Space Science Reviews

, Volume 212, Issue 1–2, pp 249–294 | Cite as

Incoherent Scatter Plasma Lines: Observations and Applications

  • Hassanali Akbari
  • Asti Bhatt
  • Cesar La Hoz
  • Joshua L. Semeter
Article
  • 287 Downloads

Abstract

Space plasmas are host to the electrostatic Langmuir waves and a rich range of processes associated with them. Many of such processes that are of interest in micro-scale plasma physics and magnetosphere-ionosphere physics are open to investigation via incoherent scatter plasma lines—i.e., a pair of resonant peaks in the incoherent scatter radar (ISR) spectrum, symmetrically displaced from the radar transmitting frequency by about the plasma frequency, as the signature of Langmuir waves in the ISR spectrum. There now exists a large body of literature devoted to the investigation of a number of topics in ionospheric physics via plasma line theory and observation. It is the goal of this work to provide a comprehensive review of this literature, from the early theoretical works on oscillations in magnetized plasma to the recent advances in plasma line measurements and applications. This review includes detailed theoretical discussions on the intensity and frequency displacement of plasma lines. It reviews the experimental observations of plasma lines enhanced by various sources of energy and discusses the implications of the observations in the context of ionospheric physics. The review also covers the practical aspects of plasma line measurements, from measurement techniques to the applications of plasma lines in estimating the bulk parameters of the ionosphere.

Keywords

Incoherent scatter radar Plasma lines Ionospheric plasma 

References

  1. H. Akbari, J.L. Semeter, Aspect angle dependence of naturally enhanced ion acoustic lines. J. Geophys. Res. Space Phys. 119(7), 5909–5917 (2014) ADSGoogle Scholar
  2. H. Akbari, J. Semeter, H. Dahlgren, M. Diaz, M. Zettergren, A. Strømme, M. Nicolls, C. Heinselman, Anomalous ISR echoes preceding auroral breakup: evidence for strong Langmuir turbulence. Geophys. Res. Lett. 39(3), L03102 (2012) ADSGoogle Scholar
  3. H. Akbari, J. Semeter, M. Nicolls, M. Broughton, J. LaBelle, Localization of auroral Langmuir turbulence in thin layers. J. Geophys. Res. Space Phys. 118(6), 3576–3583 (2013) ADSGoogle Scholar
  4. H. Akbari, J. Semeter, M. Hirsch, P. Guio, M. Nicolls, Evidence for generation of unstable suprathermal electron population in the auroral f region. Geophys. Res. Lett. 42(2), 185–192 (2015) ADSGoogle Scholar
  5. H. Akbari, P. Guio, M.A. Hirsch, J.L. Semeter, Zakharov simulations of beam-induced turbulence in the auroral ionosphere. J. Geophys. Res. Space Phys. 121(5), 4811–4825 (2016) ADSGoogle Scholar
  6. E. Asseo, A. Porzio, Strong Langmuir turbulence in a pulsar emission region: statistical analysis. Mon. Not. R. Astron. Soc. 369(3), 1469–1490 (2006) ADSGoogle Scholar
  7. H. Bahcivan, R. Cosgrove, Enhanced ion acoustic lines due to strong ion cyclotron wave fields. Ann. Geophys. 26, 2081–2095 (2008) ADSGoogle Scholar
  8. P.M. Banks, C. Chappell, A. Nagy, A new model for the interaction of auroral electrons with the atmosphere: spectral degradation, backscatter, optical emission, and ionization. J. Geophys. Res. 79(10), 1459–1470 (1974) ADSGoogle Scholar
  9. P. Bauer, K. Cole, G. Lejeune, Field-aligned electric currents and their measurement by the incoherent backscatter technique. Planet. Space Sci. 24(5), 479–485 (1976) ADSGoogle Scholar
  10. R.A. Behnke, S. Ganguly, First direct ground-based measurements of electron drift in the ionospheric f region. J. Geophys. Res. Space Phys. 91(A9), 10178–10182 (1986) ADSGoogle Scholar
  11. R. Behnke, J. Hagen, Incoherent scattering of radio waves by whistler mode oscillations in the ionosphere. Radio Sci. 13(1), 215–218 (1978) ADSGoogle Scholar
  12. M.J. Berger, S.M. Seltzer, K. Maeda, Energy deposition by auroral electrons in the atmosphere. J. Atmos. Terr. Phys. 32(6), 1015–1045 (1970) ADSGoogle Scholar
  13. I.B. Bernstein, Waves in a plasma in a magnetic field. Phys. Rev. 109, 10–21 (1958). doi:10.1103/PhysRev.109.10 ADSMATHMathSciNetGoogle Scholar
  14. A.N. Bhatt, Exploring the electron component in incoherent scatter from the ionosphere. Ph.D. Thesis, Cornell University (2010) Google Scholar
  15. A. Bhatt, E. Gerken Kendall, M. Kelley, M. Sulzer, E. Shume, Observations of strong gyro line spectra at Arecibo near dawn. Geophys. Res. Lett. 33(14), L14105 (2006) ADSGoogle Scholar
  16. A.N. Bhatt, M.J. Nicolls, M.P. Sulzer, M.C. Kelley, Observations of plasma line splitting in the ionospheric incoherent scatter spectrum. Phys. Rev. Lett. 100(4), 045005 (2008). doi:10.1103/PhysRevLett.100.045005 ADSGoogle Scholar
  17. A.N. Bhatt, E. Kendall, A. Strømme, M. McCready, E. Gudmundsson, Energetic Particle Distribution During Transient Auroral Events Using Incoherent Scatter Plasma Lines (Am. Geophys. Union, Washington, 2013), sA31A-1952 Google Scholar
  18. W. Birkmayer, T. Hagfors, Observational technique and parameter estimation in plasma line spectrum observations of the ionosphere by chirped incoherent scatter radar. J. Atmos. Terr. Phys. 48(9), 1009–1019 (1986) ADSGoogle Scholar
  19. W. Birkmayer, T. Hagfors, W. Kofman, Small-scale plasma-density depletions in Arecibo high-frequency modification experiments. Phys. Rev. Lett. 57(8), 1008 (1986) ADSGoogle Scholar
  20. N. Bjørnå, Derivation of ion-neutral collision frequencies from a combined ion line/plasma line incoherent scatter experiment. J. Geophys. Res. Space Phys. 94(A4), 3799–3804 (1989) ADSGoogle Scholar
  21. N. Bjørnå, S. Kirkwood, Derivation of ion composition from a combined ion line/plasma line incoherent scatter experiment. J. Geophys. Res. Space Phys. 93(A6), 5787–5793 (1988) ADSGoogle Scholar
  22. N.L. Bunch, J. LaBelle, P. Yoon, A.T. Weatherwax, Theoretical constraints on the generation mechanism of auroral medium frequency burst radio emissions. J. Geophys. Res. Space Phys. 116(A1), A01315 (2011) ADSGoogle Scholar
  23. H. Carlson, Ionospheric heating by magnetic conjugate-point photoelectrons. J. Geophys. Res. 71(1), 195–199 (1966) ADSGoogle Scholar
  24. H.C. Carlson, W.E. Gordon, R.L. Showen, High frequency induced enhancements of the incoherent scatter spectrum at Arecibo. J. Geophys. Res. 77(7), 1242–1250 (1972) ADSGoogle Scholar
  25. H.C. Carlson, V.B. Wickwar, G.P. Mantas, The plasma line revisited as an aeronomical diagnostic: suprathermal electrons, solar EUV, electron-gas thermal balance. Geophys. Res. Lett. 4(12), 565–567 (1977) ADSGoogle Scholar
  26. H. Carlson, V.B. Wickwar, G. Mantas, Observations of fluxes of suprathermal electrons accelerated by hf excited instabilities. J. Atmos. Terr. Phys. 44(12), 1089–1100 (1982) ADSGoogle Scholar
  27. H.C. Carlson, F.T. Djuth, P. Perillat, M. Sulzer, Low-latitude 10 ev electrons: nighttime plasma line as a new research capability. Geophys. Res. Lett. 42(18), 7255–7263 (2015) ADSGoogle Scholar
  28. F.F. Chen, Introduction to Plasma Physics and Controlled Fusion. Volume 1: Plasma Physics (1984) Google Scholar
  29. P. Cheung, M. Sulzer, D. DuBois, D. Russell, High-power high-frequency-induced Langmuir turbulence in the smooth ionosphere at Arecibo. II. Low duty cycle, altitude-resolved, observations. Phys. Plasmas 8(3), 802–812 (2001) ADSGoogle Scholar
  30. R.J. Cicerone, Photoelectrons in the ionosphere: radar measurements and theoretical computations. Rev. Geophys. Space Phys. 12, 259 (1974). doi:10.1029/RG012i002p00259 ADSGoogle Scholar
  31. R. Cicerone, S. Bowhill, Photoelectron fluxes in the ionosphere computed by a Monte Carlo method. J. Geophys. Res. 76(34), 8299–8317 (1971a) ADSGoogle Scholar
  32. R.J. Cicerone, S.A. Bowhill, Photoelectron fluxes measured at Millstone Hill. Radio Sci. 6, 957–966 (1971b). doi:10.1029/RS006i011p00957 ADSGoogle Scholar
  33. L. Cogger, G. Shepherd, Observations of a magnetic conjugate effect in the OI 6300 å airglow at Saskatoon. Planet. Space Sci. 17(11), 1857–1865 (1969) ADSGoogle Scholar
  34. R.S. Cohen, L. Spitzer Jr., P.M. Routly, The electrical conductivity of an ionized gas. Phys. Rev. 80(2), 230 (1950) ADSMATHMathSciNetGoogle Scholar
  35. K. Cole, The predawn enhancement of 6300 angstrom units airglow (predawn enhancement of 6300 angstrom airglow, noting correlation with photoelectron flux). Ann. Geophys. 21, 156–158 (1965) Google Scholar
  36. P. Collis, L. Häggström, K. Kaila, M. Rietveld, Eiscat radar observations of enhanced incoherent scatter spectra; their relation to red aurora and field-aligned currents. Geophys. Res. Lett. 18(6), 1031–1034 (1991) ADSGoogle Scholar
