Skip to main content

MWR: Microwave Radiometer for the Juno Mission to Jupiter

Abstract

The Juno Microwave Radiometer (MWR) is a six-frequency scientific instrument designed and built to investigate the deep atmosphere of Jupiter. It is one of a suite of instruments on NASA’s New Frontiers Mission Juno launched to Jupiter on August 5, 2011. The focus of this paper is the description of the scientific objectives of the MWR investigation along with the experimental design, observational approach, and calibration that will achieve these objectives, based on the Juno mission plan up to Jupiter orbit insertion on July 4, 2016. With frequencies distributed approximately by octave from 600 MHz to 22 GHz, the MWR will sample the atmospheric thermal radiation from depths extending from the ammonia cloud region at around 1 bar to pressure levels as deep as 1000 bars. The primary scientific objectives of the MWR investigation are to determine the presently unknown dynamical properties of Jupiter’s subcloud atmosphere and to determine the global abundance of oxygen and nitrogen, present in the atmosphere as water and ammonia deep below their respective cloud decks. The MWR experiment is designed to measure both the thermal radiation from Jupiter and its emission-angle dependence at each frequency relative to the atmospheric local normal with high accuracy. The antennas at the four highest frequencies (21.9, 10.0, 5.2, and 2.6 GHz) have ∼12° beamwidths and will achieve a spatial resolution approaching 600 km near perijove. The antennas at the lowest frequencies (0.6 and 1.25 GHz) are constrained by physical size limitations and have 20° beamwidths, enabling a spatial resolution of as high as 1000 km to be obtained. The MWR will obtain Jupiter’s brightness temperature and its emission-angle dependence at each point along the subspacecraft track, over angles up to 60° from the normal over most latitudes, during at least six perijove passes after orbit insertion. The emission-angle dependence will be obtained for all frequencies to an accuracy of better than one part in \(10^{3}\), sufficient to detect small variations in atmospheric temperature and absorber concentration profiles that distinguish dynamical and compositional properties of the deep Jovian atmosphere.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

References

  • V. Adumitroaie, S.M. Levin, D. Santos-Costa, S. Gulkis, M.A. Janssen, in Aerospace Conference 2016 (IEEE, New York,2016), pp. 1–11

    Google Scholar 

  • K. Altwegg et al., Science 347, 1261952 (2015)

    Article  Google Scholar 

  • M. Asplund, N. Grevesse, J. Sauval, P. Scott, Annu. Rev. Astron. Astrophys. 47, 481–522 (2009)

    ADS  Article  Google Scholar 

  • S.K. Atreya, Atmospheres and Ionospheres of the Outer Planets and Their Satellites (Springer, New York, 1986)

    Book  Google Scholar 

  • S.K. Atreya, M.H. Wong, T.C. Owen, P.R. Mahaffy, H.B. Niemann, I. de Pater, Planet. Space Sci. 47, 1243–1262 (1999)

    ADS  Article  Google Scholar 

  • S.K. Atreya, P.R. Mahaffy, H.B. Niemann, T.C. Owen, in Highlights of Astronomy, vol. 12, ed. by H. Rickman (Springer, New York, 2002), pp. 597–601

    Google Scholar 

  • S.K. Atreya, A. Crida, T. Guillot, J.I. Lunine, N. Madhusudhan, M. Mousis, in Saturn in the 21st Century, ed. by K. Baines, M. Flasar, N. Krupp, T. Stallard (Cambridge Univ. Press, Cambridge, 2017

    Google Scholar 

  • J.W.M. Baars, R. Genzel, I.I.K. Pauliny-Toth, A. Witzel, Astron. Astrophys. 61, 99–106 (1977)

    ADS  Google Scholar 

  • J.J. Barnes, D.A. Kring, R. Tartese, I.A. Franchi, M. Anand, S.S. Russell, Nat. Commun. 7, 11684 (2016)

    ADS  Article  Google Scholar 

  • A. Bellotti, P.G. Steffes, G. Chinsomboon, Icarus 280, 255–267 (2016)

    ADS  Article  Google Scholar 

  • G.L. Berge, S. Gulkis, in Jupiter, ed. by T. Gehrels (Univ. of Arizona Press, Tucson, 1976), pp. 621–692

    Google Scholar 

  • G.L. Bjoraker, M.H. Wong, I. de Pater, M. Ádámkovics, Astrophys. J. (2015). doi:10.1088/0004-637X/810/2/122, astro-ph.EP

    Google Scholar 

  • S.T. Brown, S. Desai, W. Lu, A. Tanner, IEEE Trans. Geosci. Remote Sens. 45(7), 1908–1920 (2007). doi:10.1109/TGRS.2006.888098

