Space Science Reviews

, Volume 211, Issue 1–4, pp 135–146 | Cite as

Radar-Derived Properties of the InSight Landing Site in Western Elysium Planitia on Mars

  • Nathaniel E. PutzigEmail author
  • Gareth A. Morgan
  • Bruce A. Campbell
  • Cyril Grima
  • Isaac B. Smith
  • Roger J. Phillips
  • Matthew P. Golombek


We carried out an assessment of surface and subsurface properties based on radar observations of the region in western Elysium Planitia selected as the landing site for the InSight mission. Using observations from Arecibo Observatory and from the Mars Reconnaissance Orbiter’s Shallow Radar (SHARAD), we examined the near-surface properties of the landing site, including characterization of reflectivity, near-surface roughness, and layering. In the Arecibo data (12.6-cm wavelength), we found a radar-reflective surface with no unusual properties that would cause problems for the InSight radar altimeter (7-cm wavelength). In addition, the moderately low backscatter strength is indicative of a relatively smooth surface at \({\sim} 10\mbox{-cm}\) scales that is composed of load-bearing materials and should not present a hazard for landing safety. For roughness at 10–100 m scales derived from SHARAD data, we find relatively low values in a narrow distribution, similar to those found at the Phoenix and Opportunity landing sites. The power of returns at InSight is similar to that at Phoenix and thus suggestive of near-surface layering, consistent with a layer of regolith over bedrock (e.g., lava flows) that is largely too shallow (\({<}10\mbox{--}20~\mbox{m}\)) for SHARAD to discern distinct reflectors. However, an isolated area outside of the ellipse chosen in 2015 for InSight’s landing shows faint returns that may represent such a contact at depths of \({\sim} 20\mbox{--}43~\mbox{m}\).


Radar observations Surface roughness Mars Landing site analysis InSight Arecibo Mars Reconnaissance Orbiter SHARAD 



We are grateful to all of the people and organizations who have helped facilitate this work, including the SHARAD Instrument Team, the Italian Space Agency, the MRO Project, and SeisWare International. We thank John Harmon for providing the Arecibo radar data, Klaus Gwinner for providing the HRSC digital elevation model, and two anonymous reviewers for helping us improve the manuscript. Research described in this paper was partially done by the InSight Project, Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.


  1. F.S. Anderson, A.F.C. Haldemann, N.T. Bridges, M.P. Golombek, T.J. Parker, G. Neumann, Analysis of MOLA data for the Mars Exploration Rover landing sites. J. Geophys. Res. 108, 8084 (2003). doi: 10.1029/2003JE002125 CrossRefGoogle Scholar
  2. W.B. Banerdt, S. Smrekar, K. Huyst, P. Lognonné, T. Spohn, S. Asmar, D. Banfield, L. Boschi, U. Christensen, V. Dehant, W. Folkner, D. Giardini, W. Goetz, M. Golombek, M. Grott, T. Hudson, C. Johnson, G. Kargl, N. Kobayashi, J. Maki, D. Mimoun, A. Mocquet, P. Morgan, M. Panning, W.T. Pike, J. Tromp, T. van Zoest, R. Weber, M. Wieczorek, T.I. Team, InSight: a Discovery mission to explore the interior of Mars. Lunar Planet. Sci. XLIV, 1915 (2013), abstract ADSGoogle Scholar
  3. T.C. Brothers, J.W. Holt, A. Spiga, Planum Boreum basal unit topography, Mars: irregularities and insights from SHARAD. J. Geophys. Res. 120, 1357–1375 (2015). doi: 10.1002/2015JE004830 CrossRefGoogle Scholar
  4. B.A. Campbell, Radar backscatter from Mars: properties of rock-strewn surfaces. Icarus 150, 38–47 (2001) ADSCrossRefGoogle Scholar
  5. B.A. Campbell, Scale-dependent surface roughness behavior and its impact on empirical models for radar backscatter. IEEE Geosci. Remote Sens. 47, 3480–3488 (2009). doi: 10.1109/TGRS.2009.2022752 ADSCrossRefGoogle Scholar
  6. B.A. Campbell, High circular polarization ratios in radar scattering from geologic targets. J. Geophys. Res. 117, E06008 (2012). doi: 10.1029/2012JE004061 ADSCrossRefGoogle Scholar
  7. B. Campbell, L. Carter, R. Phillips, J. Plaut, N. Putzig, A. Safaeinili, R. Seu, D. Biccari, A. Egan, R. Orosei, SHARAD radar sounding of the Vastitas Borealis Formation in Amazonis Planitia. J. Geophys. Res. 113, E12010 (2008a), 10 p. doi: 10.1029/2008JE003177 ADSCrossRefGoogle Scholar
  8. B.A. Campbell, L.M. Carter, B.R. Hawke, D.B. Campbell, R.R. Ghent, Volcanic and impact deposits of the Moon’s Aristarchus Plateau: a new view from Earth-based radar images. Geology 36, 135–138 (2008b). doi: 10.1130/G24310A.1 ADSCrossRefGoogle Scholar
  9. B.A. Campbell, N.E. Putzig, L.M. Carter, G.A. Morgan, R.J. Phillips, J.J. Plaut, Roughness and near-surface density of Mars from SHARAD radar echoes. J. Geophys. Res. 118 (2013), 15 p. doi: 10.1002/jgre.20050
  10. L.M. Carter, B.A. Campbell, J.W. Holt, R.J. Phillips, N.E. Putzig, S. Mattei, R. Seu, C.H. Okubo, A.F. Egan, Dielectric properties of lava flows west of Ascraeus Mons, Mars. Geophys. Res. Lett. 36, L23204 (2009a). doi: 10.1029/2009GL041234 ADSCrossRefGoogle Scholar
  11. L.M. Carter, B.A. Campbell, T.R. Watters, R.J. Phillips, N.E. Putzig, A. Safaeinili, J.J. Plaut, C.H. Okubo, A.F. Egan, R. Seu, D. Biccari, R. Orosei, Shallow radar (SHARAD) sounding observations of the Medusae Fossae Formation, Mars. Icarus 199, 295–302 (2009b) ADSCrossRefGoogle Scholar
  12. P. Choudhary, J.W. Holt, S.D. Kempf, Surface clutter and echo location analysis for the interpretation of SHARAD data from Mars. IEEE Geosci. Remote Sens. Lett. 13, 1285–1289 (2016). doi: 10.1109/LGRS.2016.2581799 ADSCrossRefGoogle Scholar
  13. A.K. Fung, Z. Li, K.S. Chen, Backscattering from a randomly rough dielectric surface. IEEE Trans. Geosci. Remote Sens. 30, 356–369 (1992). doi: 10.1109/36.134085 ADSCrossRefGoogle Scholar