  37. M. Diaz, J. Semeter, M. Oppenheim, M. Zettergren, Analysis of beam plasma instability effects on incoherent scatter spectra. Ann. Geophys. 28, 2169–2175 (2010) ADSGoogle Scholar
  38. M. Diaz, M. Oppenheim, J. Semeter, M. Zettergren, Particle-in-cell simulation of incoherent scatter radar spectral distortions related to beam-plasma interactions in the auroral ionosphere. J. Geophys. Res. Space Phys. 116(A1), A01309 (2011) Google Scholar
  39. M. Diaz, M. Zettergren, J. Semeter, M. Oppenheim, Plasma parameter analysis of the Langmuir decay process via particle-in-cell simulations. Ann. Geophys. 30(8), 1169 (2012) ADSGoogle Scholar
  40. F. Djuth, M. Sulzer, J. Elder, High resolution observations of hf-induced plasma waves in the ionosphere. Geophys. Res. Lett. 17(11), 1893–1896 (1990) ADSGoogle Scholar
  41. F.T. Djuth, M.P. Sulzer, J.H. Elder, Application of the coded long-pulse technique to plasma line studies of the ionosphere. Geophys. Res. Lett. 21(24), 2725–2728 (1994) ADSGoogle Scholar
  42. J.P. Dougherty, D.T. Farley, A theory of incoherent scattering of radio waves by a plasma. Proc. R. Soc. Lond. Ser. A 259, 79–99 (1960). doi:10.1098/rspa.1960.0212 ADSMATHGoogle Scholar
  43. D. DuBois, M. Goldman, Radiation-induced instability of electron plasma oscillations. Phys. Rev. Lett. 14(14), 544 (1965) ADSMATHMathSciNetGoogle Scholar
  44. D. DuBois, M. Goldman, Nonlinear saturation of parametric instability: basic theory and application to the ionosphere. Phys. Fluids 15(5), 919–927 (1972) ADSGoogle Scholar
  45. D. DuBois, H.A. Rose, D. Russell, Power spectra of fluctuations in strong Langmuir turbulence. Phys. Rev. Lett. 61(19), 2209 (1988) ADSGoogle Scholar
  46. D. DuBois, A. Hanssen, H.A. Rose, D. Russell, Space and time distribution of hf excited Langmuir turbulence in the ionosphere: comparison of theory and experiment. J. Geophys. Res. Space Phys. 98(A10), 17543–17567 (1993) ADSGoogle Scholar
  47. D. DuBois, D. Russell, P. Cheung, M. Sulzer, High-power high-frequency-induced Langmuir turbulence in the smooth ionosphere at Arecibo. I. Theoretical predictions for altitude-resolved plasma line radar spectra. Phys. Plasmas 8(3), 791–801 (2001) ADSGoogle Scholar
  48. R. Ergun, C. Carlson, J. McFadden, J. Clemmons, M. Boehm, Langmuir wave growth and electron bunching: results from a wave-particle correlator. J. Geophys. Res. Space Phys. 96(A1), 225–238 (1991) ADSGoogle Scholar
  49. J. Evans, Theory and practice of ionosphere study by Thomson scatter radar. Proc. IEEE 57(4), 496–530 (1969) Google Scholar
  50. J.V. Evans, I.J. Gastman, Detection of conjugate photoelectrons at Millstone Hill. J. Geophys. Res. 75, 807–815 (1970). doi:10.1029/JA075i004p00807 ADSGoogle Scholar
  51. D. Farley, Incoherent scatter correlation function measurements. Radio Sci. 4(10), 935–953 (1969) ADSGoogle Scholar
  52. D.T. Farley, J.P. Dougherty, D.W. Barron, A theory of incoherent scattering of radio waves by a plasma II. Scattering in a magnetic field. Proc. R. Soc. Lond. Ser. A 263, 238–258 (1961). doi:10.1098/rspa.1961.0158 ADSMATHGoogle Scholar
  53. J.A. Fejer, Radio-wave scattering by an ionized gas in thermal equilibrium. J. Geophys. Res. 65, 2635 (1960). doi:10.1029/JZ065i009p02635 ADSGoogle Scholar
  54. J.A. Fejer, Scattering of radio waves of an ionized gas in thermal equilibrium in the presence of a uniform magnetic field. Can. J. Phys. 39, 716 (1961). doi:10.1139/p61-081 ADSGoogle Scholar
  55. J. Fejer, Y.Y. Kuo, Structure in the nonlinear saturation spectrum of parametric instabilities. Phys. Fluids 16(9), 1490–1496 (1973) ADSGoogle Scholar
  56. R. Fitzpatrick, Introduction to plasma physics. The University of Texas at Austin: sn p 242 (2008) Google Scholar
  57. E. Fontheim, A. Beutler, A. Nagy, Theoretical calculations of the conjugate predawn effects. Tech. rep., Univ. of Michigan, Ann Arbor (1968) Google Scholar
  58. F. Forme, A new interpretation on the origin of enhanced ion acoustic fluctuations in the upper ionosphere. Geophys. Res. Lett. 20(21), 2347–2350 (1993) ADSGoogle Scholar
  59. F. Forme, Parametric decay of beam-driven Langmuir wave and enhanced ion-acoustic fluctuations in the ionosphere: a weak turbulence approach. Ann. Geophys. 17, 1172–1181 (1999) ADSGoogle Scholar
