Space Science Reviews

, Volume 212, Issue 1–2, pp 523–551 | Cite as

Thermosphere-Ionosphere-Electrodynamics General Circulation Model for the Ionospheric Connection Explorer: TIEGCM-ICON

Article
Part of the following topical collections:
  1. The Ionospheric Connection Explorer (ICON) mission

Abstract

The NASA Ionospheric Connection explorer (ICON) will study the coupling between the thermosphere and ionosphere at low- and mid-latitudes by measuring the key parameters. The ICON mission will also employ numerical modeling to support the interpretation of the observations, and examine the importance of different vertical coupling mechanisms by conducting numerical experiments. One of these models is the Thermosphere-Ionosphere-Electrodynamics General Circulation Model-ICON (TIEGCM-ICON) which will be driven by tidal perturbations derived from ICON observations using the Hough Mode Extension method (HME) and at high latitude by ion convection and auroral particle precipitation patterns from the Assimilative Mapping of Ionospheric Electrodynamics (AMIE). The TIEGCM-ICON will simulate the thermosphere-ionosphere (TI) system during the period of the ICON mission. In this report the TIEGCM-ICON is introduced, and the focus is on examining the effect of the lower boundary on the TI-system to provide some guidance for interpreting future ICON model results.

Keywords

Numerical modeling ICON explorer Atmospheric tides 

Notes

Acknowledgements

A.M. would like to thank A.D. Richmond for comments on an earlier draft. A.M. was supported by NASA grant NNX14AP03G. The National Center for Atmospheric Research is sponsored by the National Science Foundation. ICON is supported by NASA’s Explorers Program through contracts NNG12FA45C and NNG12FA42I. We would like to acknowledge high-performance computing support from Yellowstone (ark:/85065/d7wd3xhc) provided by NCAR’s Computational and Information Systems Laboratory, sponsored by the National Science Foundation. The National Center for Atmospheric Research is sponsored by the National Science Foundation. The author would like to thank the reviewers for their helpful comments.

References

  1. R.A. Akmaev, G.M. Shved, Modelling of the composition of the lower thermosphere taking account of the dynamics with applications to tidal variations of the forbidden O I 5577 A airglow. J. Atmos. Terr. Phys. 42, 705–716 (1980) ADSCrossRefGoogle Scholar
  2. P. Alken, A. Chulliat, S. Maus, Longitudinal and seasonal structure of the ionospheric equatorial electric field. J. Geophys. Res. Space Phys. 118(3), 1298–1305 (2013). doi: 10.1029/2012JA018314 ADSCrossRefGoogle Scholar
  3. A.G. Burns, S.C. Solomon, W. Wang, L. Qian, Y. Zhang, L.J. Paxton, Daytime climatology of ionospheric NmF2 and hmF2 from COSMIC data. J. Geophys. Res. Space Phys. 117(A9), 09315 (2012). doi: 10.1029/2012JA017529 ADSCrossRefGoogle Scholar
  4. R.E. Dickinson, E. Ridley, R. Roble, Thermospheric general circulation with coupled dynamics and composition. J. Atmos. Sci. 41(2), 205–219 (1984) ADSCrossRefGoogle Scholar
  5. D.P. Drob et al., An empirical model of the earth’s horizontal wind fields: Hwm07. J. Geophys. Res. Space Phys. 113(A12), 12304 (2008). doi: 10.1029/2008JA013668 ADSCrossRefGoogle Scholar
  6. D.P. Drob et al., An update to the horizontal wind model (HWM): the quiet time thermosphere. Earth Space Sci. 2(7), 301–319 (2015). doi: 10.1002/2014EA000089 ADSCrossRefGoogle Scholar
  7. B. Emery, R. Roble, E. Ridley, A. Richmond, D. Knipp, G. Crowley, D. Evans, F. Rich, S. Maeda, Parameterization of the ion convection and the auroral oval in the NCAR thermospheric general circulation models. Tech. rep., National Center for Atmospheric Research, Boulder CO, USA (2012). doi: 10.5065/D6N29TXZ
  8. J. Emmert, A long-term data set of globally averaged thermospheric total mass density. J. Geophys. Res. Space Phys. (2009). doi: 10.1029/2009JA014102 Google Scholar
  9. J. Emmert, Thermospheric mass density: a review. Adv. Space Res. 56(5), 773–824 (2015). doi: 10.1016/j.asr.2015.05.038 ADSCrossRefGoogle Scholar
  10. J.T. Emmert, J.M. Picone, R.R. Meier, Thermospheric global average density trends, 1967–2007, derived from orbits of 5000 near-Earth objects. Geophys. Res. Lett. 35(5), 05101 (2008). doi: 10.1029/2007GL032809 ADSCrossRefGoogle Scholar
  11. S.L. England, T.J. Immel, J.D. Huba, M.E. Hagan, A. Maute, R. DeMajistre, Modeling of multiple effects of atmospheric tides on the ionosphere: an examination of possible coupling mechanisms responsible for the longitudinal structure of the equatorial ionosphere. J. Geophys. Res. (2010). doi: 10.1029/2009JA014894 Google Scholar
  12. T. Fang, A. Richmond, J. Liu, A. Maute, C. Lin, C. Chen, B. Harper, Model simulation of the equatorial electrojet in the Peruvian and Philippine sectors. J. Atmos. Sol.-Terr. Phys. 70(17), 2203–2211 (2008). doi: 10.1016/j.jastp.2008.04.021 ADSCrossRefGoogle Scholar
  13. B.G. Fejer, J.W. Jensen, S.-Y. Su, Quiet time equatorial F region vertical plasma drift model derived from ROCSAT-1 observations. J. Geophys. Res. (2008). doi: 10.1029/2007JA012801 Google Scholar
  14. J.M. Forbes, M.E. Hagan, Thermospheric extensions of the classical expansion functions for semidiurnal tides. J. Geophys. Res. Space Phys. 87(A7), 5253–5259 (1982). doi: 10.1029/JA087iA07p05253 ADSCrossRefGoogle Scholar
  15. J.M. Forbes, R.G. Roble, C.G. Fesen, Acceleration, heating, and compositional mixing of the thermosphere due to upward propagating tides. J. Geophys. Res. Space Phys. 98(A1), 311–321 (1993). doi: 10.1029/92JA00442 ADSCrossRefGoogle Scholar
  16. K. Häusler, H. Lühr, Nonmigrating tidal signals in the upper thermospheric zonal wind at equatorial latitudes as observed by CHAMP. Ann. Geophys. 27(7), 2643–2652 (2009) ADSCrossRefGoogle Scholar
  17. K. Häusler, H. Lühr, M.E. Hagan, A. Maute, R.G. Roble, Comparison of CHAMP and TIME-GCM nonmigrating tidal signals in the thermospheric zonal wind. J. Geophys. Res., Atmos. (2010). doi: 10.1029/2009JD012394 Google Scholar
  18. K. Häusler, M.E. Hagan, J.M. Forbes, X. Zhang, E. Doornbos, S. Bruinsma, G. Lu, Intraannual variability of tides in the thermosphere from model simulations and in situ satellite observations. J. Geophys. Res. Space Phys. 120(1), 751–765 (2015). doi: 10.1002/2014JA020579 ADSCrossRefGoogle Scholar
  19. R.A. Heelis, J.K. Lowell, R.W. Spiro, A model of the high-latitude ionospheric convection pattern. J. Geophys. Res. 87(A8), 6339–6345 (1982). doi: 10.1029/JA087iA08p06339 ADSCrossRefGoogle Scholar
  20. D. Hui, B.G. Fejer, Daytime plasma drifts in the equatorial lower ionosphere. J. Geophys. Res. Space Phys. 120(11), 9738–9747 (2015). doi: 10.1002/2015JA021838 ADSCrossRefGoogle Scholar