    ADS  Article  Google Scholar 

  • S.T. Brown, IEEE Trans. Geosci. Remote Sens. 51, 1531–1543 (2013)

    ADS  Article  Google Scholar 

  • N.F. Chamberlain, J.C. Chen, R.E. Hodges, R.C. Hughes, J.K. Jakoboski, in IEEE APS/URSI Conference, Toronto, Canada (2010)

    Google Scholar 

  • J.E.P. Connerney, M. Benn, J.B. Bjarno, T. Denver, j. Espley, J.L. Jorgensen, P.S. Jorgensen, P. Lawton, A. Malinnikova, J.M. Merayo, S. Murphy, J. Odom, R. Oliversen, R. Schurr, D. Sheppard, E.J. Smith, Space Sci. Rev. (2017). doi:10.1007/s11214-017-0334-z

    Google Scholar 

  • I. de Pater, S.T. Massie, Icarus 62, 143–171 (1985)

    ADS  Article  Google Scholar 

  • I. de Pater, J.R. Dickel, Astrophys. J. 308, 459–471 (1986)

    ADS  Article  Google Scholar 

  • I. de Pater, D. Dunn, P. Romani, K. Zahnle, Icarus 149, 66–78 (2001)

    ADS  Article  Google Scholar 

  • I. de Pater, D. DeBoer, M. Marley, R. Freedman, R. Young, Icarus 173, 425–438 (2005)

    ADS  Article  Google Scholar 

  • I. de Pater, R.J. Sault, B. Butler, D. DeBoer, M.H. Wong, Science 352, 1198–1201 (2016)

    ADS  Article  Google Scholar 

  • K. Devaraj, P.G. Steffes, D. Duong, Icarus 241, 165–179 (2014)

    ADS  Article  Google Scholar 

  • D.T. Duong, P.G. Steffes, S. Noorizadeh, Icarus 229, 121–131 (2014)

    ADS  Article  Google Scholar 

  • G.B. Field, J. Geophys. Res. 64, 1169–1177 (1959)

    ADS  Article  Google Scholar 

  • W.M. Folkner, R. Woo, S. Nandi, J. Geophys. Res. 103(E10), 22,847–22,855 (1998)

    ADS  Article  Google Scholar 

  • J. Gibson, W.J. Welch, I. de Pater, Icarus 173, 439–446 (2005)

    ADS  Article  Google Scholar 

  • H.B. Garrett, S.M. Levin, S.J. Bolton, R.W. Evans, B. Bhattacharya, Geophys. Res. Lett. 32, 4104–4108 (2005)

    ADS  Article  Google Scholar 

  • D. Gautier, F. Hersant, O. Mousis, J.I. Lunine, Astrophys. J. 550, L227–L230 (2001)

    ADS  Article  Google Scholar 

  • S. Gulkis, T.R. McDonough, H. Craft, Icarus 10, 421–427 (1969)

    ADS  Article  Google Scholar 

  • S. Gulkis, R. Poynter, Phys. Earth Planet. Inter. 6, 36–43 (1972)

    ADS  Article  Google Scholar 

  • T.R. Hanley, P.G. Steffes, B.M. Karpowicz, Icarus 202, 316–335 (2009)

    ADS  Article  Google Scholar 

  • J. Harrington, I. de Pater, S.H. Brecht, D. Deming, V. Meadows, K. Zahnle, P.D. Nicholson, in Jupiter. The Planet, Satellites and Magnetosphere, ed. by F. Bagenal, T.E. Dowling, W.B. McKinnon (Cambridge Univ. Press, Cambridge, 2004), p. 159–184

    Google Scholar 

  • M. Heimpel, T. Gastine, J. Wicht, Nat. Geosci. 9, 19–23 (2016)

    ADS  Article  Google Scholar 

  • F. Hersant, D. Gautier, J.I. Lunine, Planet. Space Sci. 52, 623–641 (2004)

    ADS  Article  Google Scholar 

  • M.A. Janssen, Atmospheric Remote Sensing by Microwave Radiometry (Wiley, New York, 1993)

    Google Scholar 

  • M.A. Janssen, C.S. Ruf, S.J. Keihm, IEEE Trans. Geosci. Remote Sens. 33, 138–146 (1995)

    ADS  Article  Google Scholar 

  • M.A. Janssen, M.D. Hofstadter, S. Gulkis, A.P. Ingersoll, M. Allison, S.J. Bolton, L.W. Kamp, Icarus 173, 447–453 (2005)

