Skip to main content
Log in

Thermosphere-Ionosphere-Electrodynamics General Circulation Model for the Ionospheric Connection Explorer: TIEGCM-ICON

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

The NASA Ionospheric Connection explorer (ICON) will study the coupling between the thermosphere and ionosphere at low- and mid-latitudes by measuring the key parameters. The ICON mission will also employ numerical modeling to support the interpretation of the observations, and examine the importance of different vertical coupling mechanisms by conducting numerical experiments. One of these models is the Thermosphere-Ionosphere-Electrodynamics General Circulation Model-ICON (TIEGCM-ICON) which will be driven by tidal perturbations derived from ICON observations using the Hough Mode Extension method (HME) and at high latitude by ion convection and auroral particle precipitation patterns from the Assimilative Mapping of Ionospheric Electrodynamics (AMIE). The TIEGCM-ICON will simulate the thermosphere-ionosphere (TI) system during the period of the ICON mission. In this report the TIEGCM-ICON is introduced, and the focus is on examining the effect of the lower boundary on the TI-system to provide some guidance for interpreting future ICON model results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • R.A. Akmaev, G.M. Shved, Modelling of the composition of the lower thermosphere taking account of the dynamics with applications to tidal variations of the forbidden O I 5577 A airglow. J. Atmos. Terr. Phys. 42, 705–716 (1980)

    Article  ADS  Google Scholar 

  • P. Alken, A. Chulliat, S. Maus, Longitudinal and seasonal structure of the ionospheric equatorial electric field. J. Geophys. Res. Space Phys. 118(3), 1298–1305 (2013). doi:10.1029/2012JA018314

    Article  ADS  Google Scholar 

  • A.G. Burns, S.C. Solomon, W. Wang, L. Qian, Y. Zhang, L.J. Paxton, Daytime climatology of ionospheric NmF2 and hmF2 from COSMIC data. J. Geophys. Res. Space Phys. 117(A9), 09315 (2012). doi:10.1029/2012JA017529

    Article  ADS  Google Scholar 

  • R.E. Dickinson, E. Ridley, R. Roble, Thermospheric general circulation with coupled dynamics and composition. J. Atmos. Sci. 41(2), 205–219 (1984)

    Article  ADS  Google Scholar 

  • D.P. Drob et al., An empirical model of the earth’s horizontal wind fields: Hwm07. J. Geophys. Res. Space Phys. 113(A12), 12304 (2008). doi:10.1029/2008JA013668

    Article  ADS  Google Scholar 

  • D.P. Drob et al., An update to the horizontal wind model (HWM): the quiet time thermosphere. Earth Space Sci. 2(7), 301–319 (2015). doi:10.1002/2014EA000089

    Article  ADS  Google Scholar 

  • B. Emery, R. Roble, E. Ridley, A. Richmond, D. Knipp, G. Crowley, D. Evans, F. Rich, S. Maeda, Parameterization of the ion convection and the auroral oval in the NCAR thermospheric general circulation models. Tech. rep., National Center for Atmospheric Research, Boulder CO, USA (2012). doi:10.5065/D6N29TXZ

  • J. Emmert, A long-term data set of globally averaged thermospheric total mass density. J. Geophys. Res. Space Phys. (2009). doi:10.1029/2009JA014102

    Google Scholar 

  • J. Emmert, Thermospheric mass density: a review. Adv. Space Res. 56(5), 773–824 (2015). doi:10.1016/j.asr.2015.05.038

    Article  ADS  Google Scholar 

  • J.T. Emmert, J.M. Picone, R.R. Meier, Thermospheric global average density trends, 1967–2007, derived from orbits of 5000 near-Earth objects. Geophys. Res. Lett. 35(5), 05101 (2008). doi:10.1029/2007GL032809

    Article  ADS  Google Scholar 

  • S.L. England, T.J. Immel, J.D. Huba, M.E. Hagan, A. Maute, R. DeMajistre, Modeling of multiple effects of atmospheric tides on the ionosphere: an examination of possible coupling mechanisms responsible for the longitudinal structure of the equatorial ionosphere. J. Geophys. Res. (2010). doi:10.1029/2009JA014894

    Google Scholar 

  • T. Fang, A. Richmond, J. Liu, A. Maute, C. Lin, C. Chen, B. Harper, Model simulation of the equatorial electrojet in the Peruvian and Philippine sectors. J. Atmos. Sol.-Terr. Phys. 70(17), 2203–2211 (2008). doi:10.1016/j.jastp.2008.04.021

    Article  ADS  Google Scholar 

  • B.G. Fejer, J.W. Jensen, S.-Y. Su, Quiet time equatorial F region vertical plasma drift model derived from ROCSAT-1 observations. J. Geophys. Res. (2008). doi:10.1029/2007JA012801