  21. T.J. Immel, E. Sagawa, S.L. England, S.B. Henderson, M.E. Hagan, S.B. Mende, H.U. Frey, C.M. Swenson, L.J. Paxton, Control of equatorial ionospheric morphology by atmospheric tides. Geophys. Res. Lett. (2006). doi: 10.1029/2006GL026161 Google Scholar
  22. H. Jin, Y. Miyoshi, H. Fujiwara, H. Shinagawa, K. Terada, N. Terada, M. Ishii, Y. Otsuka, A. Saito, Vertical connection from the tropospheric activities to the ionospheric longitudinal structure simulated by a new Earth’s whole atmosphere-ionosphere coupled model. J. Geophys. Res. 116(A1), 01316 (2011). doi: 10.1029/2010JA015925 CrossRefGoogle Scholar
  23. M. Jones, J.M. Forbes, M.E. Hagan, A. Maute, Impacts of vertically propagating tides on the mean state of the ionosphere-thermosphere system. J. Geophys. Res. Space Phys. 119(3), 2197–2213 (2014). doi: 10.1002/2013JA019744 ADSCrossRefGoogle Scholar
  24. M. Jones, J.M. Forbes, M.E. Hagan, Solar cycle variability in mean thermospheric composition and temperature induced by atmospheric tides. J. Geophys. Res. Space Phys. 121(6), 5837–5855 (2016). doi: 10.1002/2016JA022701 ADSCrossRefGoogle Scholar
  25. H. Kil, L.J. Paxton, The origin of the nonmigrating tidal structure in the column number density ratio of atomic oxygen to molecular nitrogen. Geophys. Res. Lett. 38(19), 19108 (2011). doi: 10.1029/2011GL049432 ADSCrossRefGoogle Scholar
  26. H. Kil, S.-J. Oh, M.C. Kelley, L.J. Paxton, S.L. England, E. Talaat, K.-W. Min, S.-Y. Su, Longitudinal structure of the vertical \(E\times B\) drift and ion density seen from ROCSAT-1. Geophys. Res. Lett. (2007). doi: 10.1029/2007GL030018 Google Scholar
  27. J.-L. Le Mouël, P. Shebalin, A. Chulliat, The field of the equatorial electrojet from CHAMP data. Ann. Geophys. 24(2), 515–527 (2006). doi: 10.5194/angeo-24-515-2006 ADSCrossRefGoogle Scholar
  28. J.L. Lean, S.E. McDonald, J.D. Huba, J.T. Emmert, D.P. Drob, C.L. Siefring, Geospace variability during the 2008-2009 whole heliosphere intervals. J. Geophys. Res. Space Phys. 119(5), 3755–3776 (2014). doi: 10.1002/2013JA019485 ADSCrossRefGoogle Scholar
  29. C.H. Lin, C.C. Hsiao, J.Y. Liu, C.H. Liu, Longitudinal structure of the equatorial ionosphere: time evolution of the four-peaked EIA structure. J. Geophys. Res. (2007). doi: 10.1029/2007JA012455 Google Scholar
  30. H. Liu, S. Watanabe, Seasonal variation of the longitudinal structure of the equatorial ionosphere: does it reflect tidal influences from below? J. Geophys. Res. Space Phys. (2008). doi: 10.1029/2008JA013027 Google Scholar
  31. H. Liu, M. Yamamoto, H. Lühr, Wave-4 pattern of the equatorial mass density anomaly: a thermospheric signature of tropical deep convection. Geophys. Res. Lett. (2009). doi: 10.1029/2009GL039865 Google Scholar
  32. L. Liu, H. Le, Y. Chen, M. He, W. Wan, X. Yue, Features of the middle- and low-latitude ionosphere during solar minimum as revealed from cosmic radio occultation measurements. J. Geophys. Res. Space Phys. (2011). doi: 10.1029/2011JA016691 Google Scholar
  33. H. Liu, H. Jin, Y. Miyoshi, H. Fujiwara, H. Shinagawa, Upper atmosphere response to stratosphere sudden warming: local time and height dependence simulated by GAIA model. Geophys. Res. Lett. 40(3), 635–640 (2013). doi: 10.1002/Geophys.Res.Letters.50146 ADSCrossRefGoogle Scholar
  34. H. Lühr, S. Maus, M. Rother, Noon-time equatorial electrojet: its spatial features as determined by the champ satellite. J. Geophys. Res. Space Phys. (2004). doi: 10.1029/2002JA009656 Google Scholar
  35. A. Maute, A.D. Richmond, R.G. Roble, Sources of low-latitude ionospheric \(E\times B\) drifts and their variability. J. Geophys. Res. (2012). doi: 10.1029/2011JA017502 Google Scholar
  36. J. Oberheide, J.M. Forbes, X. Zhang, S.L. Bruinsma, Wave-driven variability in the ionosphere-thermosphere-mesosphere system from TIMED observations: what contributes to the “wave 4”? J. Geophys. Res. (2011). doi: 10.1029/2010JA015911 Google Scholar
  37. J. Oberheide, J.M. Forbes, X. Zhang, S.L. Bruinsma, Climatology of upward propagating diurnal and semidiurnal tides in the thermosphere. J. Geophys. Res. (2011). doi: 10.1029/2011JA016784 Google Scholar
  38. N.M. Pedatella, A. Maute, Impact of the semidiurnal lunar tide on the midlatitude thermospheric wind and ionosphere during sudden stratosphere warmings. J. Geophys. Res. Space Phys. 120(12), 10,740–10,753 (2015). doi: 10.1002/2015JA021986 CrossRefGoogle Scholar
