214 (2008). doi:10.1029/2007JA012569

    ADS  Google Scholar 

  • M.F. Larsen, Winds and shears in the mesosphere and lower thermosphere: results from four decades of chemical release wind measurements. J. Geophys. Res. 107(A8), 28–12814 (2002). doi:10.1029/2001JA000218

    Article  Google Scholar 

  • J.A. Lawrie, V.B. Gerard, P.J. Gill, Magnetic effects resulting from the Johnston island high altitude nuclear explosions. N.Z. J. Geol. Geophys. 4(2), 109–124 (1961). doi:10.1080/00288306.1961.10423131

    Article  Google Scholar 

  • J. Leiphart, R. Zeek, L. Bearce, E. Toth, Penetration of the ionosphere by very-low-frequency radio signals-interim results of the LOFTI I experiment. Proc. IRE 50(1), 6–17 (1962). doi:10.1109/JRPROC.1962.288269

    Article  Google Scholar 

  • X. Li, R.S. Selesnick, D.N. Baker, A.N. Jaynes, S.G. Kanekal, Q. Schiller, L. Blum, J. Fennell, J.B. Blake, Upper limit on the inner radiation belt MeV electron intensity. J. Geophys. Res. 120(2), 1215–1228 (2015). doi:10.1002/2014JA020777

    Article  Google Scholar 

  • C.L. Longmire, Justification and Verification of High-Altitude EMP Theory: Part I. Technical report Technical Note 368, Mission Research Corporation, Santa Barbara, California (1986)

  • J.P. Luette, C.G. Park, R.A. Helliwell, The control of the magnetosphere by power line radiation. J. Geophys. Res. 84(A6), 2657–2660 (1979). doi:10.1029/JA084iA06p02657

    Article  ADS  Google Scholar 

  • R. Lüst, in Barium Cloud Experiments in the Upper Atmosphere, ed. by J.A.M. Bleeker, J. Geiss, M.C.E. Huber (Springer, Dordrecht, 2001), pp. 179–187. doi:10.1007/978-94-010-0320-9_6

    Google Scholar 

  • H. Maeda, Geomagnetic disturbances due to nuclear explosion. J. Geophys. Res. 64(7), 863–864 (1959). doi:10.1029/JZ064i007p00863

    Article  ADS  Google Scholar 

  • B.H. Mauk, N.J. Fox, S.G. Kanekal, R.L. Kessel, D.G. Sibeck, A. Ukhorskiy, Science objectives and rationale for the Radiation Belt Storm Probes mission. Space Sci. Rev. 179(1–4), 3–27 (2013). doi:10.1007/s11214-012-9908-y

    Article  ADS  Google Scholar 

  • J.S. Mayo, H. Mann, F.J. Witt, D.S. Peck, H.K. Gummel, W.L. Brown, The command system malfunction. Bell Syst. Tech. J. 42, 1631–1657 (1963)

    Article  Google Scholar 

  • C.E. McIlwain, Coordinates for mapping the distribution of magnetically trapped particles. J. Geophys. Res. 66(11), 3681–3691 (1961). doi:10.1029/JZ066i011p03681

    Article  ADS  Google Scholar 

  • C.E. McIlwain, The radiation belts, natural and artificial. Science 142(3590), 355–361 (1963). doi:10.1126/science.142.3590.355

    Article  ADS  Google Scholar 

  • K.G. McKay, A germanium counter. Phys. Rev. 76, 1537 (1949). doi:10.1103/PhysRev.76.1537

    Article  ADS  Google Scholar 

  • R.R. Meier, M.H. Stevens, J.M.C. Plane, J.T. Emmert, G. Crowley, I. Azeem, L.J. Paxton, A.B. Christensen, A study of space shuttle plumes in the lower thermosphere. J. Geophys. Res. 116(A12), 12322 (2011). doi:10.1029/2011JA016987