  60. J. Foster, C. Del Pozo, K. Groves, J.P. St Maurice, Radar observations of the onset of current driven instabilities in the topside ionosphere. Geophys. Res. Lett. 15(2), 160–163 (1988) ADSGoogle Scholar
  61. Å. Fredriksen, High latitude quiet summer ion composition profiles derived from a combined ion line/plasma line incoherent scatter experiment. J. Atmos. Terr. Phys. 52(1), 77–84 (1990) ADSGoogle Scholar
  62. Å. Fredriksen, N. Bjørnå, T. Hansen, First eiscat two-radar plasma line experiment. J. Geophys. Res. Space Phys. 94(A3), 2727–2732 (1989) ADSGoogle Scholar
  63. E.J. Fremouw, J. Petriceks, F.W. Perkins, Thomson scatter measurements of magnetic field effects on the Landau damping and excitation of plasma waves. Phys. Fluids 12, 869–874 (1969). doi:10.1063/1.1692569 ADSGoogle Scholar
  64. N. Gondarenko, S. Ossakow, G. Milikh, Generation and evolution of density irregularities due to self-focusing in ionospheric modifications. J. Geophys. Res. Space Phys. 110(A9), A09304 (2005) ADSGoogle Scholar
  65. E.P. Gross, Plasma oscillations in a static magnetic field. Phys. Rev. 82, 232–242 (1951). doi:10.1103/PhysRev.82.232 ADSMATHMathSciNetGoogle Scholar
  66. P. Guio, F. Forme, Zakharov simulations of Langmuir turbulence: effects on the ion-acoustic waves in incoherent scattering. Phys. Plasmas 122, 902 (2006) Google Scholar
  67. P. Guio, J. Lilensten, Effect of suprathermal electrons on the intensity and Doppler frequency of electron plasma lines. Ann. Geophys. 17, 903–912 (1999) ADSGoogle Scholar
  68. P. Guio, N. Bjørnå, W. Kofman, Alternating-code experiment for plasma-line studies. Ann. Geophys. 14, 1473–1479 (1997) ADSGoogle Scholar
  69. P. Guio, J. Lilensten, W. Kofman, N. Bjørnå, Electron velocity distribution function in a plasma with temperature gradient and in the presence of suprathermal electrons: application to incoherent-scatter plasma lines. Ann. Geophys. 16, 1226–1240 (1998) ADSGoogle Scholar
  70. T. Hagfors, Density fluctuations in a plasma in a magnetic field, with applications to the ionosphere. J. Geophys. Res. 66, 1699–1712 (1961). doi:10.1029/JZ066i006p01699 ADSMathSciNetGoogle Scholar
  71. T. Hagfors, Incoherent scatter radar observations of the plasma line with a chirped pulse system. Radio Sci. 17(3), 727–734 (1982) ADSGoogle Scholar
  72. T. Hagfors, M. Lehtinen, Electron temperature derived from incoherent scatter radar observations of the plasma line frequency. J. Geophys. Res. Space Phys. 86(A1), 119–124 (1981) ADSGoogle Scholar
  73. T. Hagfors, W. Birkmayer, M. Sulzer, A new method for accurate ionospheric electron density measurements by incoherent scatter radar. J. Geophys. Res. Space Phys. 89(A8), 6841–6845 (1984) ADSGoogle Scholar
  74. W.B. Hanson, Electron temperatures in the upper atmosphere. Space Res. 3, 282–302 (1963) Google Scholar
  75. A. Hanssen, E. Mjolhus, D. DuBois, H. Rose, Numerical test of the weak turbulence approximation to ionospheric Langmuir turbulence. J. Geophys. Res. 97(A8), 12073–12091 (1992) ADSGoogle Scholar
  76. P. Hays, A. Nagy, Thermal electron energy distribution measurements in the ionosphere. Planet. Space Sci. 21(8), 1301–1306 (1973). http://www.sciencedirect.com/science/article/pii/0032063373902225. doi:10.1016/0032-0633(73)90222-5 ADSGoogle Scholar
  77. P.B. Hays, W.E. Sharp, Twilight airglow: 1. Photoelectrons and [O I] 5577-Angstrom radiation. J. Geophys. Res. 78, 1153 (1973). doi:10.1029/JA078i007p01153 ADSGoogle Scholar
  78. C. Heinselman, J. Vickrey, On the frequency of Langmuir waves in the ionosphere. J. Geophys. Res. Space Phys. 97(A10), 14905–14910 (1992a) ADSGoogle Scholar
  79. C. Heinselman, J. Vickrey, On the spectral analysis and interpretation of incoherent scatter plasma line echoes. Radio Sci. 27(2), 221–230 (1992b) ADSGoogle Scholar
  80. S. Ichimaru, Statistical plasma physics. Westview (2004) Google Scholar
  81. B. Isham, W. Birkmayer, T. Hagfors, W. Kofman, Observations of small-scale plasma density depletions in Arecibo HF heating experiments. J. Geophys. Res. Space Phys. 92(A5), 4629–4637 (1987) ADSGoogle Scholar
  82. B. Isham, W. Kofman, T. Hagfors, J. Nordling, B. Thidé, C. LaHoz, P. Stubbe, New phenomena observed by eiscat during an RF ionospheric modification experiment. Radio Sci. 25(3), 251–262 (1990) ADSGoogle Scholar
