Near Surface Stratigraphy and Regolith Production in Southwestern Elysium Planitia, Mars: Implications for Hesperian-Amazonian Terrains and the InSight Lander Mission

Abstract

The presence of rocks in the ejecta of craters at the InSight landing site in southwestern Elysium Planitia indicates a strong, rock-producing unit at depth. A finer regolith above is inferred by the lack of rocks in the ejecta of 10-m-scale craters. This regolith should be penetrable by the mole of the Heat Flow and Physical Properties Package (HP3). An analysis of the size-frequency distribution (SFD) of 7988 rocky ejecta craters (RECs) across four candidate landing ellipses reveals that all craters >200 m in diameter and \({<}750 \pm 30\ \mbox{Ma}\) in age have boulder-sized rocks in their ejecta. The frequency of RECs however decreases significantly below this diameter (\(D\)), represented by a roll-off in the SFD slope. At \(30\ \text{m} < D < 200\ \text{m}\), the slope of the cumulative SFD declines to near zero at \(D < 30\ \text{m}\). Surface modification, resolution limits, or human counting error cannot account for the magnitude of this roll-off. Rather, a significant population of <200 m diameter fresh non-rocky ejecta craters (NRECs) here indicates the presence of a relatively fine-grained regolith that prevents smaller craters from excavating the strong rock-producing unit. Depth to excavation relationships and the REC size thresholds indicate the region is capped by a regolith that is almost everywhere 3 m thick but may be as thick as 12 to 18 m. The lower bound of the thickness range is independently confirmed by the depth to the inner crater in concentric or nested craters. The data indicate that 85% of the InSight landing region is covered by a regolith that is at least 3 m thick. The probability of encountering rockier material at depths >3 m by the HP3 however increases significantly due to the increase in boulder-size rocks in the lower regolith column, near the interface of the bedrock.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

References

  1. B.W. Banerdt et al. (InSight team), InSight, a Discovery mission to explore the interior of Mars, in 44th Lunar and Planetary Science Conf. (2013). Abstract 1915

    Google Scholar 

  2. J.L. Banfield, Global mineral distributions on Mars. J. Geophys. Res., Planets (2002). doi:10.1029/2001JE001510

    Google Scholar 

  3. J.L. Banfield, T.D. Glotch, P.R. Christensen, Spectroscopic identification of carbonate minerals in the martian dust. Science 301, 1084–1087 (2003)

    ADS  Article  Google Scholar 

  4. G.D. Bart, The quantitative relationship between small impact crater morphology and regolith depth. Icarus 235, 130–135 (2014)

    ADS  Article  Google Scholar 

  5. G.D. Bart, H.J. Melosh, Using lunar boulders to distinguish primary from distant secondary impact craters. Geophys. Res. Lett. 34 (2007). doi:10.1029/2007GL029306

  6. G.D. Bart, H.J. Melosh, Distributions of boulders ejected from lunar craters. Icarus 209, 337–357 (2010)

    ADS  Article  Google Scholar 

  7. G.D. Bart, R.D. Nickerson, M.T. Lawder, H.J. Melosh, Global survey of lunar regolith depths from LROC images. Icarus 215, 485–490 (2011)

    ADS  Article  Google Scholar 

  8. A.T. Basilevsky, J.W. Head, F. Horz, Survival times of meter-sized boulders on the surface of the Moon. Planet. Space Sci. 89, 118–126 (2013)

    ADS  Article  Google Scholar 

  9. J.A. Berger et al., A global Mars dust composition refined by the alpha particle X-ray spectrometer in Gale Crater. Geophys. Res. Lett. 43, 67–75 (2016)

    ADS  Article  Google Scholar 

  10. J.L. Bishop, S.L. Murchie, C.M. Pieters, A.P. Zent, A model for formation of dust, soil, and rock coatings on Mars; physical and chemical processes on the Martian surface. J. Geophys. Res., Planets 107 (2002). doi:10.1029/2001JE001581

