MWR: Microwave Radiometer for the Juno Mission to Jupiter

Abstract

The Juno Microwave Radiometer (MWR) is a six-frequency scientific instrument designed and built to investigate the deep atmosphere of Jupiter. It is one of a suite of instruments on NASA’s New Frontiers Mission Juno launched to Jupiter on August 5, 2011. The focus of this paper is the description of the scientific objectives of the MWR investigation along with the experimental design, observational approach, and calibration that will achieve these objectives, based on the Juno mission plan up to Jupiter orbit insertion on July 4, 2016. With frequencies distributed approximately by octave from 600 MHz to 22 GHz, the MWR will sample the atmospheric thermal radiation from depths extending from the ammonia cloud region at around 1 bar to pressure levels as deep as 1000 bars. The primary scientific objectives of the MWR investigation are to determine the presently unknown dynamical properties of Jupiter’s subcloud atmosphere and to determine the global abundance of oxygen and nitrogen, present in the atmosphere as water and ammonia deep below their respective cloud decks. The MWR experiment is designed to measure both the thermal radiation from Jupiter and its emission-angle dependence at each frequency relative to the atmospheric local normal with high accuracy. The antennas at the four highest frequencies (21.9, 10.0, 5.2, and 2.6 GHz) have ∼12° beamwidths and will achieve a spatial resolution approaching 600 km near perijove. The antennas at the lowest frequencies (0.6 and 1.25 GHz) are constrained by physical size limitations and have 20° beamwidths, enabling a spatial resolution of as high as 1000 km to be obtained. The MWR will obtain Jupiter’s brightness temperature and its emission-angle dependence at each point along the subspacecraft track, over angles up to 60° from the normal over most latitudes, during at least six perijove passes after orbit insertion. The emission-angle dependence will be obtained for all frequencies to an accuracy of better than one part in \(10^{3}\), sufficient to detect small variations in atmospheric temperature and absorber concentration profiles that distinguish dynamical and compositional properties of the deep Jovian atmosphere.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

References

  1. V. Adumitroaie, S.M. Levin, D. Santos-Costa, S. Gulkis, M.A. Janssen, in Aerospace Conference 2016 (IEEE, New York,2016), pp. 1–11

    Google Scholar 

  2. K. Altwegg et al., Science 347, 1261952 (2015)

    Article  Google Scholar 

  3. M. Asplund, N. Grevesse, J. Sauval, P. Scott, Annu. Rev. Astron. Astrophys. 47, 481–522 (2009)

    ADS  Article  Google Scholar 

  4. S.K. Atreya, Atmospheres and Ionospheres of the Outer Planets and Their Satellites (Springer, New York, 1986)

    Google Scholar 

  5. S.K. Atreya, M.H. Wong, T.C. Owen, P.R. Mahaffy, H.B. Niemann, I. de Pater, Planet. Space Sci. 47, 1243–1262 (1999)

    ADS  Article  Google Scholar 

  6. S.K. Atreya, P.R. Mahaffy, H.B. Niemann, T.C. Owen, in Highlights of Astronomy, vol. 12, ed. by H. Rickman (Springer, New York, 2002), pp. 597–601

    Google Scholar 

  7. S.K. Atreya, A. Crida, T. Guillot, J.I. Lunine, N. Madhusudhan, M. Mousis, in Saturn in the 21st Century, ed. by K. Baines, M. Flasar, N. Krupp, T. Stallard (Cambridge Univ. Press, Cambridge, 2017

    Google Scholar 

  8. J.W.M. Baars, R. Genzel, I.I.K. Pauliny-Toth, A. Witzel, Astron. Astrophys. 61, 99–106 (1977)

    ADS  Google Scholar 

  9. J.J. Barnes, D.A. Kring, R. Tartese, I.A. Franchi, M. Anand, S.S. Russell, Nat. Commun. 7, 11684 (2016)

    ADS  Article  Google Scholar 

  10. A. Bellotti, P.G. Steffes, G. Chinsomboon, Icarus 280, 255–267 (2016)

    ADS  Article  Google Scholar 

  11. G.L. Berge, S. Gulkis, in Jupiter, ed. by T. Gehrels (Univ. of Arizona Press, Tucson, 1976), pp. 621–692

    Google Scholar 

  12. G.L. Bjoraker, M.H. Wong, I. de Pater, M. Ádámkovics, Astrophys. J. (2015). doi:10.1088/0004-637X/810/2/122, astro-ph.EP

    Google Scholar 

  13. S.T. Brown, S. Desai, W. Lu, A. Tanner, IEEE Trans. Geosci. Remote Sens. 45(7), 1908–1920 (2007). doi:10.1109/TGRS.2006.888098

    ADS  Article  Google Scholar 

  14. S.T. Brown, IEEE Trans. Geosci. Remote Sens. 51, 1531–1543 (2013)

    ADS  Article  Google Scholar 

  15. N.F. Chamberlain, J.C. Chen, R.E. Hodges, R.C. Hughes, J.K. Jakoboski, in IEEE APS/URSI Conference, Toronto, Canada (2010)

    Google Scholar 

  16. J.E.P. Connerney, M. Benn, J.B. Bjarno, T. Denver, j. Espley, J.L. Jorgensen, P.S. Jorgensen, P. Lawton, A. Malinnikova, J.M. Merayo, S. Murphy, J. Odom, R. Oliversen, R. Schurr, D. Sheppard, E.J. Smith, Space Sci. Rev. (2017). doi:10.1007/s11214-017-0334-z

    Google Scholar 

  17. I. de Pater, S.T. Massie, Icarus 62, 143–171 (1985)

    ADS  Article  Google Scholar 

  18. I. de Pater, J.R. Dickel, Astrophys. J. 308, 459–471 (1986)

    ADS  Article  Google Scholar 

  19. I. de Pater, D. Dunn, P. Romani, K. Zahnle, Icarus 149, 66–78 (2001)

    ADS  Article  Google Scholar 

  20. I. de Pater, D. DeBoer, M. Marley, R. Freedman, R. Young, Icarus 173, 425–438 (2005)

    ADS  Article  Google Scholar 

  21. I. de Pater, R.J. Sault, B. Butler, D. DeBoer, M.H. Wong, Science 352, 1198–1201 (2016)

    ADS  Article  Google Scholar 

  22. K. Devaraj, P.G. Steffes, D. Duong, Icarus 241, 165–179 (2014)

    ADS  Article  Google Scholar 

  23. D.T. Duong, P.G. Steffes, S. Noorizadeh, Icarus 229, 121–131 (2014)

    ADS  Article  Google Scholar 

  24. G.B. Field, J. Geophys. Res. 64, 1169–1177 (1959)

    ADS  Article  Google Scholar 

  25. W.M. Folkner, R. Woo, S. Nandi, J. Geophys. Res. 103(E10), 22,847–22,855 (1998)

    ADS  Article  Google Scholar 

  26. J. Gibson, W.J. Welch, I. de Pater, Icarus 173, 439–446 (2005)

    ADS  Article  Google Scholar 

  27. H.B. Garrett, S.M. Levin, S.J. Bolton, R.W. Evans, B. Bhattacharya, Geophys. Res. Lett. 32, 4104–4108 (2005)

    ADS  Article  Google Scholar 

  28. D. Gautier, F. Hersant, O. Mousis, J.I. Lunine, Astrophys. J. 550, L227–L230 (2001)

    ADS  Article  Google Scholar 

  29. S. Gulkis, T.R. McDonough, H. Craft, Icarus 10, 421–427 (1969)

    ADS  Article  Google Scholar 

  30. S. Gulkis, R. Poynter, Phys. Earth Planet. Inter. 6, 36–43 (1972)

    ADS  Article  Google Scholar 

  31. T.R. Hanley, P.G. Steffes, B.M. Karpowicz, Icarus 202, 316–335 (2009)

    ADS  Article  Google Scholar 

  32. J. Harrington, I. de Pater, S.H. Brecht, D. Deming, V. Meadows, K. Zahnle, P.D. Nicholson, in Jupiter. The Planet, Satellites and Magnetosphere, ed. by F. Bagenal, T.E. Dowling, W.B. McKinnon (Cambridge Univ. Press, Cambridge, 2004), p. 159–184

    Google Scholar 

  33. M. Heimpel, T. Gastine, J. Wicht, Nat. Geosci. 9, 19–23 (2016)

    ADS  Article  Google Scholar 

  34. F. Hersant, D. Gautier, J.I. Lunine, Planet. Space Sci. 52, 623–641 (2004)

    ADS  Article  Google Scholar 

  35. M.A. Janssen, Atmospheric Remote Sensing by Microwave Radiometry (Wiley, New York, 1993)

    Google Scholar 

  36. M.A. Janssen, C.S. Ruf, S.J. Keihm, IEEE Trans. Geosci. Remote Sens. 33, 138–146 (1995)

    ADS  Article  Google Scholar 

  37. M.A. Janssen, M.D. Hofstadter, S. Gulkis, A.P. Ingersoll, M. Allison, S.J. Bolton, L.W. Kamp, Icarus 173, 447–453 (2005)

    ADS  Article  Google Scholar 

  38. M.A. Janssen, A. Ingersoll, M.D. Allison, S. Gulkis, A. Laraia, K. Baines, S. Edgington, Y. Anderson, K. Kelleher, Icarus 226, 522–535 (2013)

    ADS  Article  Google Scholar 

  39. B.M. Karpowicz, P.G. Steffes, Icarus 212, 210–223 (2011a)

    ADS  Article  Google Scholar 

  40. B.M. Karpowicz, P.G. Steffes, Icarus 214, 783 (2011b)

    ADS  Article  Google Scholar 

  41. K.I. Kellerman, Astron. Astrophys. 500, 143–144 (2009)

    ADS  Article  Google Scholar 

  42. S.M. Levin, S. Bolton, B. Bhattacharya, S. Gulkis, M. Klein, R. Thorne, Geophys. Res. Lett. 28, 903–906 (2001)

    ADS  Article  Google Scholar 

  43. Y. Lian, A.P. Showman, Icarus 207, 373–393 (2010)

    ADS  Article  Google Scholar 

  44. G.F. Lindal, G.E. Wood, G.S. Levy, J.D. Anderson, D.N. Sweetnam, H.B. Hotz, B.J. Buckles, D.P. Holmes, P.E. Doms, V.R. Eshleman, G.L. Tyler, T.A. Croft, J. Geophys. Res. 86, 8721 (1981)

    ADS  Article  Google Scholar 

  45. C.H. Lineweaver, L. Tenario, G.F. Smoot, P. Keegstra, A.J. Banday, P. Lubin, Astrophys. J. 470, 38–42 (1996)

    ADS  Article  Google Scholar 

  46. J. Liu, T. Schneider, J. Atmos. Sci. 67, 3652–3672 (2010)

    ADS  Article  Google Scholar 

  47. J.J. Liu, T. Schneider, J. Atmos. Sci. 72, 389–408 (2015)

    ADS  Article  Google Scholar 

  48. E. Lorenz, Tellus 7, 157–167 (1955)

    ADS  Article  Google Scholar 

  49. J.I. Lunine, D.J. Stevenson, Astrophys. J. Suppl. Ser. 58, 493–531 (1985)

    ADS  Article  Google Scholar 

  50. V. Lucarini, S. Pascale, R. Boschi, E. Kirk, N. Iro, Astron. Nachr. 334, 576–588 (2013)

    ADS  Article  Google Scholar 

  51. P.R. Mahaffy, H.B. Niemann, J.E. Demick, Bull. Am. Astron. Soc. 31, 5205 (1999)

    Google Scholar 

  52. P.R. Mahaffy, H.B. Niemann, A. Alpert, S.K. Atreya, J. Demick, T.M. Donahue, D.N. Harpold, T.C. Owen, J. Geophys. Res., Planets 105(E6), 15061–15071 (2000)

    ADS  Article  Google Scholar 

  53. B. Marty, Earth Planet. Sci. Lett. 313, 56–66 (2012)

    ADS  Article  Google Scholar 

  54. E.C. Morris, R.W. Parsons, Aust. J. Phys. 23, 335–349 (1970)

    ADS  Google Scholar 

  55. H.B. Niemann, S.K. Atreya, G.R. Carignan, T.M. Donahue, J.A. Haberman, D.N. Harpold, R.E. Hartle, D.M. Hunten, W.T. Kasprzak, P.R. Mahaffy, T.C. Owen, N.W. Spencer, S.H. Way, Science 272, 846–849 (1996)

    ADS  Article  Google Scholar 

  56. H.B. Niemann et al., J. Geophys. Res., Planets 103, 22831–22845 (1998)

    ADS  Article  Google Scholar 

  57. T. Owen, A. Barnun, I. Kleinfeld, Nature 358, 43–46 (1992)

    ADS  Article  Google Scholar 

  58. T. Owen, A. Barnum, Icarus 116, 215–226 (1995)

    ADS  Article  Google Scholar 

  59. T.C. Owen, P.R. Mahaffy, H.B. Niemann, S.K. Atreya, T.M. Donahue, A. Bar-Nun, I. de Pater, Nature 402, 269–270 (1999)

    ADS  Article  Google Scholar 

  60. B.M. Partridge, B.M. Lopez-Caniego, R.A. Perley, J. Stevens, B.J. Butler, G. Rocha, B. Waler, A. Zacchei, arXiv:1506.02892 [astro-ph.CO] (2016)

  61. J.P. Peixoto, A.H. Oort, Physics of Climate (Am. Inst. of Physics, New York, 1992)

    Google Scholar 

  62. J. Peng, C.S. Ruf, S.T. Brown, J. Piepmeier, in IEEE International Geoscience and Remote Sensing Symposium, Barcelona (2007), pp. 2416–2418

    Google Scholar 

  63. R.A. Perley, B.J. Butler, Astrophys. J. Suppl. Ser. 204, 1–20 (2013)

    ADS  Article  Google Scholar 

  64. J.B. Pollack, O. Hubickyj, P. Bodenheimer, J. Lissauer, M. Podolak, Y. Greenzweig, Icarus 124, 62–85 (1996)

    ADS  Article  Google Scholar 

  65. D. Santos-Costa, S.J. Bolton, Planet. Space Sci. 56, 326–345 (2009)

    ADS  Article  Google Scholar 

  66. D. Santos-Costa, I. de Pater, R.J. Sault, M.A. Janssen, S.M. Levin, S.J. Bolton, Astron. Astrophys. 568(A61), 1–11 (2014)

    Google Scholar 

  67. R.J. Sault, C. Engel, I. de Pater, Icarus 168, 336–343 (2004)

    ADS  Article  Google Scholar 

  68. G. Schubert, J. Mitchell, in Comparative Climatology of Terrestrial Planets, ed. by S.J. Mackwell, A.A. Simon-Miller, J.W. Harder, M.A. Bullock (Univ. of Arizona Press, Tuscon, 2013), pp. 181–191

    Google Scholar 

  69. A. Seiff, D.B. Kirk, T.C.D. Knight, R.E. Young, J.D. Mihalov, L.A. Young, F.S. Milos, G. Schubert, R.C. Blanchard, D. Atkinson, J. Geophys. Res. 103, 22857 (1998)

    ADS  Article  Google Scholar 

  70. A.P. Showman, I. de Pater, Icarus 174, 192–204 (2005)

    ADS  Article  Google Scholar 

  71. S.S. Sobjaerg, N. Skou, J.E. Balling, IEEE Trans. Geosci. Remote Sens. 47(9), 3134–3139 (2009)

    ADS  Article  Google Scholar 

  72. P.G. Steffes, T.R. Hanley, B.M. Karpowicz, K. Devaraj, S. Noorizadeh, D. Duong, G. Chinsomboon, A. Bellotti, M.A. Janssen, S.J. Bolton, Space Sci. Rev. (2017). doi:10.1007/s11214-016-0265-0

    Google Scholar 

  73. L.A. Sromovsky, A.D. Collard, P.M. Fry, G.S. Orton, M.T. Lemmon, M.G. Tomasko, R.S. Freedman, J. Geophys. Res. 103, 22929–22978 (1998)

    ADS  Article  Google Scholar 

  74. K. Sugiyama, K. Nakajima, M. Odaka, K. Kuramoto, Y.Y. Hayashi, Icarus 229, 71–91 (2014)

    ADS  Article  Google Scholar 

  75. F. Tabataba-Vakili, P.L. Read, S.R. Lewis, L. Montabone, T. Ruan, Y. Wang, A. Valeanu, R. Young, Geophys. Res. Lett. 42, 8320–8327 (2015)

    ADS  Article  Google Scholar 

  76. S.I. Thomson, M.E. McIntyre, J. Atmos. Sci. 73, 1119–1141 (2016)

    ADS  Article  Google Scholar 

  77. A.R. Vasavada, A.P. Showman, Rep. Prog. Phys. 68, 1935–1996 (2005)

    ADS  Article  Google Scholar 

  78. F. Wentz, D. Levine, Remote sensing systems. Technical report 011811 (2011)

  79. M.H. Weatherspoon, L.P. Dunleavy, IEEE Trans. Microw. Theory Tech. 54(2), 608–614 (2006)

    ADS  Article  Google Scholar 

  80. M.H. Wong, P.R. Mahaffy, S.K. Atreya, H.B. Niemann, T.C. Owen, Icarus 171, 153–170 (2004)

    ADS  Article  Google Scholar 

  81. G.T. Wrixon, W.J. Welch, D. Thornton, Astrophys. J. 169, 171–183 (1971)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The work described in this paper was conducted at the Jet Propulsion Laboratory (JPL), California Institute of Technology, under contract with the National Aeronautics and Space Administration (NASA). The author wishes to thank the numerous contributors from the Juno Project and the Lockheed-Martin spacecraft team, without whom this ambitious project would not have been possible.

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. A. Janssen.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Janssen, M.A., Oswald, J.E., Brown, S.T. et al. MWR: Microwave Radiometer for the Juno Mission to Jupiter. Space Sci Rev 213, 139–185 (2017). https://doi.org/10.1007/s11214-017-0349-5

Download citation

Keywords

  • Jupiter
  • Microwave radiometry
  • Synchrotron emission
  • Atmosphere
  • Atmospheric composition
  • Atmospheric dynamics