Skip to main content

Estimations of the Seismic Pressure Noise on Mars Determined from Large Eddy Simulations and Demonstration of Pressure Decorrelation Techniques for the Insight Mission


The atmospheric pressure fluctuations on Mars induce an elastic response in the ground that creates a ground tilt, detectable as a seismic signal on the InSight seismometer SEIS. The seismic pressure noise is modeled using Large Eddy Simulations (LES) of the wind and surface pressure at the InSight landing site and a Green’s function ground deformation approach that is subsequently validated via a detailed comparison with two other methods: a spectral approach, and an approach based on Sorrells’ theory (Sorrells, Geophys. J. Int. 26:71–82, 1971; Sorrells et al., Nat. Phys. Sci. 229:14–16, 1971). The horizontal accelerations as a result of the ground tilt due to the LES turbulence-induced pressure fluctuations are found to be typically \(\sim 2 \mbox{--} 40~\mbox{nm}/\mbox{s}^{2}\) in amplitude, whereas the direct horizontal acceleration is two orders of magnitude smaller and is thus negligible in comparison. The vertical accelerations are found to be \(\sim 0.1\mbox{--}6~\mbox{nm}/\mbox{s}^{2}\) in amplitude. These are expected to be worst-case estimates for the seismic noise as we use a half-space approximation; the presence at some (shallow) depth of a harder layer would significantly reduce quasi-static displacement and tilt effects.

We show that under calm conditions, a single-pressure measurement is representative of the large-scale pressure field (to a distance of several kilometers), particularly in the prevailing wind direction. However, during windy conditions, small-scale turbulence results in a reduced correlation between the pressure signals, and the single-pressure measurement becomes less representative of the pressure field. The correlation between the seismic signal and the pressure signal is found to be higher for the windiest period because the seismic pressure noise reflects the atmospheric structure close to the seismometer.

In the same way that we reduce the atmospheric seismic signal by making use of a pressure sensor that is part of the InSight Auxiliary Payload Sensor Suite, we also the use the synthetic noise data obtained from the LES pressure field to demonstrate a decorrelation strategy. We show that our decorrelation approach is efficient, resulting in a reduction by a factor of \(\sim 5\) in the observed horizontal tilt noise (in the wind direction) and the vertical noise. This technique can, therefore, be used to remove the pressure signal from the seismic data obtained on Mars during the InSight mission.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20


  • D.L. Anderson, W.F. Miller, G.V. Latham, Y. Nakamura, M.N. Toksoz, A.M. Dainty, F.K. Duennebier, A.R. Lazarewicz, R.L. Kovach, T.C.D. Knight, Seismology on Mars. J. Geophys. Res. 82, 4524–4546 (1977). doi:10.1029/JS082i028p04524

    Article  ADS  Google Scholar 

  • R. Beauduin, P. Lognonné, J.P. Montagner, S. Cacho, J.F. Karczewski, M. Morand, The effects of the atmospheric pressure changes on seismic signals or how to improve the quality of a station. Bull. Seismol. Soc. Am. 86(6), 1760–1769 (1996).

    Google Scholar 

  • P. Delage, F. Karakostas, A. Dhemaied, M. Belmokhtar, P. Lognonné, M. Golombek, E. De Laure, K. Hurst, J.C. Dupla, S. Keddar, Y.J. Cui, B. Banerdt, An investigation of the mechanical properties of some Martian regolith simulants with respect to the surface properties at the InSight mission landing site. Space Sci. Rev. (2017). doi:10.1007/s11214-017-0339-7

    Google Scholar 

  • D.P. Hinson, M. Pätzold, S. Tellmann, B. Häusler, G.L. Tyler, The depth of the convective boundary layer on Mars. Icarus 198, 57–66 (2008). doi:10.1016/j.icarus.2008.07.003

    Article  ADS  Google Scholar 

  • JPL and InSight Science Team, InSight environmental requirements document. JPL D-75253 (2013)

  • B. Kenda, P. Lognonné, A. Spiga, T. Kawamura, S. Kedar, W.B. Banerdt, R.D. Lorenz, D. Banfield, M. Golombek, Modeling of ground deformation and shallow surface waves generated by Martian Dust Devils and perspectives for near-surface structure inversion. Space Sci. Rev. (2017, submitted for publication)

  • M. Knapmeyer, J. Oberst, E. Hauber, M. Wählisch, C. Deuchler, R. Wagner, Working models for spatial distribution and level of Mars’ seismicity. J. Geophys. Res., Planets 111, 11006 (2006). doi:10.1029/2006JE002708

    Article  ADS  Google Scholar 

  • L.D. Landau, E.M. Lifshitz, Theory of Elasticity, 3rd edn., A Course of Theoretical Physics, vol. 7 (Pergamon, New York, 1970)

    MATH  Google Scholar 

  • P. Lognonné, C.L. Johnson, Planet. Seismol. 10(4) (2007)

  • P. Lognonné, B. Mosser, Planetary seismology. Surv. Geophys. 14, 239–302 (1993). doi:10.1007/BF00690946

    Article  ADS  Google Scholar 

  • P. Lognonné, T. Pike, in Planetary Seismometry, ed. by V.C.H. Tong, R.A. Garcia (Cambridge Univ. Press, Cambridge, 2015)

    Chapter  Google Scholar 

  • P. Lognonné, J.G. Beyneix, W.B. Banerdt, S. Cacho, J.F. Karczewski, M. Morand, Intermarsnet ultra broad band seismology on intermarsnet. Planet. Space Sci. 44(11), 1237–1249 (1996). doi:10.1016/S0032-0633(96)00083-9

    Article  ADS  Google Scholar 

  • P. Lognonné, V.N. Zharkov, J.F. Karczewski, B. Romanowicz, M. Menvielle, G. Poupinet, B. Brient, C. Cavoit, A. Desautez, B. Dole, D. Franqueville, J. Gagnepain-Beyneix, H. Richard, P. Schibler, N. Striebig, The seismic OPTIMISM experiment. Planet. Space Sci. 46, 739–747 (1998). doi:10.1016/S0032-0633(98)00009-9

    Article  ADS  Google Scholar 

  • P. Lognonné, D. Giardini, B. Banerdt, J. Gagnepain-Beyneix, A. Mocquet, T. Spohn, J.F. Karczewski, P. Schibler, S. Cacho, W.T. Pike, C. Cavoit, A. Desautez, M. Favède, T. Gabsi, L. Simoulin, N. Striebig, M. Campillo, A. Deschamp, J. Hinderer, J.J. Lévéque, J.P. Montagner, L. Rivéra, W. Benz, D. Breuer, P. Defraigne, V. Dehant, A. Fujimura, H. Mizutani, J. Oberst, The NetLander very broad band seismometer. Planet. Space Sci. 48, 1289–1302 (2000). doi:10.1016/S0032-0633(00)00110-0

    Article  ADS  Google Scholar 

  • P. Lognonne, W.B. Banerdt, K. Hurst, D. Mimoun, R. Garcia, M. Lefeuvre, J. Gagnepain-Beyneix, M. Wieczorek, A. Mocquet, M. Panning, E. Beucler, S. Deraucourt, D. Giardini, L. Boschi, U. Christensen, W. Goetz, T. Pike, C. Johnson, R. Weber, K. Larmat, N. Kobayashi, J. Tromp, Insight and single-station broadband seismology: from signal and noise to interior structure determination, in Lunar and Planetary Science Conference. Lunar and Planetary Inst. Technical Report, vol. 43, 2012, p. 1983

    Google Scholar 

  • R.D. Lorenz, Planetary seismology—expectations for lander and wind noise with application to Venus. Planet. Space Sci. 62, 86–96 (2012). doi:10.1016/j.pss.2011.12.010

    Article  ADS  Google Scholar 

  • R.D. Lorenz, S. Kedar, N. Murdoch, P. Lognonné, T. Kawamura, D. Mimoun, W. Bruce Banerdt, Seismometer detection of dust devil vortices by ground tilt. Bull. Seismol. Soc. Am. 105, 3015–3023 (2015). doi:10.1785/0120150133

    Article  Google Scholar 

  • I.T. Michaels, S.C.R. Rafkin, Large-eddy simulation of atmospheric convection on Mars. Q. J. R. Meteorol. Soc. 130, 1251–1274 (2004). doi:10.1256/qj.02.169

    Article  ADS  Google Scholar 

  • T. Mikumo, S. Watada, in Acoustic-Gravity Waves from Earthquake Sources, ed. by A. Le Pichon, E. Blanc, A. Hauchecorne (Springer, Dordrecht, 2009), pp. 263–279. ISBN 978-1-4020-9508-5

    Google Scholar 

  • E. Millour, F. Forget, A. Spiga, T. Navarro, J.-B. Madeleine, L. Montabone, A. Pottier, F. Lefevre, F. Montmessin, J.-Y. Chaufray, M.A. Lopez-Valverde, F. Gonzalez-Galindo, S.R. Lewis, P.L. Read, J.-P. Huot, M.-C. Desjean, MCD/GCM development Team, The Mars climate database (MCD version 5.2), in European Planetary Science Congress 2015, vol. 10 (2015) p. 2438

    Google Scholar 

  • D. Mimoun, P. Lognonné, W.B. Banerdt, K. Hurst, S. Deraucourt, J. Gagnepain-Beyneix, T. Pike, S. Calcutt, M. Bierwirth, R. Roll, P. Zweifel, D. Mance, O. Robert, T. Nébut, S. Tillier, P. Laudet, L. Kerjean, R. Perez, D. Giardini, U. Christenssen, R. Garcia, The InSight SEIS experiment, in Lunar and Planetary Science Conference. Lunar and Planetary Inst. Technical Report, vol. 43, 2012, p. 1493

    Google Scholar 

  • D. Mimoun, N. Murdoch, P. Lognonné, T. Pike, K. Hurst, The SEIS Team, The seismic noise model of the InSight mission to Mars. Space Sci. Rev. (2017, submitted for publication)

  • N. Murdoch, D. Mimoun, R.F. Garcia, W. Rapin, T. Kawamura, P. Lognonné, Evaluating the wind-induced mechanical noise on the InSight seismometers. Space Sci. Rev. (2016). doi:10.1007/s11214-016-0311-y

    Google Scholar 

  • Y. Nishikawa, A. Araya, K. Kurita, N. Kobayashi, T. Kawamura, Designing a torque-less wind shield for broadband observation of marsquakes. Planet. Space Sci. 104, 288–294 (2014). doi:10.1016/j.pss.2014.10.011

    Article  ADS  Google Scholar 

  • Y. Nishikawa, P. Lognonne, A. Spiga, K. Kurita, Evaluation of Mars’ background free oscillations with Martian general circulation model. Implications for detection of the InSIGHT mission. Space Sci. Rev. (2017, submitted for publication)

  • G.G. Sorrells, A preliminary investigation into the relationship between long-period seismic noise and local fluctuations in the atmospheric pressure field. Geophys. J. Int. 26, 71–82 (1971). doi:10.1111/j.1365-246X.1971.tb03383.x

    Article  ADS  Google Scholar 

  • G.G. Sorrells, J.A. McDonald, E.T. Herrin, Ground motions associated with acoustic waves. Nat. Phys. Sci. 229, 14–16 (1971). doi:10.1038/physci229014a0

    Article  ADS  Google Scholar 

  • A. Spiga, F. Forget, A new model to simulate the Martian mesoscale and microscale atmospheric circulation: validation and first results. J. Geophys. Res., Planets 114, 02009 (2009). doi:10.1029/2008JE003242

    Article  ADS  Google Scholar 

  • A. Spiga, F. Forget, S.R. Lewis, D.P. Hinson, Structure and dynamics of the convective boundary layer on Mars as inferred from large-eddy simulations and remote-sensing measurements. Q. J. R. Meteorol. Soc. 136, 414–428 (2010)

    Article  ADS  Google Scholar 

  • T. Van Hoolst, V. Dehant, F. Roosbeek, P. Lognonné, Tidally induced surface displacements, external potential variations, and gravity variations on Mars. Icarus 161, 281–296 (2003). doi:10.1016/S0019-1035(02)00045-3

    Article  ADS  Google Scholar 

  • W. Zurn, R. Widmer, On noise reduction in vertical seismic records below 2 mHz using local barometric pressure. Geophys. Res. Lett. 22(24), 3537–3540 (1995). doi:10.1029/95GL03369

    Article  ADS  Google Scholar 

Download references


This work has been supported by CNES and by ANR SEISMARS, including post-doctoral support provided to N. Murdoch and to T. Kawamura. B. Kenda acknowledges the support of the ED560 STEP’UP and of the NASA InSight project for his PhD support. This paper is InSight contribution 23.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Naomi Murdoch.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murdoch, N., Kenda, B., Kawamura, T. et al. Estimations of the Seismic Pressure Noise on Mars Determined from Large Eddy Simulations and Demonstration of Pressure Decorrelation Techniques for the Insight Mission. Space Sci Rev 211, 457–483 (2017).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: