Space Science Reviews

, Volume 208, Issue 1–4, pp 239–254 | Cite as

Thermal Imaging Performance of TIR Onboard the Hayabusa2 Spacecraft

  • Takehiko Arai
  • Tomoki Nakamura
  • Satoshi Tanaka
  • Hirohide Demura
  • Yoshiko Ogawa
  • Naoya Sakatani
  • Yamato Horikawa
  • Hiroki Senshu
  • Tetsuya Fukuhara
  • Tatsuaki Okada
Article

Abstract

The thermal infrared imager (TIR) is a thermal infrared camera onboard the Hayabusa2 spacecraft. TIR will perform thermography of a C-type asteroid, 162173 Ryugu (1999 JU3), and estimate its surface physical properties, such as surface thermal emissivity \(\epsilon \), surface roughness, and thermal inertia \(\varGamma \), through remote in-situ observations in 2018 and 2019. In prelaunch tests of TIR, detector calibrations and evaluations, along with imaging demonstrations, were performed. The present paper introduces the experimental results of a prelaunch test conducted using a large-aperture collimator in conjunction with TIR under atmospheric conditions. A blackbody source, controlled at constant temperature, was measured using TIR in order to construct a calibration curve for obtaining temperatures from observed digital data. As a known thermal emissivity target, a sandblasted black almite plate warmed from the back using a flexible heater was measured by TIR in order to evaluate the accuracy of the calibration curve. As an analog target of a C-type asteroid, carbonaceous chondrites (\(50~\mbox{mm} \times 2~\mbox{mm}\) in thickness) were also warmed from the back and measured using TIR in order to clarify the imaging performance of TIR. The calibration curve, which was fitted by a specific model of the Planck function, allowed for conversion to the target temperature within an error of 1 C (\(3\sigma \) standard deviation) for the temperature range of 30 to 100 C. The observed temperature of the black almite plate was consistent with the temperature measured using K-type thermocouples, within the accuracy of temperature conversion using the calibration curve when the temperature variation exhibited a random error of 0.3 C (\(1\sigma \)) for each pixel at a target temperature of 50 C. TIR can resolve the fine surface structure of meteorites, including cracks and pits with the specified field of view of 0.051 (\(328 \times 248~\mbox{pixels}\)). There were spatial distributions with a temperature variation of 3 C at the setting temperature of 50 C in the thermal images obtained by TIR. If the spatial distribution of the temperature is caused by the variation of the thermal emissivity, including the effects of the surface roughness, the difference of the thermal emissivity \(\Delta \epsilon \) is estimated to be approximately 0.08, as calculated by the Stefan-Boltzmann raw. Otherwise, if the distribution of temperature is caused by the variation of the thermal inertia, the difference of the thermal inertia \(\Delta \varGamma \) is calculated to be approximately \(150~\mbox{J}\,\mbox{m}^{-2}\,\mbox{s}^{0.5}\,\mbox{K}^{-1}\), based on a simulation using a 20-layer model of the heat balance equation. The imaging performance of TIR based on the results of the meteorite experiments indicates that TIR can resolve the spatial distribution of thermal emissivity and thermal inertia of the asteroid surface within accuracies of \(\Delta \epsilon \cong 0.02\) and \(\Delta \varGamma \cong 20~\mbox{J}\,\mbox{m}^{-2}\,\mbox{s}^{0.5}\,\mbox{K}^{-1}\), respectively. However, the effects of the thermal emissivity and thermal inertia will degenerate in thermal images of TIR. Therefore, TIR will observe the same areas of the asteroid surface numerous times (\({>}10\) times, in order to ensure statistical significance), which allows us to determine both the parameters of the surface thermal emissivity and the thermal inertia by least-squares fitting to a thermal model of Ryugu.

Keywords

Hayabusa2 TIR Infrared camera Thermography Thermal emissivity Surface roughness Thermal inertia Ryugu 1999 JU3 Asteroid Carbonaceous chondrite 

References

  1. J.B. Adams, A.L. Filice, Spectral reflectance 0.4 to 2.0 microns of silicate powders. J. Geophys. Res. 72, 5705–5715 (1967) ADSCrossRefGoogle Scholar
  2. A.M. Baldridge, S.J. HooK, C.I. Grove, G. Rivera, The ASTER spectral library version 2.0. Remote Sens. Environ. 113, 711–715 (2009) ADSCrossRefGoogle Scholar
  3. P.R. Bevington, D.K. Robinson, Data Reduction and Error Analysis for the Physical Sciences, 3rd edn. (McGraw–Hill, New York, 2002) Google Scholar
  4. W.F. Bottke Jr., D. Vokrouhlický, D.P. Rubincam, D. Nesvorný, The Yarkovsky and YORP effects: implications for asteroid dynamics. Annu. Rev. Earth Planet. Sci. 34, 157–191 (2006) ADSCrossRefGoogle Scholar
  5. Brucker Optics, http://www.bruker.jp/
  6. S.J. Bus, R.P. Binzel, Phase II of the small main-belt asteroid spectroscopic survey. A feature-based taxonomy. Icarus 158(1), 146–177 (2002) ADSCrossRefGoogle Scholar
  7. H. Campins, J.P. Emery, M. Kelley, Y. Fernández, J. Licandro, M. Delbó, A. Barucci, E. Dotto, Spitzer observations of spacecraft target 162173 (1999 JU3). Astron. Astrophys. 503, L17–L20 (2009) ADSCrossRefGoogle Scholar
  8. J. Crank, P. Nicolson, A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type. Proc. Camb. Philol. Soc. 43, 50–67 (1947) ADSMathSciNetCrossRefMATHGoogle Scholar
  9. M. Delbo, M. Mueller, J.P. Emery, B. Rozitis, M.T. Capria, Asteroid thermophysical modeling, in Asteroids IV, ed. by P. Michel et al.(University of Arizona Press, Tucson, 2015), pp. 107–128 Google Scholar
  10. T. Fukuhara, M. Taguchi, T. Imamura, M. Nakamura, M. Ueno, M. Suzuki, N. Iwagami, M. Sato, K. Mitsuyama, G.L. Hashimoto, R. Ohshima, T. Kouyama, H. Ando, M. Futaguchi, LIR: longwave infrared camera onboard the Venus orbiter Akatsuki. Earth Planets Space 63, 1009–1018 (2011) ADSCrossRefGoogle Scholar
  11. S. Hasegawa, T.G. Müller, K. Kawakami, T. Kasuga, T. Wada, Y. Ita, N. Takato, H. Terada, T. Fujiyoshi, M. Abe, Albedo, size, and surface characteristics of Hayabusa-2 sample-return target 162173 1999 JU3 from AKARI and Subaru observations. Publ. Astron. Soc. Jpn. 60, 399–405 (2008) ADSCrossRefGoogle Scholar
  12. B.R. Hawke, D.T. Blewett, P.G. Lucey, G.A. Smith, J.F. Bell III, B.A. Campbell, M.S. Robinson, The origin of lunar crater rays. Icarus 170, 1–16 (2004) ADSCrossRefGoogle Scholar
  13. T. Iwata, K. Kitazato, M. Abe, M. Ohtake, T. Arai, T. Arai, N. Hirata, T. Hiroi, C. Honda, N. Imae, M. Komatsu, T. Matsunaga, M. Matsuoka, S. Matsuura, T. Nakamura, A. Nakato, Y. Nakauchi, T. Osawa, H. Senshu, Y. Takagi, K. Tsumura, N. Takato, S. Watanabe, M.A. Barucci, E. Palomba, M. Ozaki, NIRS3: the near infrared spectrometer on Hayabusa2. Space Sci. Rev. (2017). doi:10.1007/s11214-017-0341-0 Google Scholar
  14. S. Kameda, H. Suzuki, Y. Cho, S. Koga, M. Yamada, T. Nakamura, T. Hiroi, H. Sawada, R. Honda, T. Morota, C. Honda, A. Takei, T. Takamatsu, Y. Okumura, M. Sato, T. Yasuda, K. Shibasaki, S. Ikezawa, S. Sugita, Detectability of hydrous minerals using ONC-T camera onboard the Hayabusa2 spacecraft. Adv. Space Res. 56(7), 1519–1524 (2015). doi:10.1016/j.asr.2015.06.037 ADSCrossRefGoogle Scholar
  15. D. Lazzaro, M.A. Barucci, D. Perna, F.L. Jasmim, M. Yoshikawa, J.M.F. Carvano, Rotational spectra of (162173) 1999 JU3, the target of the Hayabusa2 mission. Astron. Astrophys. 549, L2 (2013) ADSCrossRefGoogle Scholar
  16. M. Müller, Surface properties of asteroids from mid-infrared observations and thermophysical modeling. PhD dissertation, Freie Universitaet, Berlin (2007) Google Scholar
  17. T.G. Müller, J. D̂urech, S. Hasegawa, M. Abe, K. Kawakami, T. Kasuga, D. Kinoshita, D. Kuroda, S. Urakawa, S. Okumura, Y. Sarugaku, S. Miyasaka, Y. Takagi, P.R. Weissman, Y.-J. Choi, S. Larson, K. Yanagisawa, S. Nagayama, Thermo-physical properties of 162173 (1999 JU3), a potential flyby and rendezvous target for interplanetary missions. Astron. Astrophys. 525, A145 (2011) CrossRefGoogle Scholar
  18. T. Nakamura, T. Iwata, K. Kitasato, M. Abe, T. Osawa, M. Matsuoka, Y. Nakauchi, T. Arai, M. Komatsu, T. Hiroi, N. Imae, A. Yamaguchi, H. Kojima, Reflectance spectra measurement of various carbonaceous chondrites using Hayabusa-2 near infrared spectrometer. 78th Annual Meeting of the Meteoritical Society, abstract#5206 (2015) Google Scholar
  19. T. Okada, T. Fukuhara, S. Tanaka, M. Taguchi, T. Imamura, T. Arai, H. Senshu, Y. Ogawa, H. Demura, K. Kitazato, R. Nakamura, T. Kouyama, T. Sekiguchi, S. Hasegawa, T. Matsunaga, T. Wada, J. Takita, N. Sakatani, Y. Horikawa, K. Endo, J. Helbert, T.G. Müller, A. Hagermann, Hayabusa2 TIR team, thermal infrared imaging experiments of C-type asteroid 162173 Ryugu on Hayabusa2. Space Sci. Rev. (2016). doi:10.1007/s11214-016-0286-8 Google Scholar
  20. C.P. Opeil, G.J. Consolmagno, D.T. Britt, The thermal conductivity of meteorites: new measurements and analysis. Icarus 208(1), 449–454 (2010) ADSCrossRefGoogle Scholar
  21. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Modeling of Data, Numerical Recipes, 3rd edn. (Cambridge University Press, Cambridge, 2007a), pp. 773–839. Chap. 15 MATHGoogle Scholar
  22. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Interpolation and Extrapolation, Numerical Recipes, 3rd edn. (Cambridge University Press, Cambridge, 2007b), pp. 110–154. Chap. 3 Google Scholar
  23. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Partial Differential Equations, Numerical Recipes, 3rd edn. (Cambridge University Press, Cambridge, 2007c), pp. 1024–1096. Chap. 20 Google Scholar
  24. B. Rozitis, S.F. Green, Directional characteristics of thermal-infrared beaming from atmosphereless planetary surfaces—a new thermophysical model. Mon. Not. R. Astron. Soc. 415, 2042–2062 (2011) ADSCrossRefGoogle Scholar
  25. N. Sakatani, K. Ogawa, Y. Iijima, R. Honda, S. Tanaka, Experimental study for thermal conductivity structure of lunar surface regolith: effect of compressional stress. Icarus 221(2), 1180–1182 (2012) ADSCrossRefGoogle Scholar
  26. J.R. Spencer, L.A. Lebovsky, M.A. Sykes, Systematic biases in radiometric diameter determinations. Icarus 78, 337–354 (1989) ADSCrossRefGoogle Scholar
  27. J. Takita, H. Senshu, S. Tanaka, Feasibility and accuracy of thermophysical estimation of asteroid 162173 Ryugu (1999 JU3) from the Hayabusa2 thermal infrared imager. Space Sci. Rev. (2017). doi:10.1007/s11214-017-0336-x Google Scholar
  28. Y. Tsuda, M. Yoshikawa, M. Abe, H. Minamino, S. Nakazawa, System design of the Hayabusa 2—asteroid sample return mission to 1999 JU3. Acta Astronaut. 91, 356–362 (2013) ADSCrossRefGoogle Scholar
  29. W.R. Van Schmus, J.A. Wood, A chemical-petrologic classification for the chondritic meteorites. Geochim. Cosmochim. Acta 31(5), 747 (1967) ADSCrossRefGoogle Scholar
  30. F. Vilas, Spectral characteristics of Hayabusa 2 near-Earth asteroid targets 162173 1999 JU3 and 2001 QC34. Astron. J. 135, 1101–1105 (2008) ADSCrossRefGoogle Scholar
  31. M.K. Weisberg, T.J. McCoy, A.N. Krot, Systematics and evaluation of meteorite classification, in Meteorites and the Early Solar System II, ed. by D.S. Lauretta, H.Y. McSween (University of Arizona Press, Tucson, 2006) Google Scholar
  32. K. Yomogida, T. Matsui, Physical properties of ordinary chondrites. J. Geophys. Res. 88, 9513–9533 (1983) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Takehiko Arai
    • 1
  • Tomoki Nakamura
    • 2
  • Satoshi Tanaka
    • 3
  • Hirohide Demura
    • 4
  • Yoshiko Ogawa
    • 4
  • Naoya Sakatani
    • 5
  • Yamato Horikawa
    • 6
  • Hiroki Senshu
    • 7
  • Tetsuya Fukuhara
    • 8
  • Tatsuaki Okada
    • 3
  1. 1.Center for Global Environmental Research, Satellite Observation CenterNational Institute for Environmental Studies (NIES)TsukubaJapan
  2. 2.Department of Earth ScienceTohoku UniversitySendaiJapan
  3. 3.Institute of Space and Astronautical ScienceJapan Aerospace Exploration Agency (JAXA)SagamiharaJapan
  4. 4.Research Center for Advanced Information Science and TechnologyThe University of AizuAizu-WakamatsuJapan
  5. 5.Department of Physics, School of Science and TechnologyMeiji UniversityKawasakiJapan
  6. 6.Department of Space and Astronautical Science, School of Physical SciencesGraduate University for Advanced StudiesSagamiharaJapan
  7. 7.Planetary Exploration Research CenterChiba Institute of TechnologyNarashinoJapan
  8. 8.College of ScienceRikkyo UniversityNishi-IkebukuroJapan

Personalised recommendations