Advertisement

Space Science Reviews

, Volume 213, Issue 1–4, pp 507–545 | Cite as

The Juno Radiation Monitoring (RM) Investigation

  • H. N. Becker
  • J. W. Alexander
  • A. Adriani
  • A. Mura
  • A. Cicchetti
  • R. Noschese
  • J. L. Jørgensen
  • T. Denver
  • J. Sushkova
  • A. Jørgensen
  • M. Benn
  • J. E. P. Connerney
  • S. J. Bolton
  • The Selex Galileo Juno SRU Team
  • J. Allison
  • S. Watts
  • V. Adumitroaie
  • E. A. Manor-Chapman
  • I. J. Daubar
  • C. Lee
  • S. Kang
  • W. J. McAlpine
  • T. Di Iorio
  • C. Pasqui
  • A. Barbis
  • P. Lawton
  • L. Spalsbury
  • S. Loftin
  • J. Sun
Article

Abstract

The Radiation Monitoring Investigation of the Juno Mission will actively retrieve and analyze the noise signatures from penetrating radiation in the images of Juno’s star cameras and science instruments at Jupiter. The investigation’s objective is to profile Jupiter’s \(>10\mbox{-MeV}\) electron environment in regions of the Jovian magnetosphere which today are still largely unexplored. This paper discusses the primary instruments on Juno which contribute to the investigation’s data suite, the measurements of camera noise from penetrating particles, spectral sensitivities and measurement ranges of the instruments, calibrations performed prior to Juno’s first science orbit, and how the measurements may be used to infer the external relativistic electron environment.

Keywords

Juno Mission Jupiter magnetosphere High energy particles Penetrating radiation Camera noise 

Notes

Acknowledgements

The authors would like to thank Jay St. Pierre, Kristen Francis, Christopher Voth, Doug Niebur, Jeffrey Lewis, Jennifer Delavan, and William Fehringer of the Lockheed Martin Juno GN&C and Spacecraft Teams for their significant support in the command architecture development for RM’s SRU Image collection for radiation measurements. Alessandro Bini, Marco Lastri, and Maurizio Rossi of the Selex Galileo (now Leonardo Finmeccanica S.p.A.) JIRAM Team are thanked for their contributions to the development and operation of the JIRAM instrument. We acknowledge the NASA Van Allen Probes and Joseph Mazur (Aerospace Corporation) for use of data discussed here. Karen Willacy is thanked for her contributions to our early calibration work. We express our appreciation for the involvement and encouragement of the late Prof. Angioletta Coradini during the early stages of this work. This work was sponsored by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. The JIRAM Project is funded by the Italian Space Agency. © 2016. All rights reserved.

References

  1. A. Adriani, G. Filacchione, T. Di Iorio et al., JIRAM, the jovian infrared auroral mapper. Space Sci. Rev. (2014). doi: 10.1007/s11214-014-0094-y Google Scholar
  2. J. Allison et al., Geant4 developments and applications. IEEE Trans. Nucl. Sci. 53(1), 270–278 (2006). doi: 10.1109/TNS.2006.869826 ADSCrossRefGoogle Scholar
  3. H.N. Becker, J.W. Alexander, T. Elliott, High-energy electron testing of CCDs for a jovian science mission. Proc. SPIE 5902 (2005) Google Scholar
  4. H.N. Becker, J.L. Joergensen, C.J. Hansen, M.A. Caplinger, M.A. Ravine, R. Gladstone, M.H. Versteeg, B. Mauk, C. Paranicas, D.K. Haggerty, R.M. Thorne, J.E. Connerney, S.S. Kang, Earth’s radiation belts: the view from Juno’s cameras, in AGU Fall Meeting Abstracts (2013) Google Scholar
  5. S.J. Bolton, R.M. Thorne, S. Bourdarie, I. DePater, B. Mauk, in Jupiter, the Planet, Satellites and Magnetosphere, ed. by F. Bagenal, T.E. Dowling, W.B. McKinnon (Cambridge Univ. Press, Cambridge, 2004), pp. 674–676 Google Scholar
  6. J.E.P. Connerney, M.H. Acuña, N.F. Ness, T. Satoh, New models of Jupiter’s magnetic field constrained by the Io flux tube footprint. J. Geophys. Res. 103(A6), 11929–11939 (1998). doi: 10.1029/97JA03726 ADSCrossRefGoogle Scholar
  7. J.E.P. Connerney, M. Benn, J.B. Bjarno, T. Denver, J. Espley, J.L. Jorgensen, P.S. Jorgensen, P. Lawton, A. Malinnikova, J.M. Merayo, S. Murphy, J. Odom, R. Oliversen, R. Schnurr, D. Sheppard, E.J. Smith, The Juno magnetic field investigation. Space Sci. Rev. (2017). doi: 10.1007/s11214-017-0334-z Google Scholar
  8. N. Divine, H.B. Garrett, J. Geophys. Res. 88, 6889–6903 (1983) ADSCrossRefGoogle Scholar
  9. H.M. Fischer, E. Pehlke, G. Wibberenz, L.J. Lanzerotti, J.D. Mihalov, High-energy charged particles in the innermost jovian magnetosphere. Science 272, 856–858 (1996) ADSCrossRefGoogle Scholar
  10. H.B. Garrett, I. Jun, J.M. Ratliff, R.W. Evans, G.A. Clough, R.W. McEntire, Galileo interim radiation electron model. JPL Publication 03-006, Jet Propulsion Laboratory, California Inst. of Technology, Pasadena, CA (2003) Google Scholar
  11. H.B. Garrett, S.M. Levin, S.J. Bolton, R.W. Evans, B. Bhattacharya, Geophys. Res. Lett. 32(4), L04104 (2005). doi: 10.1029/2004GL021986 ADSCrossRefGoogle Scholar
  12. Geant4. Retrieved from http://www.geant4.org/ (2016, September 26)
  13. Key terms. Retrieved from https://www.missionjuno.swri.edu/key-terms/ (2016, October 27)
  14. C.A. Klein, Bandgap dependence and related features of radiation ionization energies in semiconductors. J. Appl. Phys. 39, 2029 (1968). doi: 10.1063/1.1656484 ADSCrossRefGoogle Scholar
  15. B.H. Mauk et al., The Jupiter energetic particle detector instrument (JEDI) investigation for the juno mission. Space Sci. Rev. (2013). doi: 10.1007/s11214-013-0025-3 Google Scholar
  16. D.J. McComas et al., The jovian auroral distributions experiment (JADE) on the juno mission to Jupiter. Space Sci. Rev. (2013). doi: 10.1007/s11214-013-9990-9 Google Scholar
  17. S. Röser, E. Schilbach, H. Schwan, N.V. Kharchenko, A.E. Piskunov, R.-D. Scholz, PPM-Extended (PPMX)—a catalogue of positions and proper motions. Astron. Astrophys. 488, 401–408 (2008). doi: 10.1051/0004-6361:200809775 ADSCrossRefGoogle Scholar
  18. J.A. St. Pierre, K.M. Francis, J.A. Wynn, C.T. Voth, Initial GN&C performance on the Juno spacecraft. Adv. Astronaut. Sci. 144, 715–734 (2012) Google Scholar
  19. F. van Leeuwen, Validation of the new Hipparcos reduction. Astron. Astrophys. 474, 653–664 (2007). doi: 10.1051/0004-6361:20078357 ADSCrossRefGoogle Scholar
  20. L.J. Zanetti, B.H. Mauk, N.J. Fox, R.J. Barnes, M. Weiss, T.S. Sotirelis, N.-E. Raouafi, R.L. Kessel, H.N. Becker, The evolving space weather system—Van Allen Probes contribution. Space Weather 12, 577–581 (2014). doi: 10.1002/2014SW001108 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • H. N. Becker
    • 1
  • J. W. Alexander
    • 1
  • A. Adriani
    • 2
  • A. Mura
    • 2
  • A. Cicchetti
    • 2
  • R. Noschese
    • 2
  • J. L. Jørgensen
    • 3
  • T. Denver
    • 3
  • J. Sushkova
    • 3
  • A. Jørgensen
    • 3
  • M. Benn
    • 3
  • J. E. P. Connerney
    • 4
    • 5
  • S. J. Bolton
    • 6
  • The Selex Galileo Juno SRU Team
    • 7
  • J. Allison
    • 8
  • S. Watts
    • 8
  • V. Adumitroaie
    • 1
  • E. A. Manor-Chapman
    • 1
  • I. J. Daubar
    • 1
  • C. Lee
    • 1
  • S. Kang
    • 1
  • W. J. McAlpine
    • 1
  • T. Di Iorio
    • 9
  • C. Pasqui
    • 7
  • A. Barbis
    • 7
  • P. Lawton
    • 10
  • L. Spalsbury
    • 10
  • S. Loftin
    • 10
  • J. Sun
    • 10
  1. 1.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA
  2. 2.IAPS-INAFRomeItaly
  3. 3.Technical University of DenmarkKgs LyngbyDenmark
  4. 4.NASA Goddard Space Flight CenterGreenbeltUSA
  5. 5.Space Research CorporationAnnapolisUSA
  6. 6.Southwest Research InstituteSan AntonioUSA
  7. 7.Leonardo Finmeccanica S.p.A. (formerly Selex Galileo S.p.A)FlorenceItaly
  8. 8.The University of ManchesterManchesterUK
  9. 9.ENEARomeItaly
  10. 10.ADNET Systems, Inc.BethesdaUSA

Personalised recommendations