  14. M.P. Golombek, R.A. Cook, H.J. Moore, T.J. Parker, Selection of the Mars Pathfinder landing site. J. Geophys. Res. 102, 3967–3988 (1997) ADSCrossRefGoogle Scholar
  15. M. Golombek, D. Kipp, N. Warner, I.J. Daubar, R. Fergason, R. Kirk, R. Beyer, A. Huertas, S. Piqueux, N.E. Putzig, B.A. Campbell, G.A. Morgan, C. Charalambous, W.T. Pike, K. Gwinner, F. Calef, D. Kass, M. Mischna, J. Ashley, C. Bloom, N. Wigton, T. Hare, C. Schwartz, H. Gengl, L. Redmond, M. Trautman, J. Sweeney, C. Grima, I.B. Smith, E. Sklyanskiy, M. Lisano, J. Benardino, S. Smrekar, P. Lognonné, W.B. Banerdt, Selection of the InSight landing site. Space Sci. Rev. (2016), this issue. doi: 10.1007/s11214-016-0321-9 Google Scholar
  16. C. Grima, W. Kofman, A. Herique, R. Orosei, R. Seu, Quantitative analysis of Mars surface radar reflectivity at 20 MHz. Icarus 220, 84–89 (2012). doi: 10.1016/j.icarus.2012.04.017 ADSCrossRefGoogle Scholar
  17. C. Grima, D.M. Schroeder, D.D. Blankenship, D.A. Young, Planetary landing-zone reconnaissance using ice-penetrating radar data: concept validation in Antarctica. Planet. Space Sci. 103, 191–204 (2014). doi: 10.1016/j.pss.2014.07.018 ADSCrossRefGoogle Scholar
  18. J.K. Harmon, R.E. Arvidson, E.A. Guinness, B.A. Campbell, M.A. Slade, Mars mapping with delay-Doppler radar. J. Geophys. Res. 104, 14065 (1999) ADSCrossRefGoogle Scholar
  19. J.K. Harmon, M.C. Nolan, D.I. Husmann, B.A. Campbell, Arecibo radar imagery of Mars: the major volcanic provinces. Icarus 220, 990–1030 (2012) ADSCrossRefGoogle Scholar
  20. J.W. Holt, M.E. Peters, S.D. Kempf, D.L. Morse, D.D. Blankenship, Echo source discrimination in single-pass airborne radar sounding data from the Dry Valleys, Antarctica: implications for orbital sounding of Mars. J. Geophys. Res. 111, E06S24 (2006). doi: 10.1029/2005JE002525 ADSCrossRefGoogle Scholar
  21. J.W. Holt, A. Safaeinili, J.J. Plaut, J.W. Head, R.J. Phillips, R. Seu, S.D. Kempf, P. Choudhary, D.A. Young, N.E. Putzig, Radar sounding evidence for buried glaciers in the southern mid-latitudes of Mars. Science 322, 1235–1238 (2008) ADSCrossRefGoogle Scholar
  22. J.W. Holt, K.E. Fishbaugh, S. Byrne, S. Christian, K. Tanaka, P.S. Russell, K.E. Herkenhoff, A. Safaeinili, N.E. Putzig, R.J. Phillips, The construction of Chasma Boreale on Mars. Nature 465, 446–449 (2010) ADSCrossRefGoogle Scholar
  23. M.A. Kreslavsky, J.W. Head III., Kilometer-scale roughness of Mars: results from MOLA data analysis. J. Geophys. Res. 105, 26,695–26,711 (2000) ADSCrossRefGoogle Scholar
  24. G.A. Morgan, B.A. Campbell, L.M. Carter, J.J. Plaut, R.J. Phillips, 3D reconstruction of the source and scale of buried young flood channels on Mars. Science 340, 607–610 (2013). doi: 10.1126/science.1234787 ADSCrossRefGoogle Scholar
  25. G.A. Morgan, B.A. Campbell, L.M. Carter, J.J. Plaut, Evidence for the episodic erosion of the Medusae Fossae Formation preserved within the youngest volcanic province on Mars. Geophys. Res. Lett. 42, 7336–7342 (2015). doi: 10.1002/2015GL065017 ADSCrossRefGoogle Scholar
  26. D.O. Muhleman, B.J. Butler, A.W. Grossman, M.A. Slade, Radar images of Mars. Science 253, 1508–1513 (1991) ADSCrossRefGoogle Scholar