  11. C. Bloom, M. Golombek, N. Warner, N. Wigton, Size frequency distribution and ejection velocity of Corinto crater secondaries in Elysium Planitia, in Eighth International Conference on Mars (2014), Abstract 1289

    Google Scholar 

  12. N. Bridges et al., Planet-wide sand motion on Mars. Geology 40, 31–34 (2011)

    ADS  Article  Google Scholar 

  13. D.C. Catling et al., A lava sea in the northern plains of Mars: circumpolar hesperian oceans reconsidered, in 42nd Lunar and Planetary Science Conference (2011), Abstract 2529

    Google Scholar 

  14. D.C. Catling, C.B. Leovy, S.E. Wood, M.D. Day, Does the Vastitas Borealis formation contain oceanic or volcanic deposits? in Third Conference on Early Mars (2012), Abstract 7031

    Google Scholar 

  15. P.R. Christensen, H.J. Moore, The martian surface layer, in MARS, ed. by H.H. Kieffer, B.M. Jakosky, C.W. Snyder, M.S. Matthews (University of Arizona Press, Tuscon, 1992), pp. 686–727

    Google Scholar 

  16. M.J. Cintala, K.M. McBride, Block distributions on the lunar surface: a comparison between measurements obtained from surface and orbital photography. NASA Tech. Memo. 104804, 41 (1995)

    Google Scholar 

  17. I.J. Daubar, C.M. Dundas, S. Byrne, P. Geissler, G.D. Bart, A.S. McEwen, P.S. Russell, M. Chojnacki, M.P. Golombek, Changes in blast zone albedo patterns around new martian impact craters. Icarus 267, 86–105 (2016)

    ADS  Article  Google Scholar 

  18. I.J. Dauber, A.S. McEwen, S. Byrne, M.R. Kennedy, B. Ivanov, The current martian cratering rate. Icarus 225, 506–516 (2013)

    ADS  Article  Google Scholar 

  19. I.J. Dauber, M.P. Golombek, A.S. McEwen, L.L. Tornabene, F.J. Calef, R. Fergason, R. Kirk, R. Beyer, Depth-diameter ratio of Corinto secondary craters, in 47th Lunar and Planetary Science Conference (2016), Abstract 2950

    Google Scholar 

  20. W. Fa, M.A. Wieczorek, Regolith thickness over the lunar nearside: results from Earth-based 70-cm Arecibo radar observations. Icarus 218, 771–787 (2012)

    ADS  Article  Google Scholar 

  21. C.I. Fassett, B.J. Thomson, Crater degradation on the lunar maria: topographic diffusion and the rate of erosion on the Moon. J. Geophys. Res., Planets (2014). doi:10.1002/2014JE004698

    Google Scholar 

  22. R. Fergason, R.L. Kirk, G. Cushing, D.M. Galuzska, M.P. Golombek, T.M. Hare, E. Howington-Kraus, D.M. Kipp, B.L. Redding, Analysis of local slopes at the InSight landing site region. Space Sci. Rev. (2016), this issue. doi:10.1007/s11214-016-0292-x

    Google Scholar 

  23. M.P. Golombek et al., Overview of the Mars Pathfinder Mission; launch through landing, surface operations, data sets, and science results. J. Geophys. Res., Planets 104 (1999). doi:10.1029/98JE02554

  24. M.P. Golombek et al., Geology of the Gusev cratered plains from the Spirit rover traverse. J. Geophys. Res., Planets (2006a). doi:10.1029/2005JE002503

    Google Scholar 

  25. M.P. Golombek, J.A. Grant, L.S. Crumpler, R. Greeley, R.E. Arvidson, J.F. Bell, C.M. Weitz, R. Sullivan, P.R. Christensen, L.A. Soderblom, S.W. Squyres, Erosion rates at the Mars Exploration Rover landing sites and long-term climate change on Mars. J. Geophys. Res., Planets 111 (2006b). doi:10.1029/2006JE002754

  26. M.P. Golombek, N.H. Warner, N. Wigton, C. Bloom, C. Schwartz, S. Kannan, D. Kipp, A. Huertas, B. Banerdt, Final four landing sites for the InSight geophysical lander, in 45th Lunar and Planetary Science Conference (2014a), Abstract 1499

    Google Scholar 

  27. M.P. Golombek, N.H. Warner, V. Ganti, M.P. Lamb, T.J. Parker, R.L. Fergason, R. Sullivan, Small crater modification on Meridiani Planum and implications for erosion rates and climate change on Mars. J. Geophys. Res., Planets 119 (2014b). doi:10.1002/2014JE004658

  28. M. Golombek, C. Bloom, N. Wigton, N. Warner, Constraints on the age of Corinto crater from mapping secondaries in Elysium Planitia on Mars (expanded abstract), in 45th Lunar and Planetary Science (2014c), Abstract 1470

    Google Scholar 

  29. M.P. Golombek, N.H. Warner, I.J. Daubar, D. Kipp, A. Huertas et al., Surface and subsurface characteristics of western Elysium Planitia, Mars, in 47th Lunar and Planetary Science Conference (2016a), Abstract 1572

    Google Scholar 

  30. M. Golombek, D. Kipp, N. Warner, I.J. Daubar, R. Fergason, R. Kirk, R. Beyer, A. Huertas, S. Piqueux, N. Putzig, B.A. Campbell, G.A. Morgan, C. Charalambous, W.T. Pike, K. Gwinner, F. Calef, J. Ashley, D. Kass, M. Mischna, C. Bloom, N. Wigton, C. Schwartz, H. Gengl, L. Redmond, J. Sweeney, E. Sklyanskiy, M. Lisano, J. Benardino, S. Smrekar, B. Banerdt, Selection of the InSight landing site. Space Sci. Rev. 1–91 (2016b), this issue. doi:10.1007/s11214-016-0321-9

  31. J.A. Grant, R. Arvidson, J.F. Bell, N.A. Cabrol, M.H. Carr, P. Christensen, L. Crumpler, D.J. Des Marais, B.L. Ehlmann, J. Farmer, M. Golombek, F.D. Grant, R. Greeley, K. Herkenhoff, R. Li, H.Y. McSween, D.W. Ming, J. Moersch, J.W. Rice, S. Ruff, L. Richter, S. Squyres, R. Sullivan, C. Weitz, Surficial deposits at Gusev Crater along Spirit Rover traverses. Science 305, 807–809 (2004)

    ADS  Article  Google Scholar 

  32. R.A.F. Grieve, P.B. Robertson, M.R. Dence, Constraints on the formation of ring impact structures, based on terrestrial data, in Multi-Ring Basins, ed. by P.H. Schultz, R.B. Merrill (Pergamon Press, New York, 1981), pp. 37–57

    Google Scholar 

  33. W.K. Hartmann, Ancient lunar mega-regolith and subsurface structure. Icarus 18, 634–636 (1973)

    ADS  Article  Google Scholar 

  34. W.K. Hartmann, Does crater “equilibrium” occur in the Solar System? Icarus 60, 56–74 (1984)

    ADS  Article  Google Scholar 

  35. W.K. Hartmann, Martian cratering 8: isochron refinement and the chronology of Mars. Icarus 174, 294–320 (2005)

    ADS  Article  Google Scholar 

  36. W.K. Hartmann, G. Neukum, Cratering chronology and the evolution of Mars. Space Sci. Rev. 96, 165–194 (2001)

    ADS  Article  Google Scholar 

  37. W.K. Hartmann, Anguita J. de la Casa, M. Berman, D.D. Ryan, E. Martian, Cratering 7: the role of impact gardening. Icarus 149, 37–53 (2001)

    ADS  Article  Google Scholar 

  38. B. Hermalyn, P.H. Schultz, Time-resolved studies of hypervelocity vertical impacts into porous particulate targets: effects of projectile density on early-time coupling and crater growth. Icarus 216, 269–279 (2011). doi:10.1016/j.icarus.2011.09.008

    ADS  Article  Google Scholar 

  39. C.B. Hundal, M.P. Golombek, I.J. Daubar, Chronology of fresh rayed craters in Elysium Planitia, Mars: (expanded abstract), in 48th Lunar and Planetary Science (Lunar and Planetary Institute, Houston, 2017), Abstract #1726

    Google Scholar 

  40. R.P. Irwin, K.L. Tanaka, S.J. Robbins, Distribution of Early, Middle, and Late Noachian cratered surfaces in the Marian highlands: Implications for resurfacing events and processes. J. Geophys. Res., Planets 118 (2013). doi:10.1002/jgre.20053

  41. B.A. Ivanov, Mars/Moon cratering rate ratio estimates. Space Sci. Rev. 96, 87–104 (2001)

    ADS  Article  Google Scholar 

  42. J.R. Johnson, W.M. Grundy, M.T. Lemmon, Dust deposition at the Mars Pathfinder landing site: observations and modeling of visible/near-infrared spectra. Icarus 163, 330–346 (2003)

    ADS  Article  Google Scholar 

  43. R.L. Kirk et al., Ultrahigh resolution topographic mapping of Mars with MRO HiRISE stereo images: meter-scale slopes of candidate Phoenix landing sites. J. Geophys. Res., Planets 113 (2008). doi:10.1029/2007JE003000

  44. N. Mangold, V. Ansan, P. Masson, C. Vincendon, Estimate of aeolian dust thickness in Arabia Terra, Mars l; implications of a thick mantle (>20 m) for hydrogen detection. Geomorphologie 2009(1), 23–31 (2009)

    Article  Google Scholar 

  45. A.S. McEwen, B.S. Preblich, E.P. Turtle, N.A. Artemieva, M.P. Golombek, M. Hurst, R.L. Kirk, D.M. Burr, P.R. Christensen, The rayed crater Zunil and interpretations of small impact craters on Mars. Icarus 176, 351–381 (2005)

    ADS  Article  Google Scholar 

  46. A.S. McEwen et al., Mars Reconnaissance Orbiter’s High Resolution Imaging Science Experiment (HiRISE). J. Geophys. Res., Planets 112 (2007). doi:10.1029/2005JE002605

  47. D.S. McKay, R.M. Fruland, G.H. Heiken, Grain size and evolution of lunar soils, in 5th Lunar and Planetary Science Conference (1974), pp. 887–906

    Google Scholar 

  48. D.S. McKay, G. Heiken, A. Basu, G. Blanfod, S. Simon, R. Reedy, B.M. French, J. Papike, The lunar regolith, in The Lunar Sourcebook (Cambridge University Press, Cambridge, 1991), pp. 285–356

    Google Scholar 

  49. H.J. Melosh, Impact Cratering: A Geologic Process (Oxford University Press, London, 1989), pp. 76–85

    Google Scholar 

  50. G.G. Michael, G. Neukum, Planetary surface dating from crater size-frequency distribution measurements: partial resurfacing events and statistical age uncertainty. Earth Planet. Sci. Lett. 294, 223–229 (2010)

    ADS  Article  Google Scholar 

  51. H.J. Moore, Large blocks around lunar craters, in analysis of Apollo 10 photography and visual observations. NASA Spec. Publ. SP–232, 26–27 (1971)

    ADS  Google Scholar 

  52. H.J. Moore, R.J. Pike, G.E. Ulrich, Lunar terrain and traverse data for lunar roving vehicle design study. Prelim. U. S. Geol. Surv. Rep. (1969)

  53. J.M. Moore, K.S. Edgett, Hellas Planitia, Mars; site of net dust erosion and implications for the nature of basin floor deposits. Geophys. Res. Lett. 20, 1599–1602 (1993)

    ADS  Article  Google Scholar 

  54. K. Mueller, M.P. Golombek, Compressional structures on Mars. Annu. Rev. Earth Planet. Sci. 32, 435–464 (2004)

    ADS  Article  Google Scholar 

  55. V.R. Oberbeck, W.L. Quaide, Estimated thickness of a fragmental surface layer of Oceanus Procellarum. J. Geophys. Res. 72, 4697–4704 (1967)

    ADS  Article  Google Scholar 

  56. V.R. Oberbeck, W.L. Quaide, Genetic implications of lunar regolith thickness variations. Icarus 9, 446–465 (1968)

    ADS  Article  Google Scholar 

  57. J.R. Pike, Apparent depth/apparent diameter relation for lunar craters, in 8th Lunar and Planetary Science Conf. (1977), pp. 3427–3436

    Google Scholar 

  58. B.S. Preblich, A.S. McEwen, D.M. Studer, Mapping rays and secondary craters from Martian crater Zunil. J. Geophys. Res., Planets 112 (2007). doi:10.1029/2006JE002817

  59. W.L. Quaide, V.R. Oberbeck, Thickness determinations of the lunar surface layer from lunar impact craters. J. Geophys. Res. 73, 5247–5270 (1968)

    ADS  Article  Google Scholar 

  60. D. Reiss, R.D. Lorenz, Dust devil track survey at Elysium Planitia, Mars: implications for the InSight landing sites. Icarus 266, 315–330 (2016)

    ADS  Article  Google Scholar 

  61. S.W. Ruff, Spectral evidence for zeolite in the dust on Mars. Icarus 168, 131–143 (2004)

    ADS  Article  Google Scholar 

  62. S.W. Ruff, P.R. Christensen, D.L. Blaney, W.H. Farrand, J.R. Johnson, J.E. Michalski, J.E. Moersch, S.P. Wright, S.W. Squyres, The rocks of Gusev Crater as viewed by the Mini-TES instrument. J. Geophys. Res., Planets 111 (2006). doi:10.1029/2006JE002747

  63. P.H. Schultz, R.R. Anderson, Asymmetry of the Manson impact structure: evidence for impact angle and direction. Spec. Pap., Geol. Soc. Am. 302, 397–417 (1996). doi:10.1130/0-8137-2302-7.397

    Google Scholar 

  64. L.E. Senft, S.T. Stewart, Modeling impact cratering in layered surfaces. J. Geophys. Res., Planets 112 (2007). doi:10.1029/2007JE002894

  65. Y.G. Shkuratov, N.V. Bondarenko, Regolith layer thickness mapping of the Moon by radar and optical data. Icarus 149, 329–338 (2001)

    ADS  Article  Google Scholar 

  66. E.M. Shoemaker, E.C. Morris, Size-frequency distribution of fragmental debris in Surveyor program results. NASA Spec. Publ. 184, 82–96 (1969)

    Google Scholar 

  67. E.M. Shoemaker, E.C. Morris, R.M. Batson, H.E. Holt, K.B. Larson, D.R. Montgomery, J.J. Rennilson, E.A. Whitaker, Television observations from Surveyor, in Surveyor Project Final Report, Part II (Jet Propulsion Laboratory, Pasadena, 1968), pp. 21–136

    Google Scholar 

  68. E.M. Shoemaker, R.M. Batson, H.E. Holt, E.C. Morris, J.J. Rennilson, E.A. Whitaker, Observations of the lunar regolith and the Earth from the television camera on Surveyor 7. J. Geophys. Res. 74, 6081 (1969)

    ADS  Article  Google Scholar 

  69. T. Spohn, M. Grott, S. Smrekar, C. Krause, T.L. Hudson, the HP3 instrument team Measuring the Martian heat flow using the Heat Flow and Physical Properties Package (HP3), in 45Th Lunar and Planetary Science Conference (2014), Abstract 1916

    Google Scholar 

  70. D. Stoffler, D.E. Gault, J. Wedekind, G. Polkowski, Experimental hypervelocity impact into quartz sand: distribution and shock metarnorphism of ejecta. J. Geophys. Res. 80, 4062–4077 (1975)

    ADS  Article  Google Scholar 

  71. J. Sweeney, N.H. Warner, M.P. Golombek, R. Kirk, R.L. Fergason, A. Pivarunas, Crater degradation and surface erosion rates at the InSight landing site, western Elysium Planitia, Mars, in 47th Lunar Planetary Science (2016), Abstract 1576

    Google Scholar 

  72. K.L. Tanaka, J.A. Skinner, J.M. Dohm, R.P. Irwin, E.J. Kolb, C.M. Fortezzo, T. Platz, G.G. Michael, T.M. Hare, Geologic Map of Mars, 1:20,000,000, USGS Scientific Investigations Map 3292 (2014)

  73. T.W. Thompson, W.J. Roberts, W.K. Hartmann, Blocky craters: implications about the lunar megaregolith. Moon Planets 21, 319–342 (1979)

    ADS  Article  Google Scholar 

  74. N.H. Warner, S. Gupta, F. Calef, P. Grindrod, N. Boll, K. Goddard, Minimum effective area for high resolution crater counting of martian terrains. Icarus 245, 198–240 (2015)

    ADS  Article  Google Scholar 

  75. N.H. Warner, M.P. Golombek, J. Sweeney, A. Pivarunas, Regolith thickness estimates from the size frequency distribution of rocky ejecta craters in southwestern Elysium Planitia, Mars, in 47th Lunar and Planetary Science Conference (2016), Abstract 2231

    Google Scholar 

  76. B.B. Wilcox, M.S. Robinson, P.C. Thomas, B.R. Hawkes, Constraints on the depth and variability of the lunar regolith. Meteorit. Planet. Sci. 40, 695–710 (2005)

    ADS  Article  Google Scholar 

  77. Z. Xiao, S.C. Werner, Size-frequency distribution of crater populations in equilibrium on the Moon. J. Geophys. Res., Planets 120 (2015). doi:10.1002/2015JE004860

Download references

Acknowledgements

Research described in this paper was partially done by the InSight Project, Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Warner was partially funded through the NASA Postdoctoral Program. We thank JPL interns Colin Bloom, Nate Wigton, Deborah Hernandez, Valerie Carranza, Katherine Smyth, Soumya Kannan, Caitlin Broznak, and Jeff Green with their help on this project. We also thank SUNY Geneseo student Anthony Pivarunas for his help. We are especially grateful to the Mars Reconnaissance Orbiter HiRISE (University of Arizona) and CTX (Malin Space Science Systems) imaging teams for their high-quality data and hard work in acquiring InSight imagery. We thank comments from members of the InSight science team and C. Fassett and T. Platz for constructive reviews. This paper constitutes InSight Contribution Number 24.

Author information

Affiliations

Authors

Corresponding author

Correspondence to N. H. Warner.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Warner, N.H., Golombek, M.P., Sweeney, J. et al. Near Surface Stratigraphy and Regolith Production in Southwestern Elysium Planitia, Mars: Implications for Hesperian-Amazonian Terrains and the InSight Lander Mission. Space Sci Rev 211, 147–190 (2017). https://doi.org/10.1007/s11214-017-0352-x

Download citation

Keywords

  • InSight
  • Regolith
  • Mars
  • Elysium Planitia
  • Hesperian
  • Amazonian
  • Craters
  • Ejecta
  • Crater counts
  • Heat Flow and Physical Properties Package
  • Erosion rates