  39. N.M. Pedatella, A.D. Richmond, A. Maute, H.-L. Liu, Impact of semidiurnal tidal variability during ssws on the mean state of the ionosphere and thermosphere. J. Geophys. Res. Space Phys. (2016). doi: 10.1002/2016JA022910 Google Scholar
  40. J.M. Picone, A.E. Hedin, D.P. Drob, A.C. Aikin, Nrlmsise-00 empirical model of the atmosphere: Statistical comparisons and scientific issues. J. Geophys. Res. Space Phys. (2002). doi: 10.1029/2002JA009430 Google Scholar
  41. L. Qian, S.C. Solomon, T.J. Kane, Seasonal variation of thermospheric density and composition. J. Geophys. Res. Space Phys. (2009). doi: 10.1029/2008JA013643 Google Scholar
  42. L. Qian, A.G. Burns, S.C. Solomon, W. Wang, Annual/semiannual variation of the ionosphere. Geophys. Res. Lett. 40(10), 1928–1933 (2013). doi: 10.1002/grl.50448 ADSCrossRefGoogle Scholar
  43. L. Qian et al., The NCAR TIE-GCM: a community model of the coupled thermosphere/ionosphere system, in Modeling the Ionosphere-Thermosphere System. Geophys. Monogr. Ser, vol. 201 (2014), pp. 73–83 CrossRefGoogle Scholar
  44. P. Richards, J. Fennelly, D. Torr, EUVAC: a solar EUV flux model for aeronomic calculations. J. Geophys. Res. 99, 8981–8992 (1994) ADSCrossRefGoogle Scholar
  45. A. Richmond, Ionospheric electrodynamics, in Handbook of Atmospheric Electrodynamics, vol. II, ed. by H. Volland (CRC Press, New York, 1995), pp. 249–290 Google Scholar
  46. A. Richmond, A. Maute, Ionospheric electrodynamics modeling, in Modeling the Ionosphere-Thermosphere, ed. by R.S.J.D. Huba, G. Khazanov. AGU Geophysical Monograph Series, vol. 201 (Wiley, Chichester, 2013), p. 417. doi: 10.1002/9781118704 Google Scholar
  47. A.D. Richmond, E.C. Ridley, R.G. Roble, A thermosphere/ionosphere general circulation model with coupled electrodynamics. Geophys. Res. Lett. 19(6), 601–604 (1992). doi: 10.1029/92GL00401 ADSCrossRefGoogle Scholar
  48. R. Roble, E. Ridley, An auroral model for the NCAR thermospheric general circulation model (TGCM). Ann. Geophys. 5A, 369–382 (1987) ADSGoogle Scholar
  49. R. Roble, E. Ridley, A. Richmond, A coupled thermosphere/ionosphere general circulation model. Geophys. Res. Lett. 15, 1325–1328 (1988) ADSCrossRefGoogle Scholar
  50. D.E. Siskind, D.P. Drob, K.F. Dymond, J.P. McCormack, Simulations of the effects of vertical transport on the thermosphere and ionosphere using two coupled models. J. Geophys. Res. 119(2), 1172–1185 (2014). doi: 10.1002/2013JA019116 CrossRefGoogle Scholar
  51. S.C. Solomon, A.G. Burns, B.A. Emery, M.G. Mlynczak, L. Qian, W. Wang, D.R. Weimer, M. Wiltberger, Modeling studies of the impact of high-speed streams and co-rotating interaction regions on the thermosphere-ionosphere. J. Geophys. Res. Space Phys. (2012). doi: 10.1029/2011JA017417 Google Scholar
  52. R. Stoneback, R. Heelis, A. Burrell, W. Coley, B.G. Fejer, E. Pacheco, Observations of quiet time vertical ion drift in the equatorial ionosphere during the solar minimum period of 2009. J. Geophys. Res. 116(A12) (2011) Google Scholar
  53. R.A. Stoneback, N.K. Malakar, D.J. Lary, R.A. Heelis, Specifying the equatorial ionosphere using cindi on c/nofs, cosmic, and data interpolating empirical orthogonal functions. J. Geophys. Res. Space Phys. 118(10), 6706–6722 (2013). doi: 10.1002/jgra.50596 ADSCrossRefGoogle Scholar
  54. E.K. Sutton, J.P. Thayer, W. Wang, S.C. Solomon, X. Liu, B.T. Foster, A self-consistent model of helium in the thermosphere. J. Geophys. Res. Space Phys. 120(8), 6884–6900 (2015). doi: 10.1002/2015JA021223 ADSCrossRefGoogle Scholar
  55. E. Thébault et al., International geomagnetic reference field: the 12th generation. Earth Planets Space 67(1), 1–19 (2015) CrossRefGoogle Scholar
  56. D.R. Weimer, Improved ionospheric electrodynamic models and application to calculating joule heating rates. J. Geophys. Res. (2005). doi: 10.1029/2004JA010884 Google Scholar
  57. Y. Yamazaki, A.D. Richmond, A theory of ionospheric response to upward-propagating tides: electrodynamic effects and tidal mixing effects. J. Geophys. Res. 118(9), 5891–5905 (2013). doi: 10.1002/jgra.50487 CrossRefGoogle Scholar
  58. Y. Yamazaki et al., Ground magnetic effects of the equatorial electrojet simulated by the tie-gcm driven by timed satellite data. J. Geophys. Res. Space Phys. 119(4), 3150–3161 (2014). doi: 10.1002/2013JA019487 ADSCrossRefGoogle Scholar
  59. Y. Zhang, S. England, L.J. Paxton, Thermospheric composition variations due to nonmigrating tides and their effect on ionosphere. Geophys. Res. Lett. 37(17), 17103 (2010). doi: 10.1029/2010GL044313 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.BoulderUSA

Personalised recommendations