    Google Scholar 

  • J.M. Forbes, M.E. Hagan, Thermospheric extensions of the classical expansion functions for semidiurnal tides. J. Geophys. Res. Space Phys. 87(A7), 5253–5259 (1982). doi:10.1029/JA087iA07p05253

    Article  ADS  Google Scholar 

  • J.M. Forbes, R.G. Roble, C.G. Fesen, Acceleration, heating, and compositional mixing of the thermosphere due to upward propagating tides. J. Geophys. Res. Space Phys. 98(A1), 311–321 (1993). doi:10.1029/92JA00442

    Article  ADS  Google Scholar 

  • K. Häusler, H. Lühr, Nonmigrating tidal signals in the upper thermospheric zonal wind at equatorial latitudes as observed by CHAMP. Ann. Geophys. 27(7), 2643–2652 (2009)

    Article  ADS  Google Scholar 

  • K. Häusler, H. Lühr, M.E. Hagan, A. Maute, R.G. Roble, Comparison of CHAMP and TIME-GCM nonmigrating tidal signals in the thermospheric zonal wind. J. Geophys. Res., Atmos. (2010). doi:10.1029/2009JD012394

    Google Scholar 

  • K. Häusler, M.E. Hagan, J.M. Forbes, X. Zhang, E. Doornbos, S. Bruinsma, G. Lu, Intraannual variability of tides in the thermosphere from model simulations and in situ satellite observations. J. Geophys. Res. Space Phys. 120(1), 751–765 (2015). doi:10.1002/2014JA020579

    Article  ADS  Google Scholar 

  • R.A. Heelis, J.K. Lowell, R.W. Spiro, A model of the high-latitude ionospheric convection pattern. J. Geophys. Res. 87(A8), 6339–6345 (1982). doi:10.1029/JA087iA08p06339

    Article  ADS  Google Scholar 

  • D. Hui, B.G. Fejer, Daytime plasma drifts in the equatorial lower ionosphere. J. Geophys. Res. Space Phys. 120(11), 9738–9747 (2015). doi:10.1002/2015JA021838

    Article  ADS  Google Scholar 

  • T.J. Immel, E. Sagawa, S.L. England, S.B. Henderson, M.E. Hagan, S.B. Mende, H.U. Frey, C.M. Swenson, L.J. Paxton, Control of equatorial ionospheric morphology by atmospheric tides. Geophys. Res. Lett. (2006). doi:10.1029/2006GL026161

    Google Scholar 

  • H. Jin, Y. Miyoshi, H. Fujiwara, H. Shinagawa, K. Terada, N. Terada, M. Ishii, Y. Otsuka, A. Saito, Vertical connection from the tropospheric activities to the ionospheric longitudinal structure simulated by a new Earth’s whole atmosphere-ionosphere coupled model. J. Geophys. Res. 116(A1), 01316 (2011). doi:10.1029/2010JA015925

    Article  Google Scholar 

  • M. Jones, J.M. Forbes, M.E. Hagan, A. Maute, Impacts of vertically propagating tides on the mean state of the ionosphere-thermosphere system. J. Geophys. Res. Space Phys. 119(3), 2197–2213 (2014). doi:10.1002/2013JA019744

    Article  ADS  Google Scholar 

  • M. Jones, J.M. Forbes, M.E. Hagan, Solar cycle variability in mean thermospheric composition and temperature induced by atmospheric tides. J. Geophys. Res. Space Phys. 121(6), 5837–5855 (2016). doi:10.1002/2016JA022701

    Article  ADS  Google Scholar 

  • H. Kil, L.J. Paxton, The origin of the nonmigrating tidal structure in the column number density ratio of atomic oxygen to molecular nitrogen. Geophys. Res. Lett. 38(19), 19108 (2011). doi:10.1029/2011GL049432

    Article  ADS  Google Scholar 

  • H. Kil, S.-J. Oh, M.C. Kelley, L.J. Paxton, S.L. England, E. Talaat, K.-W. Min, S.-Y. Su, Longitudinal structure of the vertical \(E\times B\) drift and ion density seen from ROCSAT-1. Geophys. Res. Lett. (2007). doi:10.1029/2007GL030018

    Google Scholar 

  • J.-L. Le Mouël, P. Shebalin, A. Chulliat, The field of the equatorial electrojet from CHAMP data. Ann. Geophys. 24(2), 515–527 (2006). doi:10.5194/angeo-24-515-2006

    Article  ADS  Google Scholar 

  • J.L. Lean, S.E. McDonald, J.D. Huba, J.T. Emmert, D.P. Drob, C.L. Siefring, Geospace variability during the 2008-2009 whole heliosphere intervals. J. Geophys. Res. Space Phys. 119(5), 3755–3776 (2014). doi:10.1002/2013JA019485

    Article  ADS  Google Scholar 

  • C.H. Lin, C.C. Hsiao, J.Y. Liu, C.H. Liu, Longitudinal structure of the equatorial ionosphere: time evolution of the four-peaked EIA structure. J. Geophys. Res. (2007). doi:10.1029/2007JA012455

    Google Scholar 

  • H. Liu, S. Watanabe, Seasonal variation of the longitudinal structure of the equatorial ionosphere: does it reflect tidal influences from below? J. Geophys. Res. Space Phys. (2008). doi:10.1029/2008JA013027

    Google Scholar 

  • H. Liu, M. Yamamoto, H. Lühr, Wave-4 pattern of the equatorial mass density anomaly: a thermospheric signature of tropical deep convection. Geophys. Res. Lett. (2009). doi:10.1029/2009GL039865

    Google Scholar 

  • L. Liu, H. Le, Y. Chen, M. He, W. Wan, X. Yue, Features of the middle- and low-latitude ionosphere during solar minimum as revealed from cosmic radio occultation measurements. J. Geophys. Res. Space Phys. (2011). doi:10.1029/2011JA016691

    Google Scholar 

  • H. Liu, H. Jin, Y. Miyoshi, H. Fujiwara, H. Shinagawa, Upper atmosphere response to stratosphere sudden warming: local time and height dependence simulated by GAIA model. Geophys. Res. Lett. 40(3), 635–640 (2013). doi:10.1002/Geophys.Res.Letters.50146

    Article  ADS  Google Scholar 

  • H. Lühr, S. Maus, M. Rother, Noon-time equatorial electrojet: its spatial features as determined by the champ satellite. J. Geophys. Res. Space Phys. (2004). doi:10.1029/2002JA009656

    Google Scholar 

  • A. Maute, A.D. Richmond, R.G. Roble, Sources of low-latitude ionospheric \(E\times B\) drifts and their variability. J. Geophys. Res. (2012). doi:10.1029/2011JA017502

    Google Scholar 

  • J. Oberheide, J.M. Forbes, X. Zhang, S.L. Bruinsma, Wave-driven variability in the ionosphere-thermosphere-mesosphere system from TIMED observations: what contributes to the “wave 4”? J. Geophys. Res. (2011). doi:10.1029/2010JA015911

    Google Scholar 

  • J. Oberheide, J.M. Forbes, X. Zhang, S.L. Bruinsma, Climatology of upward propagating diurnal and semidiurnal tides in the thermosphere. J. Geophys. Res. (2011). doi:10.1029/2011JA016784

    Google Scholar 

  • N.M. Pedatella, A. Maute, Impact of the semidiurnal lunar tide on the midlatitude thermospheric wind and ionosphere during sudden stratosphere warmings. J. Geophys. Res. Space Phys. 120(12), 10,740–10,753 (2015). doi:10.1002/2015JA021986

    Article  Google Scholar 

  • N.M. Pedatella, A.D. Richmond, A. Maute, H.-L. Liu, Impact of semidiurnal tidal variability during ssws on the mean state of the ionosphere and thermosphere. J. Geophys. Res. Space Phys. (2016). doi:10.1002/2016JA022910

    Google Scholar 

  • J.M. Picone, A.E. Hedin, D.P. Drob, A.C. Aikin, Nrlmsise-00 empirical model of the atmosphere: Statistical comparisons and scientific issues. J. Geophys. Res. Space Phys. (2002). doi:10.1029/2002JA009430

    Google Scholar 

  • L. Qian, S.C. Solomon, T.J. Kane, Seasonal variation of thermospheric density and composition. J. Geophys. Res. Space Phys. (2009). doi:10.1029/2008JA013643

    Google Scholar 

  • L. Qian, A.G. Burns, S.C. Solomon, W. Wang, Annual/semiannual variation of the ionosphere. Geophys. Res. Lett. 40(10), 1928–1933 (2013). doi:10.1002/grl.50448

    Article  ADS  Google Scholar 

  • L. Qian et al., The NCAR TIE-GCM: a community model of the coupled thermosphere/ionosphere system, in Modeling the Ionosphere-Thermosphere System. Geophys. Monogr. Ser, vol. 201 (2014), pp. 73–83

    Chapter  Google Scholar 

  • P. Richards, J. Fennelly, D. Torr, EUVAC: a solar EUV flux model for aeronomic calculations. J. Geophys. Res. 99, 8981–8992 (1994)

    Article  ADS  Google Scholar 

  • A. Richmond, Ionospheric electrodynamics, in Handbook of Atmospheric Electrodynamics, vol. II, ed. by H. Volland (CRC Press, New York, 1995), pp. 249–290

    Google Scholar 

  • A. Richmond, A. Maute, Ionospheric electrodynamics modeling, in Modeling the Ionosphere-Thermosphere, ed. by R.S.J.D. Huba, G. Khazanov. AGU Geophysical Monograph Series, vol. 201 (Wiley, Chichester, 2013), p. 417. doi:10.1002/9781118704