    Article  Google Scholar 

  • S.B. Mende, G.R. Swenson, S.P. Geller, J.H. Doolittle, G. Haerendel, A. Valenzuela, O.H. Bauer, Dynamics of a barium release in the magnetospheric tail. J. Geophys. Res. 94(A12), 17063–17083 (1989). doi:10.1029/JA094iA12p17063

    Article  ADS  Google Scholar 

  • M. Mendillo, The effect of rocket launches on the ionosphere. Adv. Space Res. 1(2), 275–290 (1981). doi:10.1016/0273-1177(81)90302-1

    Article  ADS  Google Scholar 

  • M. Mendillo, J. Baumgardner, D.P. Allen, J. Foster, J. Holt, G.R.A. Ellis, A. Klekociuk, G. Reber, Spacelab-2 plasma depletion experiments for ionospheric and radio astronomical studies. Science 238(4831), 1260–1264 (1987). doi:10.1126/science.238.4831.1260

    Article  ADS  Google Scholar 

  • D.P. Miles, R.P. Lepping, Magnetic disturbances due to the high-altitude nuclear explosion of July 9, 1962. J. Geophys. Res. 69(3), 547–548 (1964). doi:10.1029/JZ069i003p00547

    Article  ADS  Google Scholar 

  • S. Millman (ed.), A History of Engineering and Science in the Bell System: Physical Sciences (1925–1980) (Bell Telephone Laboratories, New Jersey, 1983)

    Google Scholar 

  • O. Molchanov, A. Rozhnoi, M. Solovieva, O. Akentieva, J.J. Berthelier, M. Parrot, F. Lefeuvre, P.F. Biagi, L. Castellana, M. Hayakawa, Global diagnostics of the ionospheric perturbations related to the seismic activity using the VLF radio signals collected on the DEMETER satellite. Nat. Hazards Earth Syst. Sci. 6(5), 745–753 (2006)

    Article  ADS  Google Scholar 

  • R.C. Moore, U.S. Inan, T.F. Bell, E.J. Kennedy, ELF waves generated by modulated HF heating of the auroral electrojet and observed at a ground distance of ∼4400 km. J. Geophys. Res. 112(A5), 05309 (2007). doi:10.1029/2006JA012063

    Article  Google Scholar 

  • B.J. O’Brien, C.D. Laughlin, J.A. Van Allen, Geomagnetically trapped radiation produced by a high-altitude nuclear explosion on July 9, 1962. Nature 195(4845), 939–943 (1962a). doi:10.1038/195939a0

    Article  ADS  Google Scholar 

  • B.J. O’Brien, C.D. Laughlin, J.A. Van Allen, L.A. Frank, Measurements of the intensity and spectrum of electrons at 1000-kilometer altitude and high latitudes. J. Geophys. Res. 67(4), 1209–1225 (1962b). doi:10.1029/JZ067i004p01209

    Article  ADS  Google Scholar 

  • Y. Omura, D. Nunn, H. Matsumoto, M.J. Rycroft, A review of observational, theoretical, and numerical studies of VLF triggered emissions. J. Atmos. Terr. Phys. 53(5), 351–368 (1991)

    Article  ADS  Google Scholar 

  • K. Papadopoulos, A.S. Sharma, C.L. Chang, On the efficient operation of a plasma ELF antenna driven by modulation of ionospheric currents. Comments Plasma Phys. Control. Fusion 13, 1 (1989)

    Google Scholar 

  • C.G. Park, R.A. Helliwell, Whistler precursors: a possible catalytic role of power line radiation. J. Geophys. Res. 82(25), 3634–3642 (1977). doi:10.1029/JA082i025p03634

    Article  ADS  Google Scholar 

  • C.G. Park, T.R. Miller, Sunday decreases in magnetospheric VLF wave activity. J. Geophys. Res. 84(A3), 943–950 (1979). doi:10.1029/JA084iA03p00943

    Article  ADS  Google Scholar 

  • M. Parrot, World map of ELF/VLF emissions as observed by a low-orbiting satellite. Ann. Geophys., Atmos. Hydrospheres Space Sci. 8(2), 135–146 (1990)

    Google Scholar 

  • M. Parrot, Observations of power line harmonic radiation by the low-altitude AUREOL 3 satellite. J. Geophys. Res. 99(A3), 3961–3969 (1994). doi:10.1029/93JA02544

    Article  ADS  Google Scholar 

  • M. Parrot, Y. Zaslavski, Physical mechanisms of man-made influences on the magnetosphere. Surv. Geophys. 17(1), 67–100 (1996). doi:10.1007/BF01904475

    Article  ADS  Google Scholar 

  • M. Parrot, J.A. Sauvaud, J.J. Berthelier, J.P. Lebreton, First in-situ observations of strong ionospheric perturbations generated by a powerful VLF ground-based transmitter. Geophys. Res. Lett. 34(11), 11111 (2007). doi:10.1029/2007GL029368

    Article  ADS  Google Scholar 

  • T.R. Pedersen, E.A. Gerken, Creation of visible artificial optical emissions in the aurora by high-power radio waves. Nature 433(7025), 498–500 (2005). doi:10.1038/nature03243

    Article  ADS  Google Scholar 

  • T. Pedersen, B. Gustavsson, E. Mishin, E. MacKenzie, H.C. Carlson, M. Starks, T. Mills, Optical ring formation and ionization production in high-power HF heating experiments at HAARP. Geophys. Res. Lett. 36(18), 18107 (2009). doi:10.1029/2009GL040047

    Article  ADS  Google Scholar 

  • G.F. Pieper, Injun: a radiation research satellite. APL Tech. Dig. 1(1), 3–7 (1961)

    Google Scholar 

  • G.F. Pieper, The artificial radiation belt. APL Tech. Dig. 2(2), 3–7 (1962)

    Google Scholar 

  • G.F. Pieper, A second radiation belt from the July 9, 1962, nuclear detonation. J. Geophys. Res. 68(3), 651–655 (1963). doi:10.1029/JZ068i003p00651

    Article  ADS  Google Scholar 

  • P.R. Pisharoty, Geomagnetic disturbances associated with the nuclear explosion of July 9. Nature 196, 822–824 (1962). doi:10.1038/196822b0

    Article  ADS  Google Scholar 

  • R. Raghuram, T.F. Bell, R.A. Helliwell, J.P. Katsufrakis, A quiet band produced by VLF transmitter signals in the magnetosphere. Geophys. Res. Lett. 4(5), 199–202 (1977). doi:10.1029/GL004i005p00199

    Article  ADS  Google Scholar 

  • K. Rastani, U.S. Inan, R.A. Helliwell, DE 1 observations of siple transmitter signals and associated sidebands. J. Geophys. Res. 90(A5), 4128 (1985). doi:10.1029/JA090iA05p04128

    Article  ADS  Google Scholar 

  • D.L. Reasoner, Chemical-release mission of CRRES. J. Spacecr. Rockets 29(4), 580–584 (1992). doi:10.2514/3.25502

    Article  ADS  Google Scholar 

  • C.S. Roberts, Coordinates for the study of particles trapped in the Earth’s magnetic field: a method of converting from B, L to R, \(\lambda\) coordinates. J. Geophys. Res. 69(23), 5089–5090 (1964). doi:10.1029/JZ069i023p05089

    Article  ADS  Google Scholar 

  • C.J. Rodger, M.A. Clilverd, T. Ulich, P.T. Verronen, E. Turunen, N.R. Thomson, The atmospheric implications of radiation belt remediation. Ann. Geophys. 24(7), 2025–2041 (2006). doi:10.5194/angeo-24-2025-2006

    Article  ADS  Google Scholar 

  • J. Roquet, R. Schlich, E. Selzer, Evidence of two distinct synchronous world impetuses for the magnetic effects of the nuclear high-altitude detonation of July 9, 1962. J. Geophys. Res. 68(12), 3731–3732 (1963). doi:10.1029/JZ068i012p03731

    Article  ADS  Google Scholar 

  • W. Rosenzweig, H.K. Gummel, F.M. Smits, Solar cell degradation under 1 MeV electron bombardment. Bell Syst. Tech. J. 42(2), 399–414 (1963)

    Article  Google Scholar 

  • J.A. Sauvaud, T. Moreau, R. Maggiolo, J.-P. Treilhou, C. Jacquey, A. Cros, J. Coutelier, J. Rouzaud, E. Penou, M. Gangloff, High-energy electron detection onboard DEMETER: the IDP spectrometer, description and first results on the inner belt. Planet. Space Sci. 54(5), 502–511 (2006). doi:10.1016/j.pss.2005.10.019

    Article  ADS  Google Scholar 

  • J.-A. Sauvaud, R. Maggiolo, C. Jacquey, M. Parrot, J.-J. Berthelier, R.J. Gamble, C.J. Rodger, Radiation belt electron precipitation due to VLF transmitters: satellite observations. Geophys. Res. Lett. 35(9), 09101 (2008). doi:10.1029/2008GL033194

    Article  ADS  Google Scholar 

  • E. Savage, J. Gilbert, W. Radasky, The Early Time (E1) High-Altitude Electromagnetic Pulse (HEMP) and Its Impact on the US Power Grid. Technical report Meta-R-320, Metatech Corporation, Goleta, California (2010)

  • R.R. Scarabucci, Interpretation of VLF Signals Observed on the OGO-4 Satellite (Stanford University, Stanford, 1969)

    Google Scholar 

  • R.L. Smith, Propagation characteristics of whistlers trapped in field-aligned columns of enhanced ionization. J. Geophys. Res. 66(11), 3699–3707 (1961). doi:10.1029/JZ066i011p03699

    Article  ADS  Google Scholar 

  • A.J. Smith, M.A. Clilverd, Magnetic storm effects on the mid-latitude plasmasphere. Planet. Space Sci. 39(7), 1069–1079 (1991). doi:10.1016/0032-0633(91)90114-P

    Article  ADS  Google Scholar 

  • V.S. Sonwalkar, U.S. Inan, Measurements of siple transmitter signals on the DE 1 satellite: wave normal direction and antenna effective length. J. Geophys. Res. 91(A1), 154 (1986). doi:10.1029/JA091iA01p00154

    Article  ADS  Google Scholar 

  • V.S. Sonwalkar, U.S. Inan, T.F. Bell, R.A. Helliwell, V.M. Chmyrev, Y.P. Sobolev, O.Y. Ovcharenko, V. Selegej, Simultaneous observations of VLF ground transmitter signals on the DE 1 and COSMOS 1809 satellites: detection of a magnetospheric caustic and a duct. J. Geophys. Res. 99(A9), 17511 (1994). doi:10.1029/94JA00866

    Article  ADS  Google Scholar 

  • M.J. Starks, R.A. Quinn, G.P. Ginet, J.M. Albert, G.S. Sales, B.W. Reinisch, P. Song, Illumination of the plasmasphere by terrestrial very low frequency transmitters: model validation. J. Geophys. Res. Space Phys. 113(A9), A09320 (2008). doi:10.1029/2008JA013112

    ADS  Google Scholar 

  • M.J. Starks, T.F. Bell, R.A. Quinn, U.S. Inan, D. Piddyachiy, M. Parrot, Modeling of Doppler-shifted terrestrial VLF transmitter signals observed by DEMETER. Geophys. Res. Lett. 36(12), 12103 (2009). doi:10.1029/2009GL038511

    Article  ADS  Google Scholar 

  • A.V. Streltsov, M. Gołkowski, U.S. Inan, K.D. Papadopoulos, Propagation of whistler mode waves with a modulated frequency in the magnetosphere. J. Geophys. Res. 115(A9), 09209 (2010). doi:10.1029/2009JA015155

    Article  Google Scholar 

  • B.T. Tsurutani, R.M. Thorne, A skeptic’s view of PLR effects in the magnetosphere. Adv. Space Res. 1(2), 439–444 (1981). doi:10.1016/0273-1177(81)90318-5

    Article  ADS  Google Scholar 

  • B.T. Tsurutani, E.J. Smith, S.R. Church, R.M. Thorne, R.E. Holzer, in Does ELF Chorus Show Evidence of Power Line Stimulation? ed. by P.J. Palmadesso, K. Papadopoulos (Springer, Dordrecht, 1979), pp. 51–54. doi:10.1007/978-94-009-9500-0_5

    Google Scholar 

  • R.R. Unterberger, P.E. Byerly, Magnetic effects of a high-altitude nuclear explosion. J. Geophys. Res. 67(12), 4929–4932 (1962). doi:10.1029/JZ067i012p04929

    Article  ADS  Google Scholar 

  • A.L. Vampola, Electron precipitation in the vicinity of a VLF transmitter. J. Geophys. Res. 92(A5), 4525 (1987). doi:10.1029/JA092iA05p04525

    Article  ADS  Google Scholar 

  • A.L. Vampola, In-situ observations of magnetospheric electron scattering by a VLF transmitter. J. Atmos. Terr. Phys. 52(5), 377–384 (1990). doi:10.1016/0021-9169(90)90106-W

    Article  ADS  Google Scholar 

  • J.A. Van Allen, The geomagnetically trapped corpuscular radiation. J. Geophys. Res. 64(11), 1683–1689 (1959). doi:10.1029/JZ064i011p01683

    Article  ADS  Google Scholar 

  • J.A. Van Allen, Lifetimes of geomagnetically trapped electrons of several MeV energy. Nature 203(4949), 1006–1007 (1964). doi:10.1038/2031006a0.

    Article  ADS  Google Scholar 

  • J.A. Van Allen, in Spatial Distribution and Time Decay of the Intensities of Geomagnetically Trapped Electrons from the High Altitude Nuclear Burst of July 1962, ed. by B.M. McCormac (Springer, Dordrecht, 1966), pp. 575–592. doi:10.1007/978-94-010-3553-8_42

    Google Scholar 

  • J.A. Van Allen, in Energetic Particles in the Earth’s External Magnetic Field, ed. by C.S. Gillmor, J.R. Spreiter (American Geophysical Union, Washington, 1997), pp. 235–251. doi:10.1029/HG007p0235

    Google Scholar 

  • J.A. Van Allen, L.A. Frank, Radiation around the Erth to a radial distance of 107,400 km. Nature 183(4659), 430–434 (1959). doi:10.1038/183430a0

    Article  ADS  Google Scholar 

  • J.A. Van Allen, G.H. Ludwig, E.C. Ray, C.E. McIlwain, Observation of high intensity radiation by satellites 1958 alpha and gamma (Explorers I and III). Jet Propuls. 28(9), 588–592 (1958). doi:10.2514/8.7396

    Article  Google Scholar 

  • J.A. Van Allen, C.E. McIlwain, G.H. Ludwig, Satellite observations of electrons artificially injected into the geomagnetic field. Proc. Natl. Acad. Sci. USA 45(8), 1152–1171 (1959a)

    Article  ADS  Google Scholar 

  • J.A. Van Allen, C.E. McIlwain, G.H. Ludwig, Radiation observations with satellite 1958 \(\varepsilon\). J. Geophys. Res. 64(3), 271–286 (1959b). doi:10.1029/JZ064i003p00271

    Article  ADS  Google Scholar 

  • J.A. Van Allen, C.E. McIlwain, G.H. Ludwig, Satellite observations of electrons artificially injected into the geomagnetic field. J. Geophys. Res. 64(8), 877–891 (1959c). doi:10.1029/JZ064i008p00877

    Article  ADS  Google Scholar 

  • J.A. Van Allen, L.A. Frank, B.J. O’Brien, Satellite observations of the artificial radiation belt of July 1962. J. Geophys. Res. 68(3), 619–627 (1963). doi:10.1029/JZ068i003p00619

    Article  ADS  Google Scholar 

  • C.N. Vittitoe, Did high-altitude EMP cause the Hawaiian streetlight incident? System Design and Assessment Notes (1989)

  • J. Wait, Propagation of ELF electromagnetic waves and project Sanguine/Seafarer. IEEE J. Ocean. Eng. 2(2), 161–172 (1977). doi:10.1109/JOE.1977.1145337

    Article  Google Scholar 

  • M. Walt, The effects of atmospheric collisions on geomagnetically trapped electrons. J. Geophys. Res. 69(19), 3947–3958 (1964). doi:10.1029/jz069i019p03947.

    Article  ADS  Google Scholar 

  • M. Walt, in From Nuclear Physics to Space Physics by Way of High Altitude Nuclear Tests, ed. by C.S. Gillmor, J.R. Spreiter (American Geophysical Union, Washington 1997), pp. 253–263. doi:10.1029/HG007p0253

    Google Scholar 

  • E.P. Wenaas, Spacecraft Charging Effects on Satellites Following Starfish Events. Technical report RE-78-2044-057, JAYCOR, Alexandria, Virginia (1978)

  • Wikipedia Contributors, High-altitude nuclear explosion (Wikipedia, The Free Encyclopedia, 2016)

  • D.J. Williams, J.F. Arens, L.J. Lanzerotti, Observations of trapped electrons at low and high altitudes. J. Geophys. Res. 73(17), 5673–5696 (1968). doi:10.1029/ja073i017p05673

    Article  ADS  Google Scholar 

  • G. Xin, F. Zhan-zu, C. Xin-yu, Y. Sheng-sheng, Z. Lei, Performance evaluation and prediction of single-junction and triple-junction GaAs solar cells induced by electron and proton irradiations. IEEE Trans. Nucl. Sci. 61(4), 1838–1842 (2014). doi:10.1109/TNS.2014.2306991

    Article  ADS  Google Scholar 

  • K.A. Zawdie, J.D. Huba, D.P. Drob, P.A. Bernhardt, A coupled ionosphere-raytrace model for high-power HF heating. Geophys. Res. Lett. 42(22), 9650–9656 (2015). doi:10.1002/2015GL066673

    Article  ADS  Google Scholar 

  • A.J. Zmuda, B.W. Shaw, C.R. Haave, VLF disturbances caused by the nuclear detonation of October 26, 1962. J. Geophys. Res. 68(13), 4105–4114 (1963). doi:10.1029/JZ068i013p04105

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank the International Space Science Institute, Bern, Switzerland and its staff for organizing and supporting the Workshop on the Scientific Foundations of Space Weather that motivated the work in this paper. The work performed at the University of Michigan was supported by National Science Foundation grant AGS-1322543. JDH was supported by NRL Base Funds. Work at the Massachusetts Institute of Technology was sponsored by US National Science Foundation grant AGS-1242204. Work at the University of Colorado/LASP was supported by funding from NASA and the National Science Foundation. The authors thank Vaughn Hoxie, Scot Elkington, Hong Zhao, and Tom Mason for extraordinary efforts in adapting and portraying data from the Explorer XV and Van Allen Probes missions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. I. Gombosi.

Additional information

The Scientific Foundation of Space Weather

Edited by Rudolf von Steiger, Daniel Baker, André Balogh, Tamás Gombosi, Hannu Koskinen and Astrid Veronig

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gombosi, T.I., Baker, D.N., Balogh, A. et al. Anthropogenic Space Weather. Space Sci Rev 212, 985–1039 (2017). https://doi.org/10.1007/s11214-017-0357-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-017-0357-5

Keywords

Navigation