  27. G.A. Neumann, J.B. Abshire, O. Aharonson, J.B. Garvin, X. Sun, M.T. Zuber, Mars Orbiter Laser Altimeter pulse width measurements and footprint-scale roughness. Geophys. Res. Lett. 30, 1561 (2003). doi: 10.1029/2003GL017048 ADSCrossRefGoogle Scholar
  28. R.J. Phillips, M.T. Zuber, S.E. Smrekar, M.T. Mellon, J.W. Head, K.L. Tanaka, N.E. Putzig, S.M. Milkovich, B.A. Campbell, J.J. Plaut, A. Safaeinili, R. Seu, D. Biccari, L.M. Carter, G. Picardi, R. Orosei, P.S. Mohit, E. Heggy, R.W. Zurek, A.F. Egan, E. Giacomoni, F. Russo, M. Cutigni, E. Pettinelli, J.W. Holt, C.J. Leuschen, L. Marinangeli, Mars North Polar deposits: stratigraphy, age, and geodynamical response. Science 320, 1182–1185 (2008) ADSCrossRefGoogle Scholar
  29. R.J. Phillips, B.J. Davis, K.L. Tanaka, S. Byrne, M.T. Mellon, N.E. Putzig, R.M. Haberle, M.A. Kahre, B.A. Campbell, L.M. Carter, Massive CO2 ice deposits sequestered in the South Polar layered deposits of Mars. Science 332, 838 (2011) ADSCrossRefGoogle Scholar
  30. J.J. Plaut, A. Safaeinili, J.W. Holt, R.J. Phillips, J.W. Head III., R. Seu, N.E. Putzig, A. Frigeri, Radar evidence for ice in lobate debris aprons in the mid-northern latitudes of Mars. Geophys. Res. Lett. 36, L02203 (2009), 4 p. doi: 10.1029/2008GL036379 ADSCrossRefGoogle Scholar
  31. N.E. Putzig, R.J. Phillips, B.A. Campbell, J.W. Holt, J.J. Plaut, L.M. Carter, A.F. Egan, F. Bernardini, A. Safaeinili, R. Seu, Subsurface structure of Planum Boreum from Mars Reconnaissance Orbiter Shallow Radar soundings. Icarus 204, 443–457 (2009) ADSCrossRefGoogle Scholar
  32. N.E. Putzig, R.J. Phillips, B.A. Campbell, M.T. Mellon, J.W. Holt, B.J. Davis, T.C. Brothers, Shallow Radar soundings and surface roughness at past, present, and proposed landing sites on Mars. J. Geophys. Res. 119, 1936–1949 (2014). doi: 10.1002/2014JE004646 CrossRefGoogle Scholar
  33. M.K. Shepard, B.A. Campbell, M.H. Bulmer, T.G. Farr, L.R. Gaddis, J.J. Plaut, The roughness of natural terrain: a planetary and remote sensing perspective. J. Geophys. Res. 106, 32,777–32,796 (2001). doi: 10.1029/2000JE001429 ADSCrossRefGoogle Scholar
  34. I.B. Smith, J.W. Holt, Onset and migration of spiral troughs on Mars revealed by orbital radar. Nature 465, 450–453 (2010) ADSCrossRefGoogle Scholar
  35. I.B. Smith, N.E. Putzig, R.J. Phillips, J.W. Holt, An ice age recorded in the polar deposits of Mars. Science 352, 1075–1078 (2016). doi: 10.1126/science.aad6968 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Nathaniel E. Putzig
    • 1
    • 2
    Email author
  • Gareth A. Morgan
    • 3
  • Bruce A. Campbell
    • 3
  • Cyril Grima
    • 4
  • Isaac B. Smith
    • 1
    • 2
  • Roger J. Phillips
    • 5
    • 6
  • Matthew P. Golombek
    • 7
  1. 1.Department of Space StudiesSouthwest Research InstituteBoulderUSA
  2. 2.Planetary Science InstituteLakewoodUSA
  3. 3.Center for Earth and Planetary StudiesSmithsonian InstitutionWashingtonUSA
  4. 4.Institute for GeophysicsUniversity of TexasAustinUSA
  5. 5.Planetary Science DirectorateSouthwest Research InstituteBoulderUSA
  6. 6.McDonnell Center for the Space Sciences and Department of Earth and Planetary SciencesWashington UniversitySt. LouisUSA
  7. 7.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations