Space Science Reviews

, Volume 206, Issue 1–4, pp 281–297 | Cite as

Magnetic Field Perturbations from Currents in the Dark Polar Regions During Quiet Geomagnetic Conditions

  • E. Friis-ChristensenEmail author
  • C. C. Finlay
  • M. Hesse
  • K. M. Laundal


In the day-side sunlit polar ionosphere the varying and IMF dependent convection creates strong ionospheric currents even during quiet geomagnetic conditions. Observations during such times are often excluded when using satellite data to model the internal geomagnetic main field. Observations from the night-side or local winter during quiet conditions are, however, also influenced by variations in the IMF. In this paper we briefly review the large scale features of the ionospheric currents in the polar regions with emphasis on the current distribution during undisturbed conditions. We examine the distribution of scalar measurements of the magnetic field intensity minus predictions from a geomagnetic field model. These ‘residuals’ fall into two main categories. One category is consistently distributed according to the well-known ionospheric plasma convection and its associated Birkeland currents. The other category represent contributions caused by geomagnetic activity related to the substorm current wedge around local magnetic midnight. A new observation is a strong IMF \(B_{y}\) control of the residuals in the midnight sector indicating larger ionospheric currents in the substorm current wedge in the northern polar region for \(B_{y} > 0\) and correspondingly in the southern hemisphere for \(B_{y} < 0\).


IMF Polar cap Ionospheric currents Substorms Quiet time 



The authors are very grateful to the International Space Science Institute for inviting them to take part in the Workshop on “Earth’s Magnetic Field” held in Bern in May 2015. The support of the CHAMP mission by the German Aerospace Center (DLR) and the Federal Ministry of Education and Research is gratefully acknowledged. Swarm L1b data were provided by ESA. For the ground magnetometer data we gratefully acknowledge: Intermagnet; USGS, Jeffrey J. Love; CARISMA, PI Ian Mann; CANMOS; The S-RAMP Database, PI K. Yumoto and Dr. K. Shiokawa; The SPIDR database; AARI, PI Oleg Troshichev; The MACCS program, PI M. Engebretson, Geomagnetism Unit of the Geological Survey of Canada; GIMA; MEASURE, UCLA IGPP and Florida Institute of Technology; SAMBA, PI Eftyhia Zesta; 210 Chain, PI K. Yumoto; SAMNET, PI Farideh Honary; The institutes who maintain the IMAGE magnetometer array, PI Eija Tanskanen; PENGUIN; AUTUMN, PI Martin Connors; DTU Space, PI Dr. Rico Behlke; South Pole and McMurdo Magnetometer, PI’s Louis J. Lanzarotti and Alan T. Weatherwax; ICESTAR; RAPIDMAG; PENGUIn; British Artarctic Survey; McMac, PI Dr. Peter Chi; BGS, PI Dr. Susan Macmillan; Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation (IZMIRAN); GFZ, PI Dr. Juergen Matzka; MFGI, PI B. Heilig; IGFPAS, PI J. Reda; University of L’Aquila, PI M. Vellante; SuperMAG, PI Jesper W. Gjerloev.

We thank the reviewers for valuable and constructive comments and advice.


  1. W. Baumjohann, Ionospheric and field-aligned current systems in the auroral zone: a concise review. Adv. Space Res. 2(10), 55–62 (1983) ADSCrossRefGoogle Scholar
  2. J. Burch, P. Reiff, J. Menietti, R. Heelis, W. Hanson, S. Shawhan, E. Shelley, M. Sugiura, D. Weimer, J. Winningham, IMF \(B_{y}\)-dependent plasma flow and Birkeland currents in the dayside magnetosphere: 1. Dynamics Explorer observations. J. Geophys. Res. Space Phys. 90(A2), 1577–1593 (1985) ADSCrossRefGoogle Scholar
  3. S. Cowley, M. Lockwood, Excitation and decay of solar wind-driven flows in the magnetosphere-ionophere system, in Annales Geophysicae, vol. 10, 1992, pp. 103–115, Copernicus Google Scholar
  4. N. Crooker, Dayside merging and cusp geometry. J. Geophys. Res. Space Phys. 84(A3), 951–959 (1979) ADSCrossRefGoogle Scholar
  5. J.W. Dungey, Interplanetary magnetic field and the auroral zones. Phys. Rev. Lett. 6(2), 47 (1961) ADSCrossRefGoogle Scholar
  6. C.C. Finlay, N. Olsen, L. Tøffner-Clausen, DTU candidate field models for IGRF-12 and the CHAOS-5 geomagnetic field model. Earth Planets Space 67(1), 114 (2015) ADSCrossRefGoogle Scholar
  7. C.C. Finlay, V. Lesur, E. Thebault, F. Vervelidou, A. Morschhauser, R. Shore, Challenges handling magnetospheric and ionospheric signals in internal geomagnetic field modelling. Space Sci. Rev. (2016, this issue). doi: 10.1007/s11214-016-0285-9 Google Scholar
  8. E. Friis-Christensen, K. Lassen, Large-scale distribution of discrete auroras and field-aligned currents, in Auroral Physics, vol. 1, 1991, pp. 369–381 Google Scholar
  9. E. Friis-Christensen, H. Lühr, G. Hulot, Swarm: a constellation to study the Earth’s magnetic field. Earth Planets Space 58, 351–358 (2006) ADSCrossRefGoogle Scholar
  10. E. Friis-Christensen, J. Wilhjelm, Polar cap currents for different directions of the interplanetary magnetic field in the \(Y\)\(Z\)-plane. J. Geophys. Res. 80, 1248–1260 (1975) ADSCrossRefGoogle Scholar
  11. E. Friis-Christensen, K. Lassen, J. Wilhjelm, J.M. Wilcox, W. Gonzales, D.S. Colburn, Critical component of the interplanetary magnetic field responsible for large geomagnetic effects in the polar cap. J. Geophys. Res. 77, 3371–3376 (1972) ADSCrossRefGoogle Scholar
  12. E. Friis-Christensen, Y. Kamide, A.D. Richmond, S. Matsushita, Interplanetary magnetic field control of high-latitude electric fields and currents determined from Greenland magnetometer data. J. Geophys. Res. 90, 1325–1338 (1985) ADSCrossRefGoogle Scholar
  13. N. Fukushima, Generalized theorem for no ground magnetic effect of vertical currents connected with Pedersen currents in the uniform-conductivity ionosphere. Rep. Ionos. Space Res. Jpn. 30(1–2), 35–40 (1976) ADSGoogle Scholar
  14. J. Gjerloev, A global ground-based magnetometer initiative. Eos 90(27), 230–231 (2009) ADSCrossRefGoogle Scholar
  15. J. Gjerloev, The SuperMAG data processing technique. J. Geophys. Res. Space Phys. 117(A9) (2012) Google Scholar
  16. D.L. Green, C.L. Waters, B.J. Anderson, H. Korth, Seasonal and interplanetary magnetic field dependence of the field-aligned currents for both Northern and Southern Hemispheres. Ann. Geophys. 27, 1701–1715 (2009). doi: 10.5194/angeo-27-1701-2009 ADSCrossRefGoogle Scholar
  17. T. Iijima, T. Potemra, L. Zanetti, P. Bythrow, Large-scale Birkeland currents in the dayside polar region during strongly northward IMF: a new Birkeland current system. J. Geophys. Res. Space Phys. 89(A9), 7441–7452 (1984) ADSCrossRefGoogle Scholar
  18. Y. Kamide, The auroral electrojets: relative importance of ionospheric conductivities and electric fields, in Auroral Physics, vol. 1, 1991, p. 385 Google Scholar
  19. J. Kan, L. Lee, Energy coupling function and solar wind-magnetosphere dynamo. Geophys. Res. Lett. 6(7), 577–580 (1979) ADSCrossRefGoogle Scholar
  20. K. Kauristie, A. Morschhauser, N. Olsen, C.C. Finlay, R.L. McPherron, J.W. Gjerloev, H.J. Opgenoorth, On the usage of geomagnetic indices for data selection in internal field modelling. Space Sci. Rev. (2016, this issue). doi: 10.1007/s11214-016-0301-0 Google Scholar
  21. L. Kother, M.D. Hammer, C.C. Finlay, N. Olsen, An equivalent source method for modelling the global lithospheric magnetic field. Geophys. J. Int. 203, 553–566 (2015) ADSCrossRefGoogle Scholar
  22. K.M. Laundal, S.E. Haaland, N. Lehtinen, J.W. Gjerloev, N. Ostgaard, P. Tenfjord, J.P. Reistad, K. Snekvik, S.E. Milan, S. Ohtani, B.J. Anderson, Birkeland current effects on high-latitude ground magnetic field perturbations. Geophys. Res. Lett. 42(18), 7248–7254 (2015) ADSCrossRefGoogle Scholar
  23. K.M. Laundal, J.W. Gjerloev, N. Ostgaard, J.P. Reistad, S.E. Haaland, K. Snekvik, P. Tenfjord, S. Ohtani, S.E. Milan, The impact of sunlight on high-latitude equivalent currents. J. Geophys. Res. (2016). doi: 10.1002/2015JA022236 Google Scholar
  24. S. Milan, Modeling Birkeland currents in the expanding/contracting polar cap paradigm. J. Geophys. Res. Space Phys. 118(9), 5532–5542 (2013) ADSCrossRefGoogle Scholar
  25. P.T. Newell, T. Sotirelis, K. Liou, C.-I. Meng, F.J. Rich, A nearly universal solar wind-magnetosphere coupling function inferred from 10 magnetospheric state variables. J. Geophys. Res. 112(A1) (2007). doi: 10.1029/2006JA012015
  26. A. Nishida, K. Maezawa, Two basic modes of interaction between the solar wind and the magnetosphere. J. Geophys. Res. 76(10), 2254–2264 (1971) ADSCrossRefGoogle Scholar
  27. N. Olsen, H. Lühr, T.J. Sabaka, M. Mandea, M. Rother, L. Tøffner-Clausen, S. Choi, CHAOS – a model of Earth’s magnetic field derived from CHAMP, Ørsted, and SAC-C magnetic satellite data. Geophys. J. Int. 166, 67–75 (2006) ADSCrossRefGoogle Scholar
  28. N. Olsen, H. Lühr, C.C. Finlay, L. Tøffner-Clausen, The CHAOS-4 geomagnetic field model. Geophys. J. Int. 1997, 815–827 (2014) ADSCrossRefGoogle Scholar
  29. E.D. Pettigrew, S.G. Shepherd, J.M. Ruohoniemi, Climatological patterns of high-latitude convection in the Northern and Southern hemispheres: dipole tilt dependencies and interhemispheric comparison. J. Geophys. Res. 115 (2010). doi: 10.1029/2009JA014956
  30. P.H. Reiff, J. Burch, IMF \(\mathrm{B}_{\mathrm{y}}\)-dependent plasma flow and Birkeland currents in the dayside magnetosphere: 2. A global model for northward and southward IMF. J. Geophys. Res. Space Phys. 90(A2), 1595–1609 (1985) ADSCrossRefGoogle Scholar
  31. A. Ridley, G. Lu, C. Clauer, V. Papitashvili, A statistical study of the ionospheric convection response to changing interplanetary magnetic field conditions using the assimilative mapping of ionospheric electrodynamics technique. J. Geophys. Res. Space Phys. 103(A3), 4023–4039 (1998) ADSCrossRefGoogle Scholar
  32. P. Ritter, H. Lühr, S. Maus, A. Viljanen, High latitude ionospheric currents during very quiet times: their characteristics and predictabilities. Ann. Geophys. 22, 2001–2014 (2004) ADSCrossRefGoogle Scholar
  33. S. Vennerstrom, T. Moretto, L. Rastätter, J. Raeder, Field-aligned currents during northward interplanetary magnetic field: Morphology and causes. J. Geophys. Res. Space Phys. 110(A6) (2005) Google Scholar
  34. J. Wilhjelm, E. Friis-Christensen, T.A. Potemra, The relationship between ionospheric and field-aligned currents in the dayside cusp. J. Geophys. Res. 83, 5586–5594 (1978) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Danish National Space InstituteLyngbyDenmark
  2. 2.DTU SpaceLyngbyDenmark
  3. 3.University of BergenBergenNorway

Personalised recommendations