  83. B. Isham, M. Rietveld, P. Guio, F. Forme, T. Grydeland, E. Mjølhus, Cavitating Langmuir turbulence in the terrestrial aurora. Phys. Rev. Lett. 105, 003 (2012) Google Scholar
  84. N. Izhovkina, E. Mishin, On possibility of beam plasma discharge ignition during intrusion of auroral electrons in the ionosphere. Geomagn. Aeron. 19(3), 398–399 (1979) Google Scholar
  85. D. Janches, M.J. Nicolls, Diurnal variability of the gyro resonance line observed with the Arecibo incoherent scatter radar at E-and F1-region altitudes. Geophys. Res. Lett. 34(1), L01103 (2007) ADSGoogle Scholar
  86. R. Kaufmann, G. Ludlow, Auroral electron beams: stability and acceleration. J. Geophys. Res. Space Phys. 86(A9), 7577–7585 (1981) ADSGoogle Scholar
  87. P.K. Kaw, J. Dawson, Laser-induced anomalous heating of a plasma. Phys. Fluids 12(12), 2586–2591 (1969) ADSGoogle Scholar
  88. S. Kirkwood, SPECTRUM: a computer algorithm to derive the flux-energy spectrum of precipitating particles from EISCAT electron density profiles. Tech. rep. (1988) Google Scholar
  89. S. Kirkwood, N. Björnå, Electron temperatures determined by tristatic plasma-line observations with the eiscat UHF incoherent scatter radar. Geophys. Res. Lett. 19(7), 661–664 (1992) ADSGoogle Scholar
  90. S. Kirkwood, L. Eliasson, Energetic particle precipitation in the substorm growth phase measured by eiscat and viking. J. Geophys. Res. Space Phys. 95(A5), 6025–6037 (1990) ADSGoogle Scholar
  91. S. Kirkwood, H. Nilsson, J. Lilensten, M. Galand, Strongly enhanced incoherent-scatter plasma lines in aurora. J. Geophys. Res. 100, 21343–21356 (1995). doi:10.1029/95JA00765 ADSGoogle Scholar
  92. C. Kletzing, S. Hu, Alfvén wave generated electron time dispersion. Geophys. Res. Lett. 28(4), 693–696 (2001) ADSGoogle Scholar
  93. W. Kofman, G. Lejeune, Determination of low energy photoelectron distribution from plasma line measurements at Saint Santin. Planet. Space Sci. 28(7), 661–673 (1980) ADSGoogle Scholar
  94. W. Kofman, V. Wickwar, Plasma line measurements at Chatanika with high-speed correlator and filter bank. J. Geophys. Res. 85, 2998–3012 (1980). doi:10.1029/JA085iA06p02998 ADSGoogle Scholar
  95. W. Kofman, G. Lejeune, T. Hagfors, P. Bauer, Electron temperature measurements by the plasma line technique at the French incoherent scatter radar facilities. J. Geophys. Res. Space Phys. 86(A8), 6795–6801 (1981) ADSGoogle Scholar
  96. W. Kofman, J.P. St-Maurice, A. Eyken, Heat flow effect on the plasma line frequency. J. Geophys. Res. Space Phys. 98(A4), 6079–6085 (1993) ADSGoogle Scholar
  97. H. Kohl, H. Kopka, C. LaHoz, P. Stubbe, Propagation of artificially excited Langmuir waves in the ionosphere. Radio Sci. 22(4), 655–661 (1987) ADSGoogle Scholar
  98. C. Krafft, A. Volokitin, V. Krasnoselskikh, T.D. de Wit, Waveforms of Langmuir turbulence in inhomogeneous solar wind plasmas. J. Geophys. Res. Space Phys. 119(12), 9369–9382 (2014) ADSGoogle Scholar
  99. E. Kudeki, M.A. Milla, Incoherent scatter spectral theories—Part I: a general framework and results for small magnetic aspect angles. IEEE Trans. Geosci. Remote Sens. 49(1), 315–328 (2011) ADSGoogle Scholar
  100. Y.Y. Kuo, J. Fejer, Spectral-line structures of saturated parametric instabilities. Phys. Rev. Lett. 29(25), 1667 (1972) ADSGoogle Scholar
  101. M.W. Kwei, J.S. Nisbet, Presunrise heating of the ionosphere at Arecibo due to conjugate point photoelectrons. Radio Sci. 3, 674–679 (1968) ADSGoogle Scholar
  102. J. LaBelle, An explanation for the fine structure of MF burst emissions. Geophys. Res. Lett. 38(3), L03105 (2011) ADSGoogle Scholar
  103. J. LaBelle, A. Weatherwax, M. Tantiwiwat, E. Jackson, J. Linder, Statistical studies of auroral MF burst emissions observed at South pole station and at multiple sites in northern Canada. J. Geophys. Res. Space Phys. 110(A2), A02305 (2005) ADSGoogle Scholar
  104. L.D. Landau, On the vibrations of the electronic plasma. Zh. Èksp. Teor. Fiz. 10, 25 (1946) MATHMathSciNetGoogle Scholar
  105. M.S. Lehtinen, I. Häggström, A new modulation principle for incoherent scatter measurements. Radio Sci. 22(4), 625–634 (1987) ADSGoogle Scholar
  106. G. Lejeune, W. Kofman, Photoelectron distribution determination from plasma line intensity measurements obtained at Nançay (France). Planet. Space Sci. 25(2), 123–133 (1977) ADSGoogle Scholar
  107. C. Lin, R. Hoffman, Characteristics of the inverted-v event. J. Geophys. Res. Space Phys. 84(A4), 1514–1524 (1979) ADSGoogle Scholar
  108. W. Lotko, J. Maggs, Amplification of electrostatic noise in cyclotron resonance with an adiabatic auroral beam. J. Geophys. Res. Space Phys. 86(A5), 3449–3458 (1981) ADSGoogle Scholar
  109. D. Lummerzheim, J. Lilensten, Electron transport and energy degradation in the ionosphere: evaluation of the numerical solution, comparison with laboratory experiments and auroral observations. Ann. Geophys. 12, 1039–1051 (1994). doi:10.1007/s00585-994-1039-7 ADSGoogle Scholar
  110. J. Maggs, W. Lotko, Altitude dependent model of the auroral beam and beam-generated electrostatic noise. J. Geophys. Res. Space Phys. 86(A5), 3439–3447 (1981) ADSGoogle Scholar
  111. J. McFadden, C. Carlson, M. Boehm, T. Hallinan, Field-aligned electron flux oscillations that produce flickering aurora. J. Geophys. Res. Space Phys. 92(A10), 11133–11148 (1987) ADSGoogle Scholar
  112. D. Melrose, Effects of an ambient magnetic field on the properties of Langmuir waves. Sol. Phys. 46(2), 511–513 (1976) ADSGoogle Scholar
  113. E. Mishin, T. Hogfors, On heat flow contribution to plasma line frequency in the f region. J. Geophys. Res. Space Phys. 99(A4), 6537–6539 (1994) ADSGoogle Scholar
  114. E.V. Mishin, K. Schlegel, On incoherent scatter plasma lines in aurorae. J. Geophys. Res. 99, 11391–11400 (1994). doi:10.1029/94JA00344 ADSGoogle Scholar
  115. E.V. Mishin, V.A. Telegin, The effect of plasma turbulence in aurorae. Geomagn. Aeron. 29, 1–14 (1989) ADSGoogle Scholar
  116. L. Muschietti, Electron beam formation and stability. Sol. Phys. 130(1–2), 201–228 (1990) ADSGoogle Scholar
  117. S.L. Musher, A.M. Rubenchik, V.E. Zakharov, Weak Langmuir turbulence. Phys. Rep. 252(4), 177–274 (1995) ADSGoogle Scholar
  118. A. Nagy, Theory of photoelectron production, transport and energy loss (1974) Google Scholar
  119. A. Nagy, P. Banks, Photoelectron fluxes in the ionosphere. J. Geophys. Res. 75(31), 6260–6270 (1970) ADSGoogle Scholar
  120. A.L. Newman, E.S. Oran, The effects of electron-neutral collisions on the intensity of plasma lines. J. Geophys. Res. 86, 4790–4794 (1981). doi:10.1029/JA086iA06p04790 ADSGoogle Scholar
  121. D. Newman, M. Goldman, R. Ergun, M. Boehm, Langmuir turbulence in the auroral ionosphere: 1. linear theory. J. Geophys. Res. Space Phys. 99(A4), 6367–6376 (1994) ADSGoogle Scholar
  122. M. Nicolls, M. Sulzer, N. Aponte, R. Seal, R. Nikoukar, S. González, High-resolution electron temperature measurements using the plasma line asymmetry. Geophys. Res. Lett. 33(18), L18107 (2006) ADSGoogle Scholar
  123. H. Nilsson, S. Kirkwood, J. Lilensten, M. Galand, Enhanced incoherent scatter plasma lines. Ann. Geophys. 14, 1462–1472 (1997) ADSGoogle Scholar
  124. J.F. Noxon, A.E. Johanson, Effect of magnetically conjugate photoelectrons on OI (6300 Å). Planet. Space Sci. 18, 1367–1379 (1970). doi:10.1016/0032-0633(70)90146-7 ADSGoogle Scholar
  125. E.S. Oran, V.B. Wickwar, W. Kofman, A. Newman, Auroral plasma lines: a first comparison of theory and experiment. J. Geophys. Res. 86(A1), 199 (1981) ADSGoogle Scholar
  126. F.W. Perkins, Numerical calculations of the electronic contribution to electron density fluctuations in a plasma with a uniform magnetic field. Tech. Rep. CRSR 145-I, Cornell University, Ithaca, NY (1963) Google Scholar
  127. F. Perkins, P. Kaw, On the role of plasma instabilities in ionospheric heating by radio waves. J. Geophys. Res. 76(1), 282–284 (1971) ADSGoogle Scholar
  128. F. Perkins, E.E. Salpeter, Enhancement of plasma density fluctuations by nonthermal electrons. Phys. Rev. 139, 55–62 (1965). doi:10.1103/PhysRev.139.A55 ADSMATHGoogle Scholar
  129. F.W. Perkins, E.E. Salpeter, K.O. Yngvesson, Incoherent scatter from plasma oscillations in the ionosphere. Phys. Rev. Lett. 14, 579–581 (1965). doi:10.1103/PhysRevLett.14.579 ADSGoogle Scholar
  130. F. Perkins, C. Oberman, E. Valeo, Parametric instabilities and ionospheric modification. J. Geophys. Res. 79(10), 1478–1496 (1974) ADSGoogle Scholar
  131. D. Pines, D. Bohm, A collective description of electron interactions: II. Collective vs. individual particle aspects of the interactions. Phys. Rev. 85, 338–353 (1952). doi:10.1103/PhysRev.85.338 ADSMATHMathSciNetGoogle Scholar
  132. R. Pradipta, A. Labno, M. Lee, W. Burke, M. Sulzer, J. Cohen, L. Burton, S. Kuo, D. Rokusek, Electron precipitation from the inner radiation belt above Arecibo. Geophys. Res. Lett. 34(8), L08101 (2007) ADSGoogle Scholar
  133. M.H. Rees, Auroral ionization and excitation by incident energetic electrons. Planet. Space Sci. 11(10), 1209–1218 (1963) ADSGoogle Scholar
  134. M.H. Rees, Physics and chemistry of the upper atmosphere (1989) Google Scholar
  135. M. Rees, R. Jones, Time dependent studies of the aurora—I. Spectroscopic morphology. Planet. Space Sci. 21(7), 1213–1235 (1973) ADSMathSciNetGoogle Scholar
  136. M. Rees, A. Stewart, J. Walker, Secondary electrons in aurora. Planet. Space Sci. 17(12), 1997–2008 (1969) ADSGoogle Scholar
  137. M. Rietveld, P. Collis, J.P. St-Maurice, Naturally enhanced ion acoustic waves in the auroral ionosphere observed with the eiscat 933-MHz radar. J. Geophys. Res. Space Phys. 96(A11), 19291–19305 (1991) ADSGoogle Scholar
  138. M. Rietveld, H. Kohl, H. Kopka, P. Stubbe, Introduction to ionospheric heating at tromsø—I. Experimental overview. J. Atmos. Terr. Phys. 55(4), 577–599 (1993) ADSGoogle Scholar
  139. P. Robinson, Nonlinear wave collapse and strong turbulence. Rev. Mod. Phys. 69(2), 507 (1997) ADSGoogle Scholar
  140. P. Robinson, I.H. Cairns, Maximum Langmuir fields in planetary foreshocks determined from the electrostatic decay threshold. Geophys. Res. Lett. 22(19), 2657–2660 (1995) ADSGoogle Scholar
  141. M.N. Rosenbluth, N. Rostoker, Scattering of electromagnetic waves by a nonequilibrium plasma. Phys. Fluids 5, 776–788 (1962). doi:10.1063/1.1724446 ADSMATHGoogle Scholar
  142. E.E. Salpeter, Electron density fluctuations in a plasma. Phys. Rev. 120, 1528–1535 (1960). doi:10.1103/PhysRev.120.1528 ADSMathSciNetGoogle Scholar
  143. E.E. Salpeter, Plasma density fluctuations in a magnetic field. Phys. Rev. 122, 1663–1674 (1961). doi:10.1103/PhysRev.122.1663 ADSMATHMathSciNetGoogle Scholar
  144. N.M. Schlatter, N. Ivchenko, T. Sergienko, B.J. Gustavsson, B. Brändström Enhanced eiscat UHF backscatter during high-energy auroral electron precipitation (2013) Google Scholar
  145. N.M. Schlatter, N. Ivchenko, I. Häggström, On the relation of Langmuir turbulence radar signatures to auroral conditions. J. Geophys. Res. Space Phys. 119(10), 8499–8511 (2014) ADSGoogle Scholar
  146. K. Sedgemore-Schulthess, M. Lockwood, T. Trondsen, B. Lanchester, M. Rees, D. Lorentzen, J. Moen, Coherent eiscat Svalbard radar spectra from the dayside cusp/cleft and their implications for transient field-aligned currents. J. Geophys. Res. Space Phys. 104(A11), 24613–24624 (1999) ADSGoogle Scholar
  147. J. Semeter, D. Lummerzheim, G. Haerendel, Simultaneous multispectral imaging of the discrete aurora. J. Atmos. Sol.-Terr. Phys. 63(18), 1981–1992 (2001) ADSGoogle Scholar
  148. J. Semeter, M. Zettergren, M. Diaz, S. Mende, Wave dispersion and the discrete aurora: new constraints derived from high-speed imagery. J. Geophys. Res. Space Phys. 113(A12), A12208 (2008) ADSGoogle Scholar
  149. W.E. Sharp, P.B. Hays, Low-energy auroral electrons. J. Geophys. Res. 79, 4319–4321 (1974). doi:10.1029/JA079i028p04319 ADSGoogle Scholar
  150. R. Showen, The spectral measurement of plasma lines. Radio Sci. 14(3), 503–508 (1979) ADSGoogle Scholar
  151. V. Silin, Nonlinear high-frequency plasma conductivity (nonlinear ionized plasma conductivity in strong hf field noting ion-electron collision and multiple field harmonics). Sov. Phys. JETP 20, 1510–1516 (1965) Google Scholar
  152. V. Sotnikov, D. Schriver, M. Ashour-Abdalla, J. LaBelle, Generation of auroral radio waves by a gyrating electron beam. EOS Trans. 77, 544 (1996) ADSGoogle Scholar
  153. N.W. Spencer, L.H. Brace, G.R. Carignan, Electron temperature evidence for nonthermal equilibrium in the ionosphere. J. Geophys. Res. 67(1), 157–175 (1962). doi:10.1029/JZ067i001p00157 ADSGoogle Scholar
  154. L. Spitzer Jr., R. Härm, Transport phenomena in a completely ionized gas. Phys. Rev. 89(5), 977 (1953) ADSMATHGoogle Scholar
  155. K. Stasiewicz, B. Holback, V. Krasnoselskikh, M. Boehm, R. Boström, P. Kintner, Parametric instabilities of Langmuir waves observed by Freja. J. Geophys. Res. Space Phys. 101(A10), 21515–21525 (1996) ADSGoogle Scholar
  156. T.H. Stix, The Theory of Plasma Waves (1962) MATHGoogle Scholar
  157. R. Stolarski, Calculation of auroral emission rates and heating effects. Planet. Space Sci. 16(10), 1265–1276 (1968) ADSGoogle Scholar
  158. D. Strickland, D. Book, T. Coffey, J. Fedder, Transport equation techniques for the deposition of auroral electrons. J. Geophys. Res. 81(16), 2755–2764 (1976) ADSGoogle Scholar
  159. A. Strømme, V. Belyey, T. Grydeland, C. La Hoz, U. Løvhaug, B. Isham, Evidence of naturally occurring wave-wave interactions in the polar ionosphere and its relation to naturally enhanced ion acoustic lines. Geophys. Res. Lett. 32(5), L05103 (2005) ADSGoogle Scholar
  160. P. Stubbe, Review of ionospheric modification experiments at tromsø. J. Atmos. Terr. Phys. 58(1), 349–368 (1996) ADSGoogle Scholar
  161. M.P. Sulzer, A radar technique for high range resolution incoherent scatter autocorrelation function measurements utilizing the full average power of klystron radars. Radio Sci. 21(6), 1033–1040 (1986) ADSGoogle Scholar
  162. M. Sulzer, J. Fejer, Radar spectral observations of hf-induced ionospheric Langmuir turbulence with improved range and time resolution. J. Geophys. Res. Space Phys. 99(A8), 15035–15050 (1994) ADSGoogle Scholar
  163. K. Takayanagi, Y. Itikawa, Elementary processes involving electrons in the ionosphere. Space Sci. Rev. 11, 380–450 (1970). doi:10.1007/BF00241527 ADSGoogle Scholar
  164. D.A. Tidman, T.H. Dupree, Enhanced bremsstrahlung from plasmas containing nonthermal electrons. Phys. Fluids 8, 1860–1870 (1965). doi:10.1063/1.1761120 ADSGoogle Scholar
  165. C.E. Valladares, J.F. Vickrey, M.C. Kelley, Plasma line observations in the auroral oval. J. Geophys. Res. 93, 1997–2003 (1988). doi:10.1029/JA093iA03p01997 ADSGoogle Scholar
  166. J. Vierinen, A. Bhatt, M.A. Hirsch, A. Strømme, J.L. Semeter, S.R. Zhang, P.J. Erickson, High temporal resolution observations of auroral electron density using superthermal electron enhancement of Langmuir waves. Geophys. Res. Lett. 43(12), 5979–5987 (2016) ADSGoogle Scholar
  167. A. Volokitin, E. Mishin, Relaxation of an electron beam in a plasma with infrequent collisions. Sov. J. Plasma Phys. 5, 654–656 (1979) ADSGoogle Scholar
  168. J.E. Wahlund, F. Forme, H. Opgenoorth, M. Persson, E. Mishin, A. Volokitin, Scattering of electromagnetic waves from a plasma: enhanced ion acoustic fluctuations due to ion-ion two-stream instabilities. Geophys. Res. Lett. 19(19), 1919–1922 (1992) ADSGoogle Scholar
  169. A. Weatherwax, J. LaBelle, M. Trimpi, A new type of auroral radio emission observed at medium frequencies (\(\sim1350\mbox{--}3700~\mbox{KHz}\)) using ground-based receivers. Geophys. Res. Lett. 21(24), 2753–2756 (1994) ADSGoogle Scholar
  170. V.B. Wickwar, Plasma lines in the auroral E layer. J. Geophys. Res. 83, 5186–5190 (1978). doi:10.1029/JA083iA11p05186 ADSGoogle Scholar
  171. A. Willes, I.H. Cairns, Generalized Langmuir waves in magnetized kinetic plasmas. Phys. Plasmas 7(8), 3167–3180 (2000) ADSGoogle Scholar
  172. A. Wong, P. Cheung, Three-dimensional self-collapse of Langmuir waves. Phys. Rev. Lett. 52(14), 1222 (1984) ADSGoogle Scholar
  173. A. Wong, R. Taylor, Parametric excitation in the ionosphere. Phys. Rev. Lett. 27(10), 644 (1971) ADSGoogle Scholar
  174. K. Yngvesson, F. Perkins, Radar Thomson scatter studies of photoelectrons in the ionosphere and Landau damping. J. Geophys. Res. 73(1), 97–110 (1968) ADSGoogle Scholar
  175. P. Yoon, R. Lin, D. Larson, S. Bale, Solar wind electrons and Langmuir turbulence, in Physics of the Heliosphere: A 10 Year Retrospective: Proceedings of the 10th Annual International Astrophysics Conference, vol. 1436 (AIP, New York, 2012), pp. 80–85 Google Scholar
  176. V.E. Zakharov, Collapse of Langmuir waves. Sov. Phys. JETP 35(5), 908–914 (1972) ADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Hassanali Akbari
    • 1
  • Asti Bhatt
    • 2
  • Cesar La Hoz
    • 3
  • Joshua L. Semeter
    • 1
  1. 1.Center for Space PhysicsBoston UniversityBostonUSA
  2. 2.SRI InternationalMenlo ParkUSA
  3. 3.Department of Physics and TechnologyUniversity of TromsoTromsoNorway

Personalised recommendations