    ADS  Article  Google Scholar 

  • M.A. Janssen, A. Ingersoll, M.D. Allison, S. Gulkis, A. Laraia, K. Baines, S. Edgington, Y. Anderson, K. Kelleher, Icarus 226, 522–535 (2013)

    ADS  Article  Google Scholar 

  • B.M. Karpowicz, P.G. Steffes, Icarus 212, 210–223 (2011a)

    ADS  Article  Google Scholar 

  • B.M. Karpowicz, P.G. Steffes, Icarus 214, 783 (2011b)

    ADS  Article  Google Scholar 

  • K.I. Kellerman, Astron. Astrophys. 500, 143–144 (2009)

    ADS  Article  Google Scholar 

  • S.M. Levin, S. Bolton, B. Bhattacharya, S. Gulkis, M. Klein, R. Thorne, Geophys. Res. Lett. 28, 903–906 (2001)

    ADS  Article  Google Scholar 

  • Y. Lian, A.P. Showman, Icarus 207, 373–393 (2010)

    ADS  Article  Google Scholar 

  • G.F. Lindal, G.E. Wood, G.S. Levy, J.D. Anderson, D.N. Sweetnam, H.B. Hotz, B.J. Buckles, D.P. Holmes, P.E. Doms, V.R. Eshleman, G.L. Tyler, T.A. Croft, J. Geophys. Res. 86, 8721 (1981)

    ADS  Article  Google Scholar 

  • C.H. Lineweaver, L. Tenario, G.F. Smoot, P. Keegstra, A.J. Banday, P. Lubin, Astrophys. J. 470, 38–42 (1996)

    ADS  Article  Google Scholar 

  • J. Liu, T. Schneider, J. Atmos. Sci. 67, 3652–3672 (2010)

    ADS  Article  Google Scholar 

  • J.J. Liu, T. Schneider, J. Atmos. Sci. 72, 389–408 (2015)

    ADS  Article  Google Scholar 

  • E. Lorenz, Tellus 7, 157–167 (1955)

    ADS  Article  Google Scholar 

  • J.I. Lunine, D.J. Stevenson, Astrophys. J. Suppl. Ser. 58, 493–531 (1985)

    ADS  Article  Google Scholar 

  • V. Lucarini, S. Pascale, R. Boschi, E. Kirk, N. Iro, Astron. Nachr. 334, 576–588 (2013)

    ADS  Article  Google Scholar 

  • P.R. Mahaffy, H.B. Niemann, J.E. Demick, Bull. Am. Astron. Soc. 31, 5205 (1999)

    Google Scholar 

  • P.R. Mahaffy, H.B. Niemann, A. Alpert, S.K. Atreya, J. Demick, T.M. Donahue, D.N. Harpold, T.C. Owen, J. Geophys. Res., Planets 105(E6), 15061–15071 (2000)

    ADS  Article  Google Scholar 

  • B. Marty, Earth Planet. Sci. Lett. 313, 56–66 (2012)

    ADS  Article  Google Scholar 

  • E.C. Morris, R.W. Parsons, Aust. J. Phys. 23, 335–349 (1970)

    ADS  Google Scholar 

  • H.B. Niemann, S.K. Atreya, G.R. Carignan, T.M. Donahue, J.A. Haberman, D.N. Harpold, R.E. Hartle, D.M. Hunten, W.T. Kasprzak, P.R. Mahaffy, T.C. Owen, N.W. Spencer, S.H. Way, Science 272, 846–849 (1996)

    ADS  Article  Google Scholar 

  • H.B. Niemann et al., J. Geophys. Res., Planets 103, 22831–22845 (1998)

    ADS  Article  Google Scholar 

  • T. Owen, A. Barnun, I. Kleinfeld, Nature 358, 43–46 (1992)

    ADS  Article  Google Scholar 

  • T. Owen, A. Barnum, Icarus 116, 215–226 (1995)

    ADS  Article  Google Scholar 

  • T.C. Owen, P.R. Mahaffy, H.B. Niemann, S.K. Atreya, T.M. Donahue, A. Bar-Nun, I. de Pater, Nature 402, 269–270 (1999)

    ADS  Article  Google Scholar 

  • B.M. Partridge, B.M. Lopez-Caniego, R.A. Perley, J. Stevens, B.J. Butler, G. Rocha, B. Waler, A. Zacchei, arXiv:1506.02892 [astro-ph.CO] (2016)

  • J.P. Peixoto, A.H. Oort, Physics of Climate (Am. Inst. of Physics, New York, 1992)

    Google Scholar 

  • J. Peng, C.S. Ruf, S.T. Brown, J. Piepmeier, in IEEE International Geoscience and Remote Sensing Symposium, Barcelona (2007), pp. 2416–2418

    Google Scholar 

  • R.A. Perley, B.J. Butler, Astrophys. J. Suppl. Ser. 204, 1–20 (2013)

    ADS  Article  Google Scholar 

  • J.B. Pollack, O. Hubickyj, P. Bodenheimer, J. Lissauer, M. Podolak, Y. Greenzweig, Icarus 124, 62–85 (1996)

    ADS  Article  Google Scholar 

  • D. Santos-Costa, S.J. Bolton, Planet. Space Sci. 56, 326–345 (2009)

    ADS  Article  Google Scholar 

  • D. Santos-Costa, I. de Pater, R.J. Sault, M.A. Janssen, S.M. Levin, S.J. Bolton, Astron. Astrophys. 568(A61), 1–11 (2014)

    Google Scholar 

  • R.J. Sault, C. Engel, I. de Pater, Icarus 168, 336–343 (2004)

    ADS  Article  Google Scholar 

  • G. Schubert, J. Mitchell, in Comparative Climatology of Terrestrial Planets, ed. by S.J. Mackwell, A.A. Simon-Miller, J.W. Harder, M.A. Bullock (Univ. of Arizona Press, Tuscon, 2013), pp. 181–191

    Google Scholar 

  • A. Seiff, D.B. Kirk, T.C.D. Knight, R.E. Young, J.D. Mihalov, L.A. Young, F.S. Milos, G. Schubert, R.C. Blanchard, D. Atkinson, J. Geophys. Res. 103, 22857 (1998)

    ADS  Article  Google Scholar 

  • A.P. Showman, I. de Pater, Icarus 174, 192–204 (2005)

    ADS  Article  Google Scholar 

  • S.S. Sobjaerg, N. Skou, J.E. Balling, IEEE Trans. Geosci. Remote Sens. 47(9), 3134–3139 (2009)

    ADS  Article  Google Scholar 

  • P.G. Steffes, T.R. Hanley, B.M. Karpowicz, K. Devaraj, S. Noorizadeh, D. Duong, G. Chinsomboon, A. Bellotti, M.A. Janssen, S.J. Bolton, Space Sci. Rev. (2017). doi:10.1007/s11214-016-0265-0

    Google Scholar 

  • L.A. Sromovsky, A.D. Collard, P.M. Fry, G.S. Orton, M.T. Lemmon, M.G. Tomasko, R.S. Freedman, J. Geophys. Res. 103, 22929–22978 (1998)

    ADS  Article  Google Scholar 

  • K. Sugiyama, K. Nakajima, M. Odaka, K. Kuramoto, Y.Y. Hayashi, Icarus 229, 71–91 (2014)

    ADS  Article  Google Scholar 

  • F. Tabataba-Vakili, P.L. Read, S.R. Lewis, L. Montabone, T. Ruan, Y. Wang, A. Valeanu, R. Young, Geophys. Res. Lett. 42, 8320–8327 (2015)

    ADS  Article  Google Scholar 

  • S.I. Thomson, M.E. McIntyre, J. Atmos. Sci. 73, 1119–1141 (2016)

    ADS  Article  Google Scholar 

  • A.R. Vasavada, A.P. Showman, Rep. Prog. Phys. 68, 1935–1996 (2005)

    ADS  Article  Google Scholar 

  • F. Wentz, D. Levine, Remote sensing systems. Technical report 011811 (2011)

  • M.H. Weatherspoon, L.P. Dunleavy, IEEE Trans. Microw. Theory Tech. 54(2), 608–614 (2006)

    ADS  Article  Google Scholar 

  • M.H. Wong, P.R. Mahaffy, S.K. Atreya, H.B. Niemann, T.C. Owen, Icarus 171, 153–170 (2004)

    ADS  Article  Google Scholar 

  • G.T. Wrixon, W.J. Welch, D. Thornton, Astrophys. J. 169, 171–183 (1971)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The work described in this paper was conducted at the Jet Propulsion Laboratory (JPL), California Institute of Technology, under contract with the National Aeronautics and Space Administration (NASA). The author wishes to thank the numerous contributors from the Juno Project and the Lockheed-Martin spacecraft team, without whom this ambitious project would not have been possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Janssen.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Janssen, M.A., Oswald, J.E., Brown, S.T. et al. MWR: Microwave Radiometer for the Juno Mission to Jupiter. Space Sci Rev 213, 139–185 (2017). https://doi.org/10.1007/s11214-017-0349-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-017-0349-5

Keywords

  • Jupiter
  • Microwave radiometry
  • Synchrotron emission
  • Atmosphere
  • Atmospheric composition
  • Atmospheric dynamics