    Google Scholar 

  • A.D. Richmond, E.C. Ridley, R.G. Roble, A thermosphere/ionosphere general circulation model with coupled electrodynamics. Geophys. Res. Lett. 19(6), 601–604 (1992). doi:10.1029/92GL00401

    Article  ADS  Google Scholar 

  • R. Roble, E. Ridley, An auroral model for the NCAR thermospheric general circulation model (TGCM). Ann. Geophys. 5A, 369–382 (1987)

    ADS  Google Scholar 

  • R. Roble, E. Ridley, A. Richmond, A coupled thermosphere/ionosphere general circulation model. Geophys. Res. Lett. 15, 1325–1328 (1988)

    Article  ADS  Google Scholar 

  • D.E. Siskind, D.P. Drob, K.F. Dymond, J.P. McCormack, Simulations of the effects of vertical transport on the thermosphere and ionosphere using two coupled models. J. Geophys. Res. 119(2), 1172–1185 (2014). doi:10.1002/2013JA019116

    Article  Google Scholar 

  • S.C. Solomon, A.G. Burns, B.A. Emery, M.G. Mlynczak, L. Qian, W. Wang, D.R. Weimer, M. Wiltberger, Modeling studies of the impact of high-speed streams and co-rotating interaction regions on the thermosphere-ionosphere. J. Geophys. Res. Space Phys. (2012). doi:10.1029/2011JA017417

    Google Scholar 

  • R. Stoneback, R. Heelis, A. Burrell, W. Coley, B.G. Fejer, E. Pacheco, Observations of quiet time vertical ion drift in the equatorial ionosphere during the solar minimum period of 2009. J. Geophys. Res. 116(A12) (2011)

  • R.A. Stoneback, N.K. Malakar, D.J. Lary, R.A. Heelis, Specifying the equatorial ionosphere using cindi on c/nofs, cosmic, and data interpolating empirical orthogonal functions. J. Geophys. Res. Space Phys. 118(10), 6706–6722 (2013). doi:10.1002/jgra.50596

    Article  ADS  Google Scholar 

  • E.K. Sutton, J.P. Thayer, W. Wang, S.C. Solomon, X. Liu, B.T. Foster, A self-consistent model of helium in the thermosphere. J. Geophys. Res. Space Phys. 120(8), 6884–6900 (2015). doi:10.1002/2015JA021223

    Article  ADS  Google Scholar 

  • E. Thébault et al., International geomagnetic reference field: the 12th generation. Earth Planets Space 67(1), 1–19 (2015)

    Article  Google Scholar 

  • D.R. Weimer, Improved ionospheric electrodynamic models and application to calculating joule heating rates. J. Geophys. Res. (2005). doi:10.1029/2004JA010884

    Google Scholar 

  • Y. Yamazaki, A.D. Richmond, A theory of ionospheric response to upward-propagating tides: electrodynamic effects and tidal mixing effects. J. Geophys. Res. 118(9), 5891–5905 (2013). doi:10.1002/jgra.50487

    Article  Google Scholar 

  • Y. Yamazaki et al., Ground magnetic effects of the equatorial electrojet simulated by the tie-gcm driven by timed satellite data. J. Geophys. Res. Space Phys. 119(4), 3150–3161 (2014). doi:10.1002/2013JA019487

    Article  ADS  Google Scholar 

  • Y. Zhang, S. England, L.J. Paxton, Thermospheric composition variations due to nonmigrating tides and their effect on ionosphere. Geophys. Res. Lett. 37(17), 17103 (2010). doi:10.1029/2010GL044313

    Article  ADS  Google Scholar 

Download references

Acknowledgements

A.M. would like to thank A.D. Richmond for comments on an earlier draft. A.M. was supported by NASA grant NNX14AP03G. The National Center for Atmospheric Research is sponsored by the National Science Foundation. ICON is supported by NASA’s Explorers Program through contracts NNG12FA45C and NNG12FA42I. We would like to acknowledge high-performance computing support from Yellowstone (ark:/85065/d7wd3xhc) provided by NCAR’s Computational and Information Systems Laboratory, sponsored by the National Science Foundation. The National Center for Atmospheric Research is sponsored by the National Science Foundation. The author would like to thank the reviewers for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Astrid Maute.

Additional information

The Ionospheric Connection Explorer (ICON) mission

Edited by Doug Rowland and Thomas J. Immel

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maute, A. Thermosphere-Ionosphere-Electrodynamics General Circulation Model for the Ionospheric Connection Explorer: TIEGCM-ICON. Space Sci Rev 212, 523–551 (2017). https://doi.org/10.1007/s11214-017-0330-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-017-0330-3

Keywords

Navigation