Space Science Reviews

, Volume 211, Issue 1–4, pp 5–95 | Cite as

Selection of the InSight Landing Site

  • M. GolombekEmail author
  • D. Kipp
  • N. Warner
  • I. J. Daubar
  • R. Fergason
  • R. L. Kirk
  • R. Beyer
  • A. Huertas
  • S. Piqueux
  • N. E. Putzig
  • B. A. Campbell
  • G. A. Morgan
  • C. Charalambous
  • W. T. Pike
  • K. Gwinner
  • F. Calef
  • D. Kass
  • M. Mischna
  • J. Ashley
  • C. Bloom
  • N. Wigton
  • T. Hare
  • C. Schwartz
  • H. Gengl
  • L. Redmond
  • M. Trautman
  • J. Sweeney
  • C. Grima
  • I. B. Smith
  • E. Sklyanskiy
  • M. Lisano
  • J. Benardini
  • S. Smrekar
  • P. Lognonné
  • W. B. Banerdt


The selection of the Discovery Program InSight landing site took over four years from initial identification of possible areas that met engineering constraints, to downselection via targeted data from orbiters (especially Mars Reconnaissance Orbiter (MRO) Context Camera (CTX) and High-Resolution Imaging Science Experiment (HiRISE) images), to selection and certification via sophisticated entry, descent and landing (EDL) simulations. Constraints on elevation (\({\leq}{-}2.5\ \mbox{km}\) for sufficient atmosphere to slow the lander), latitude (initially 15°S–5°N and later 3°N–5°N for solar power and thermal management of the spacecraft), ellipse size (130 km by 27 km from ballistic entry and descent), and a load bearing surface without thick deposits of dust, severely limited acceptable areas to western Elysium Planitia. Within this area, 16 prospective ellipses were identified, which lie ∼600 km north of the Mars Science Laboratory (MSL) rover. Mapping of terrains in rapidly acquired CTX images identified especially benign smooth terrain and led to the downselection to four northern ellipses. Acquisition of nearly continuous HiRISE, additional Thermal Emission Imaging System (THEMIS), and High Resolution Stereo Camera (HRSC) images, along with radar data confirmed that ellipse E9 met all landing site constraints: with slopes <15° at 84 m and 2 m length scales for radar tracking and touchdown stability, low rock abundance (<10 %) to avoid impact and spacecraft tip over, instrument deployment constraints, which included identical slope and rock abundance constraints, a radar reflective and load bearing surface, and a fragmented regolith ∼5 m thick for full penetration of the heat flow probe. Unlike other Mars landers, science objectives did not directly influence landing site selection.


Mars InSight, Landing Site Surface characteristics Landing ellipse Corinto secondaries Rocks Terrains, Surface slope Regolith Radar 



Research described in this paper was partially done by the InSight Project, Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Production of derived data products and support for the Council of Atmospheres and the Council of Terrains was provided by the InSight Project. The German Aerospace Center (DLR) supported the production of HRSC mosaics. We thank S. Kannan, L. Maki, K. Smyth, D. Hernandez, V. Carranza, E. Bondi, R. Domholdt, A. Davis, M. Wray, S. Melady, W. Painter, C. Hundal, and M. Bouchard for help processing data and maps. We also thank B. Knapmeyer-Endrun, V. Ansan Mangold, K. Herkenhoff and C. Dundas for comments on an earlier draft. M. Grott provided helpful discussions on the interaction of the mole with subsurface rocks. This paper is InSight Contribution Number 17.


  1. D.S. Adams, Phoenix Mars Scout landing site risk assessment, in 2008 IEEE Aerospace Conference, Piscataway, NJ, 2008 (IEEE Press, New York, 2008), pp. 1–8. doi: 10.1109/AERO.2008.4526286 Google Scholar
  2. F.S. Anderson, A.F.C. Haldemann, N.T. Bridges, M.P. Golombek, T.J. Parker, G. Neumann, Analysis of MOLA data for the Mars Exploration Rover landing sites. J. Geophys. Res. 108(E12), 8084 (2003). doi: 10.1029/2003JE002125 CrossRefGoogle Scholar
  3. V. Ansan, T. Dezert (the DLR group), Western Elysium Planitia, What is regional geology telling us about sub-surface? in InSight Science Team Presentation, Zurich, Switzerland, September 5–9, 2015 (2015), and written communication Google Scholar
  4. R. Arvidson et al., Mars Exploration Program 2007 Phoenix landing site selection and characteristics. J. Geophys. Res. 113, E00A03 (2008). doi: 10.1029/2007JE003021 Google Scholar
  5. R.E. Arvidson et al., Results from the Mars Phoenix lander Robotic Arm experiment. J. Geophys. Res. 114, E00E02 (2009). doi: 10.1029/2009JE003408 CrossRefGoogle Scholar
  6. W.B. Banerdt et al., InSight: a discovery mission to explore the interior of Mars, in 44th Lunar and Planetary Science (Lunar and Planetary Institute, Houston, 2013). Abstract #1915 Google Scholar
  7. G.D. Bart, H.J. Melosh, Distributions of boulders ejected from lunar craters. Icarus 209, 337–357 (2010). doi: 10.1016/j.icarus.2010.05.023 ADSCrossRefGoogle Scholar
  8. J. Benardini, L. Newlin, InSight PIP 2.4 planetary protection plan. Jet Propulsion Laboratory, California Institute of Technology, Document 75257, Revision A, 74 pp. (2013) Google Scholar
  9. R.A. Beyer, Meter-scale slopes of candidate InSight landings sites from point photoclinometry. Space Sci. Rev. (2016, this issue). doi: 10.1007/s11214-016-0287-7 Google Scholar
  10. R.A. Beyer, R.L. Kirk, Meter-scale slopes of candidate MSL landings sites from point photoclinometry. Space Sci. Rev. 170, 775–791 (2012). doi: 10.1007/s11214-012-9925-x ADSCrossRefGoogle Scholar
  11. R.A. Beyer, A.S. McEwen, R.L. Kirk, Meter-scale slopes of candidate MER landing sites from point photoclinometry. J. Geophys. Res. 108(E12), 26–31 (2003). doi: 10.1029/2003JE002120 CrossRefGoogle Scholar
  12. R.A. Beyer, O. Alexandrov, S. McMichael, The Ames stereo pipeline: NASA’s open source automated stereogrammetry software (Users Guide and Documentation), Version 2.5.2 (2016).
  13. C. Bloom, M. Golombek, N. Warner, N. Wigton, Size frequency distribution and ejection velocity of Corinto crater secondaries in Elysium Planitia, in Eighth International Conference on Mars, Pasadena, CA, July 14–18, 2014 (Lunar and Planetary Institute, Houston, 2014). Abstract #1289 Google Scholar
  14. E.P. Bonfiglio, D. Adams, L. Craig, D.A. Spencer, R. Arvidson, T. Heet, Landing site dispersion analysis and statistical assessment for the Mars Phoenix Lander. J. Spacecr. Rockets 48, 5 (2011, September–October) CrossRefGoogle Scholar
  15. J. Bostelmann, C. Heipke, Analysing blocks of HRSC strips for a simultaneous bundle adjustment. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2(4), 15–20 (2014) CrossRefGoogle Scholar
  16. W.V. Boynton et al., Elemental abundances determined via the Mars Odyssey GRS, in The Martian Surface: Composition, Mineralogy and Physical Properties, ed. by J.F. Bell III (Cambridge University Press, Cambridge, 2008), pp. 105–124. Chap. 5 Google Scholar
  17. W.K. Brown, K.H. Wohletz, Derivation of the Weibull distribution based on physical principles and its connection to the Rosin–Rammler and lognormal distributions. J. Appl. Phys. 78, 2758–2763 (1995) ADSCrossRefGoogle Scholar
  18. M.J. Broxton, L.J. Edwards, The Ames Stereo Pipeline: Automated 3D surface reconstruction from orbital imagery, in 39th Lunar Planet Sci. Conf. (Lunar and Planetary Institute, Houston, 2008). Abstract #2419 Google Scholar
  19. S. Byrne et al., Distribution of mid-latitude ground ice on Mars from new impact craters. Science 325, 1674 (2009). doi: 10.1126/science.117530 ADSCrossRefGoogle Scholar
  20. B.A. Campbell, Radar backscatter from Mars: properties of rock-strewn surfaces. Icarus 150, 38–47 (2001) ADSCrossRefGoogle Scholar
  21. B.A. Campbell, Scale-dependent surface roughness behavior and its impact on empirical models for radar backscatter. IEEE Geosci. Remote Sens. 47, 3480–3488 (2009). doi: 10.1109/TGRS.2009.2022752 ADSCrossRefGoogle Scholar
  22. B.A. Campbell, High circular polarization ratios in radar scattering from geologic targets. J. Geophys. Res. 117, E06008 (2012). doi: 10.1029/2012JE004061 ADSCrossRefGoogle Scholar
  23. B.A. Campbell, L.M. Carter, B.R. Hawke, D.B. Campbell, R.R. Ghent, Volcanic and impact deposits of the Moon’s Aristarchus Plateau: a new view from Earth-based radar images. Geology 36, 135–138 (2008). doi: 10.1130/G24310A.1 ADSCrossRefGoogle Scholar
  24. B.A. Campbell, N.E. Putzig, L.M. Carter, G.A. Morgan, R.J. Phillips, J.J. Plaut, Roughness and near-surface density of Mars from SHARAD radar echoes. J. Geophys. Res. 118, 15 (2013). doi: 10.1002/jgre.20050 Google Scholar
  25. B.A. Cantor, MOC observations of the 2001 Mars planet-encircling dust storm. Icarus 186, 60–96 (2007). doi: 10.1016/j.icarus.2006.08.019 ADSCrossRefGoogle Scholar
  26. L.M. Carter, B.A. Campbell, T.R. Watters, R.J. Phillips, N.E. Putzig, A. Safaeinili, J. Plaut, C.H. Okubo, A.F. Egan, R. Seu, D. Biccari, R. Orosei, Shallow radar (SHARAD) sounding observations of the Medusae Fossae Formation, Mars. Icarus 199(2), 295–302 (2009). ADSCrossRefGoogle Scholar
  27. D.C. Catling et al., A lava sea in the northern plains of Mars: circumpolar Hesperian oceans reconsidered, in 42nd Lunar and Planetary Science Conference (Lunar and Planetary Institute, Houston, 2011). Abstract #2529 Google Scholar
  28. D.C. Catling et al., Does the Vastitas Borealis formation contain oceanic or volcanic deposits? in Third Conference on Early Mars, Lake Tahoe, NV, May 21–25, 2012 (Lunar and Planetary Institute, Houston, 2012). Abstract #7031 Google Scholar
  29. T.E. Chamberlain, H.L. Cole, R.G. Dutton, G.C. Greene, J.E. Tillman, Atmospheric measurements on Mars: the Viking meteorology experiment. Bull. Am. Meteorol. Soc. 57, 1094–1104 (1976) ADSCrossRefGoogle Scholar
  30. C. Charalambous, On the evolution of particle fragmentation with applications to planetary surfaces. PhD Thesis, Imperial College London (2014) Google Scholar
  31. C. Charalambous, W.T. Pike, W. Goetz, M.H. Hecht, U. Staufer, A digital martian soil based on in-situ data. AGU Fall Meeting Abstract (2011). # P43B-1669 Google Scholar
  32. P.R. Christensen, Martian dust mantling and surface composition: interpretation of thermophysical properties. J. Geophys. Res. 87, 9985–9998 (1982) ADSCrossRefGoogle Scholar
  33. P.R. Christensen, The spatial distribution of rocks on Mars. Icarus 68, 217–238 (1986) ADSCrossRefGoogle Scholar
  34. P.R. Christensen, M.C. Malin, High resolution thermal imaging of Mars, in Lunar Planet. Sci. XIX (Lunar and Planetary Institute, Houston, 1988), pp. 180–181 Google Scholar
  35. P.R. Christensen, H.J. Moore, The martian surface layer, in MARS, ed. by H.H. Kieffer, B.M. Jakosky, C.W. Snyder, M.S. Matthews (University of Arizona Press, Tucson, 1992), pp. 686–727 Google Scholar
  36. P.R. Christensen, D.L. Anderson, S.C. Chase, R.N. Clark, H.H. Kieffer, M.C. Malin, J.C. Pearl, J. Carpenter, N. Bandiera, F.G. Brown, S. Silverman, Thermal Emission Spectrometer experiment: Mars Observer Mission. J. Geophys. Res. 97(E5), 7719–7734 (1992) ADSCrossRefGoogle Scholar
  37. P.R. Christensen, J.L. Bandfield, V.E. Hamilton, S.W. Ruff, H.H. Kieffer, T.N. Titus, M.C. Malin, R.V. Morris, M.D. Lane, R.L. Clark, B.M. Jakosky, M.T. Mellon, J.C. Pearl, B.J. Conrath, M.D. Smith, R.T. Clancy, R.O. Kuzmin, T. Roush, G.L. Mehall, N. Gorelick, K. Bender, S. Dason, E. Greene, S. Silverman, M. Greenfield, Mars Global Surveyor Thermal Emission Spectrometer experiment: investigation description and surface science results. J. Geophys. Res. 106, 23823–23871 (2001) ADSCrossRefGoogle Scholar
  38. P.R. Christensen, B.M. Jakosky, H.H. Kieffer, M.C. Malin, H.Y. McSween Jr., K. Nealson, G.L. Mehall, S.H. Silverman, S. Ferry, M. Caplinger, M. Ravine, The Thermal Emission Imaging System (THEMIS) for the Mars 2001 Odyssey mission. Space Sci. Rev. 110, 85–130 (2004) ADSCrossRefGoogle Scholar
  39. S.M. Clifford, T.J. Parker, The evolution of the Martian hydrosphere: implications for the fate of a primordial ocean and the current state of the northern plains. Icarus 154, 40–79 (2001) ADSCrossRefGoogle Scholar
  40. R.A. Craddock, M.P. Golombek, Characteristics of terrestrial basaltic rock populations: implications for Mars lander and rover science and safety. Icarus 274, 50–72 (2016). doi: 10.1016/j.icarus.2016.02.042 ADSCrossRefGoogle Scholar
  41. J.A. Crisp et al., Mars Exploration Rover mission. J. Geophys. Res. 108(E12), 8061 (2003). doi: 10.1029/2002JE002038 CrossRefGoogle Scholar
  42. I.J. Daubar, A.S. McEwen, S. Byrne, M.R. Kennedy, B. Ivanov, The current martian cratering rate. Icarus 225, 506–516 (2013). doi: 10.1016/j.icarus.2013.04.009 ADSCrossRefGoogle Scholar
  43. I.J. Daubar, M.P. Golombek, A.S. McEwen, L.L. Tornabene, F.J. Calef III, R. Fergason, R. Kirk, R. Beyer, Depth-diameter ratio of Corinto secondary craters, in 47th Lunar and Planetary Science (Lunar and Planetary Institute, Houston, 2016). Abstract #2950 Google Scholar
  44. G. Di Achille, B.M. Hynek, Ancient ocean on Mars supported by global distribution of deltas and valleys. Nat. Geosci. 3, 459–463 (2010). doi: 10.1038/NGEO891 ADSCrossRefGoogle Scholar
  45. C.S. Edwards, P.R. Christensen, J. Hill, Mosaicking of global planetary image datasets: 2. Modeling of wind streak thicknesses observed in Thermal Emission Imaging System (THEMIS) daytime and nighttime infrared data. J. Geophys. Res. 116, E10005 (2011a). doi: 10.1029/2011je003857 ADSCrossRefGoogle Scholar
  46. C.S. Edwards, K.J. Nowicki, P.R. Christensen, J. Hill, N. Gorelick, K. Murray, Mosaicking of global planetary image datasets: 1. Techniques and data processing for Thermal Emission Imaging System (THEMIS) multi-spectral data. J. Geophys. Res. 116, E10008 (2011b). doi: 10.1029/2010je003755 ADSCrossRefGoogle Scholar
  47. B.L. Ehlmann, C.S. Edwards, Mineralogy of the Martian Surface. Annu. Rev. Earth Planet. Sci. 42, 291–316 (2014) ADSCrossRefGoogle Scholar
  48. B.L. Ehlmann, J.F. Mustard, S.L. Murchie, J.-P. Bibring, A. Meunier, A.A. Fraeman, Y. Langevin, Subsurface water and clay mineral formation during the early history of Mars. Nature 479, 53–60 (2011). doi: 10.1038/nature10582 ADSCrossRefGoogle Scholar
  49. W. Folkner et al., The Rotation and Interior Structure Experiment (RISE) for the InSight mission to Mars, in 43rd Lunar and Planetary Science (Lunar and Planetary Institute, Houston, 2012). Abstract #1721 Google Scholar
  50. W.C. Feldman et al., The global distribution of near-surface hydrogen on Mars. J. Geophys. Res. 109, E09006 (2004a). doi: 10.1029/2003JE002160 ADSCrossRefGoogle Scholar
  51. W.C. Feldman, M.T. Mellon, S. Maurice, H. Prettyman et al., Hydrated states of MgSO4 at equatorial latitudes on Mars. Geophys. Res. Lett. 31, L16702 (2004b). doi: 10.1029/2004GL020181 ADSCrossRefGoogle Scholar
  52. R.L. Fergason, P.R. Christensen, H.H. Kieffer, High-resolution thermal inertia derived from the Thermal Emission Imaging System (THEMIS): thermal model and applications. J. Geophys. Res. 111, E12004 (2006a). doi: 10.1029/2006JE002735 ADSCrossRefGoogle Scholar
  53. R.L. Fergason, P.R. Christensen, J.F. Bell III, M.P. Golombek, K.E. Herkenhoff, H.H. Kieffer, Physical properties of the Mars Exploration Rover landing sites as inferred from Mini-TES derived thermal inertia. J. Geophys. Res. 111(E2), E02S21 (2006b). doi: 10.1029/2005JE002583 ADSCrossRefGoogle Scholar
  54. R.L. Fergason, P.R. Christensen, M.P. Golombek, T.J. Parker, Surface properties of the Mars Science Laboratory candidate landing sites: characterization from orbit and predictions. Space Sci. Rev. 170, 739–773 (2012). doi: 10.1007/s11214-012-9891-3 ADSCrossRefGoogle Scholar
  55. R.L. Fergason, R.L. Kirk, G. Cushing, D.M. Galuzska, M.P. Golombek, T.M. Hare, E. Howington-Kraus, D.M. Kipp, B.L. Redding, Generation of digital elevation models and analysis of local slopes at the InSight landing site region. Space Sci. Rev. (2016, this issue). doi: 10.1007/s11214-016-0292-x Google Scholar
  56. H.V. Frey, Impact constraints on, and a chronology for, major events in early Mars history. J. Geophys. Res. 111, E08S91 (2006). doi: 10.1029/2005JE002449 ADSCrossRefGoogle Scholar
  57. J.B. Garvin, J.J. Frawley, J.B. Abshire, Vertical roughness of Mars from Mars Orbiter Laser Altimeter. Geophys. Res. Lett. 26, 381–384 (1999) ADSCrossRefGoogle Scholar
  58. J.B. Garvin, S.E.H. Sakimoto, J.J. Frawley, Craters on Mars: global geometric properties from gridded MOLA topography, in 6th International Conference on Mars (Lunar and Planetary Institute, Houston, 2003). Abstract #3277 Google Scholar
  59. J.J. Gilvarry, Fracture of brittle solids I. Distribution function for fragment size in single fracture (theoretical). J. Appl. Phys. 32, 391–399 (1961) ADSMathSciNetCrossRefGoogle Scholar
  60. J.J. Gilvarry, B.H. Bergstrom, Fracture of brittle solids II. Distribution function for fragment size in single fracture (experimental). J. Appl. Phys. 32, 400–410 (1961) ADSMathSciNetCrossRefGoogle Scholar
  61. M.P. Golombek, R.J. Phillips, Mars Tectonics, in Planetary Tectonics, ed. by T.R. Watters, R.A. Schultz (Cambridge University Press, Cambridge, 2010), pp. 183–232, Chap. 5 Google Scholar
  62. M. Golombek, D. Rapp, Size-frequency distributions of rocks on Mars and Earth analog sites: Implications for future landed missions. J. Geophys. Res. 102, 4117–4129 (1997) ADSCrossRefGoogle Scholar
  63. M.P. Golombek, R.A. Cook, H.J. Moore, T.J. Parker, Selection of the Mars Pathfinder landing site. J. Geophys. Res. 102, 3967–3988 (1997) ADSCrossRefGoogle Scholar
  64. M.P. Golombek et al., Selection of the Mars Exploration Rover landing sites. J. Geophys. Res. 108(E12), 8072 (2003a). doi: 10.1029/2003JE002074 Google Scholar
  65. M.P. Golombek, A.F.C. Haldemann, N.K. Forsberg-Taylor, E.N. DiMaggio, R.D. Schroeder, B.M. Jakosky, M.T. Mellon, J.R. Matijevic, Rock size-frequency distributions on Mars and implications for Mars Exploration Rover landing safety and operations. J. Geophys. Res. 108(E12), 8086 (2003b). doi: 10.1029/2002JE002035 Google Scholar
  66. M.P. Golombek et al., Assessment of Mars Exploration Rover landing site predictions. Nature 436, 44–48 (2005). doi: 10.1038/nature03600 ADSCrossRefGoogle Scholar
  67. M.P. Golombek et al., Geology of the Gusev cratered plains from the Spirit rover traverse. J. Geophys. Res. 110, E02S07 (2006). doi: 10.1029/2005JE002503 Google Scholar
  68. M.P. Golombek et al., Size-frequency distributions of rocks on the northern plains of Mars with special reference to Phoenix landing surfaces. J. Geophys. Res. 113, E00A09 (2008b). doi: 10.1029/2007JE003065 CrossRefGoogle Scholar
  69. M.P. Golombek, A.F.C. Haldemann, R.A. Simpson, R.L. Fergason, N.E. Putzig, R.E. Arvidson, J.F. Bell III, M.T. Mellon, Martian surface properties from joint analysis of orbital, Earth-based, and surface observations, in The Martian Surface: Composition, Mineralogy and Physical Properties. ed. by J.F. Bell III (Cambridge University Press, Cambridge, 2008a), pp. 468–497 Chap. 21 CrossRefGoogle Scholar
  70. M. Golombek, J. Grant, D.D. Kipp, A. Vasavada, R. Kirk, R. Fergason, P. Bellutta, F. Calef, K. Larsen, Y. Katayama, A. Huertas, R. Beyer, A. Chen, T. Parker, B. Pollard, S. Lee, R. Hoover, H. Sladek, J. Grotzinger, R. Welch, E. Noe Dobrea, J. Michalski, M.M. Watkins, Selection of the Mars Science Laboratory landing site. Space Sci. Rev. 170, 641–737 (2012a). doi: 10.1007/s11214-012-9916-y ADSCrossRefGoogle Scholar
  71. M. Golombek, A. Huertas, D. Kipp, F. Calef, Detection and characterization of rocks and rock size-frequency distributions at the final four Mars Science Laboratory landing sites. Mars 7, 1–22 (2012b). doi: 10.1555/mars.2012.0001 ADSGoogle Scholar
  72. M. Golombek, L. Redmond, H. Gengl, C. Schwartz, N. Warner, B. Banerdt, S.S. Smrekar, Selection of the InSight landing site: constraints, plans, and progress, in 44th Lunar and Planetary Science (Lunar and Planetary Institute, Houston, 2013a). Abstract #1691 Google Scholar
  73. M. Golombek, N. Warner, C. Schwartz, J. Green, Surface characteristics of prospective InSight landing sites in Elysium Planitia, in 44th Lunar and Planetary Science (Lunar and Planetary Institute, Houston, 2013b). Abstract #1696 Google Scholar
  74. M. Golombek, C. Bloom, N. Wigton, N. Warner, Constraints on the age of Corinto crater from mapping secondaries in Elysium Planitia on Mars, in 45th Lunar and Planetary Science (Lunar and Planetary Institute, Houston, 2014b). Abstract #1470 Google Scholar
  75. M.P. Golombek, N.H. Warner, V. Ganti, M.P. Lamb, T.J. Parker, R.L. Fergason, R. Sullivan, Small crater modification on Meridiani Planum and implications for erosion rates and climate change on Mars. J. Geophys. Res. 119, 2522–2547 (2014c). 10 Dec. 2014. doi: 10.1002/2014JE004658 CrossRefGoogle Scholar
  76. M. Golombek, N. Warner, N. Wigton, C. Bloom, C. Schwartz, S. Kannan, D. Kipp, A. Huertas, B. Banerdt, Final four landing sites for the InSight geophysical lander, in 45th Lunar and Planetary Science (Lunar and Planetary Institute, Houston, 2014a). Abstract #1499 Google Scholar
  77. M. Golombek, N. Warner, I.J. Daubar, D. Kipp, R. Fergason, R. Kirk, A. Huertas, R. Beyer, S. Piqueux, N.E. Putzig, F. Calef, W.B. Banerdt, Surface and subsurface characteristics of western Elysium Planitia, Mars, in 47th Lunar and Planetary Science (Lunar and Planetary Institute, Houston, 2016). Abstract #1572 Google Scholar
  78. J. Gomez-Elvira et al., REMS: the environmental sensor suite for the mars science laboratory rover. Space Sci. Rev. 2012, 1–58 (2012) Google Scholar
  79. J.A. Grant, S.A. Wilson, S.W. Ruff, M.P. Golombek, D.L. Koestler, Distribution of rocks on the Gusev plains and on Husband Hill, Mars. Geophys. Res. Lett. 33, L16202 (2006). doi: 10.1029/2006GL026964 ADSCrossRefGoogle Scholar
  80. R. Greeley, J.D. Iversen, J.B. Pollack, N. Udovich, B. White, Wind tunnel simulations of light and dark streaks on Mars. Science 183, 847–849 (1974) ADSCrossRefGoogle Scholar
  81. R. Greeley, R.O. Kuzmin, S.C. Rafkin, T.I. Michaels, R. Haberle, Wind-related features in Gusev crater, Mars. J. Geophys. Res. 108(E12) (2003). doi: 10.1029/2002je002006
  82. T.K.P. Gregg, J.H. Fink, R.W. Griffiths, Formation of multiple fold generations on lava flow surfaces: influence on strain rate, cooling rate and lava composition. J. Volcanol. Geophys. Res. 80, 281–292 (1998) ADSCrossRefGoogle Scholar
  83. C. Grima, W. Kofman, A. Herique, R. Orosei, R. Seu, Quantitative analysis of Mars surface radar reflectivity at 20 MHz. Icarus 220, 84–89 (2012). doi: 10.1016/j.icarus.2012.04.017 ADSCrossRefGoogle Scholar
  84. C. Grima, D.M. Schroeder, D.D. Blankenship, D.A. Young, Planetary landing-zone reconnaissance using ice-penetrating radar data: concept validation in Antarctica. Planet. Space Sci. 103, 191–204 (2014). doi: 10.1016/j.pss.2014.07.018 ADSCrossRefGoogle Scholar
  85. J.P. Grotzinger et al., A habitable fluvio-lacustrine environment at Yellowknife Bay, Gale crater, Mars. Science 343(6169), 1242777 (2014). doi: 10.1126/science.1242777 CrossRefGoogle Scholar
  86. K. Gwinner, F. Scholten, M. Spiegel, R. Schmidt, B. Giese, J. Oberst, R. Jaumann, C. Heipke, G. Neukum, Derivation and validation of high-resolution digital terrain models from Mars Express HRSC-data. Photogramm. Eng. Remote 75(9), 1127–1142 (2009) CrossRefGoogle Scholar
  87. K. Gwinner, F. Scholten, F. Preusker, S. Elgner, T. Roatsch, M. Spiegel, R. Schmidt, J. Oberst, R. Jaumann, C. Heipke, Topography of Mars from global mapping by HRSC high-resolution digital terrain models and orthoimages: characteristics and performance. Earth Planet. Sci. Lett. 294, 506–519 (2010a). doi: 10.1016/j.epsl.2009.11.007 ADSCrossRefGoogle Scholar
  88. K. Gwinner, J. Oberst, R. Jaumann, G. Neukum, Regional HRSC multi-orbit digital terrain models for the Mars science laboratory candidate landing sites, in 41st Lunar and Planetary Science Conference (Lunar and Planetary Institute, Houston, 2010b). Abstract #2727 Google Scholar
  89. K. Gwinner et al., The High Resolution Stereo Camera (HRSC) of Mars Express and its approach to science analysis and mapping for Mars and its satellites. Planet. Space Sci. (2016). doi: 10.1016/j.pss.2016.02.014 Google Scholar
  90. J.K. Harmon, R.E. Arvidson, E.A. Guinness, B.A. Campbell, M.A. Slade, Mars mapping with delay-Doppler radar. J. Geophys. Res. 104, 14065 (1999) ADSCrossRefGoogle Scholar
  91. J.K. Harmon, M.C. Nolan, D.I. Husmann, B.A. Campbell, Arecibo radar imagery of Mars: the major volcanic provinces. Icarus 220, 990–1030 (2012) ADSCrossRefGoogle Scholar
  92. W.K. Hartmann, Does crater “equilibrium” occur in the Solar System? Icarus 60, 56–74 (1984) ADSCrossRefGoogle Scholar
  93. W.K. Hartmann, Martian cratering 8: isochron refinement and the chronology of Mars. Icarus 174, 294–320 (2005) ADSCrossRefGoogle Scholar
  94. W.K. Hartmann, G. Neukum, Cratering chronology and the evolution of Mars. Space Sci. Rev. 96, 165–194 (2001) ADSCrossRefGoogle Scholar
  95. W.K. Hartmann, J. Anguita, M. de la Casa, D. Berman, E.V. Ryan, Martian cratering 7: the role of impact gardening. Icarus 149, 37–53 (2001) ADSCrossRefGoogle Scholar
  96. W.K. Hartmann, C. Quantin, S.C. Werner, O. Popova, Do young martian ray craters have ages consistent with the crater count system? Icarus 208(2), 621–635 (2010) ADSCrossRefGoogle Scholar
  97. T.L. Heet, R.E. Arvidson, S.C. Cull, M.T. Mellon, K.D. Seelos, Geomorphic and geologic settings of the Phoenix Lander mission landing site. J. Geophys. Res. 114, E00E04 (2009). doi: 10.1029/2009JE003416 ADSCrossRefGoogle Scholar
  98. J.L. Hollingsworth, R.M. Haberle, J.R. Barnes, A.F.C. Brider, J.B. Pollack, H. Lee, J. Schaeffer, Orographic control of storm zones on Mars. Nature 380(6573), 413–416 (1996). doi: 10.1038/380413a0 ADSCrossRefGoogle Scholar
  99. J.W. Holt, A. Safaeinili, J.J. Plaut, J.W. Head, R.J. Phillips, R. Seu, S.D. Kempf, P. Choudhary, D.A. Young, N.E. Putzig, Radar sounding evidence for buried glaciers in the southern mid-latitudes of Mars. Science 322, 1235–1238 (2008) ADSCrossRefGoogle Scholar
  100. B.K.P. Horn, Hill shading and the reflectance map. Proc. IEEE 69, 14–47 (1981) ADSCrossRefGoogle Scholar
  101. E. Howington-Kraus, R.L. Fergason, R.L. Kirk, D. Galuszka, B. Redding, M. Theobald, E. Littlefield, S. Sutton, A. Fennema, D. Kipp, R.E. Otero, M.P. Golombek, High-resolution topographic mapping supporting selection of NASA’s next Mars landing sites, in 46th Lunar and Planetary Science (Lunar and Planetary Institute, Houston, 2015). Abstract #2435 Google Scholar
  102. B.A. Ivanov, Mars/Moon cratering ratio estimates. Space Sci. Rev. 96, 87–104 (2001) ADSCrossRefGoogle Scholar
  103. B.M. Jakosky, On the thermal properties of Martian fines. Icarus 66, 117–124 (1986) ADSCrossRefGoogle Scholar
  104. B.M. Jakosky, P.R. Christensen, Global duricrust on Mars: analysis of remote-sensing data. J. Geophys. Res. 91, 3547–3559 (1986) ADSCrossRefGoogle Scholar
  105. R. Jaumann, G. Neukum, T. Behnke, T.C. Duxbury, E. Eichentopf, H. Hoffmann, A. Hoffmeister, U. Köhler, K-D. Matz, T.B. McCord, V. Mertens, J. Obserst, R. Pischel, D. Reiss, E. Ress, T. Roatsch, P. Saiger, F. Scholten, G. Schwartz, K. Stephan, M. Wählisch, the HRSC Co-Investigation Team, The High-Resolution Stereo Camera (HRSC) experiment on the Mars Express: instrument aspects and experiment conduct from interplanetary cruise through the nominal mission. Planet. Space Sci. 55, 928–952 (2007) ADSCrossRefGoogle Scholar
  106. E. Jones, G. Caprarelli, F.P. Mills, B. Doran, J. Clarke, An alternative approach to mapping thermophysical units from martian thermal inertia and albedo data using a combination of unsupervised classification techniques. Remote Sens. 6, 5184–5237 (2014). doi: 10.3390/rs6065184 ADSCrossRefGoogle Scholar
  107. D.M. Kass, J.T. Schofield, T.I. Michaels, S.C.R. Rafkin, M.I. Richardson, A.D. Toigo, Analysis of atmospheric mesoscale models for entry, descent, and landing. J. Geophys. Res. 108(E12), 8090 (2003). doi: 10.1029/2003JE002065 CrossRefGoogle Scholar
  108. D.M. Kass, A. Kleinböhl, D.J. McCleese, J.T. Schofield, M.D. Smith, Interannual similarity in the Martian atmosphere during the dust storm season. Geophys. Res. Lett. 43, 6111–6118 (2016). doi: 10.1002/2016GL068978 ADSCrossRefGoogle Scholar
  109. D.G. Kendall, Stochastic processes and population growth. J. R. Stat. Soc. 11(2), 230–282 (1949) MathSciNetzbMATHGoogle Scholar
  110. H.H. Kieffer, Thermal model for analysis of Mars infrared mapping. J. Geophys. Res. 118(3), 451–470 (2013) CrossRefGoogle Scholar
  111. H.H. Kieffer, S.C. Chase Jr., E. Miner, G. Münch, G. Neugebauer, Preliminary report on infrared radiometric measurements from the Mariner 9 spacecraft. J. Geophys. Res. 78(20), 4291–4312 (1973) ADSCrossRefGoogle Scholar
  112. H.H. Kieffer, T.Z. Martin, A.R. Peterfreund, B.M. Jakosky, E.D. Miner, F.D. Palluconi, Thermal and albedo mapping of Mars during the Viking primary mission. J. Geophys. Res. 82(28), 4249–4291 (1977) ADSCrossRefGoogle Scholar
  113. H.H. Kieffer, B.M. Jakosky, C.W. Snyder, M.S. Matthews (eds.), Mars (The University of Arizona Press, Tuscon, 1992). 1498 pp. Google Scholar
  114. Kim, J.P. Muller, Multi-resolution topographic data extraction from Martian stereo imagery. Planet. Space Sci. 57(14–15), 2095–2112 (2009). doi: 10.1016/j.pss.2009.09.024 ADSCrossRefGoogle Scholar
  115. R. Kirk et al., High-resolution topomapping of candidate MER landing sites with Mars Orbiter Camera narrow angle images. J. Geophys. Res. 108(E12), 8088 (2003). doi: 10.1029/2003JE002131 CrossRefGoogle Scholar
  116. R.L. Kirk et al., Ultrahigh resolution topographic mapping of Mars with MRO HiRISE stereo images: meter-scale slopes of candidate Phoenix landing sites. J. Geophys. Res. 113, E00A24 (2008). doi: 10.1029/2007JE003000 CrossRefGoogle Scholar
  117. R.L. Kirk et al., Near-complete 1-m topographic models of the MSL candidate landing sites: site safety and quality evaluation, in European Planetary Science Conference, vol. 6 (2011). Abstract EPSC2011-1465 Google Scholar
  118. R.L. Kirk et al., The effect of incidence angle on stereo DTM quality: simulations in support of Europa exploration, in ISPRS Commission IV, WG IV/8, Prague, Czech Republic (2016) Google Scholar
  119. M.A. Kreslavsky, J.W. Head III, Kilometer-scale roughness of Mars: results from MOLA data analysis. J. Geophys. Res. 105, 26695–26711 (2000). ADSCrossRefGoogle Scholar
  120. M. Lisano, D. Bernard, An almanac of martian dust storms for InSight Project energy system design, in Aerospace Conference (2014). doi: 10.1109/AERO.2014.6836269. IEEE XPlore, 15 pp. Google Scholar
  121. P. Lognonné, C. Johnson, Planetary seismology, in Treatise in Geophysics, ed. by G. Schubert. Planets and Moons, vol. 10 (Elsevier, Amsterdam, 2007), pp. 67–122 Google Scholar
  122. P. Lognonné, B. Mosser, Planetary seismology. Surv. Geophys. 14, 239–302 (1993). doi: 10.1007/BF00690946 ADSCrossRefGoogle Scholar
  123. P. Lognonné et al., Science Goals of the SEIS, the InSight Seismometer Package, in 46th Lunar and Planetary Science (Lunar and Planetary Institute, Houston, 2015). Abstract #2272 Google Scholar
  124. B. Lu, S. Torquato, Chord-length and free-path distribution functions for many-body systems. J. Chem. Phys. 98(8), 6472–6482 (1993) ADSCrossRefGoogle Scholar
  125. M.C. Malin et al., Context Camera Investigation on board the Mars Reconnaissance Orbiter. J. Geophys. Res. 112, E05S04 (2007). doi: 10.1029/2006JE002808 CrossRefGoogle Scholar
  126. N. Mangold, V. Ansan, P. Masson, C. Vincendon, Estimate of the aeolian dust thickness in Arabia Terra, Mars: Implications of a thick mantle (20 m) for hydrogen detection. Géomorphol., Relief Process. Environ. 1, 23–32 (2009) CrossRefGoogle Scholar
  127. D.J. McCleese, J.T. Schofield, F.W. Taylor, S.B. Calcutt, M.C. Foote, D.M. Kass, C.B. Leovy, D.A. Paige, P.L. Read, R.W. Zurek, Mars climate Sounder: an investigation of thermal and water vapor structure, dust and condensate distributions in the atmosphere, and energy balance of the polar regions. J. Geophys. Res. 112, E05S06 (2007). doi: 10.1029/2006JE002790 ADSCrossRefGoogle Scholar
  128. D.J. McCleese, N.G. Heavens, J.T. Schofield, W.A. Abdou, J.L. Bandfield, S.B. Calcutt, P.G.J. Irwin, D.M. Kass, A. Kleinbohl, C.B. Leovy, S.R. Lewis, D.A. Paige, P.L. Read, M.I. Richardson, J.H. Shirley, F.W. Taylor, N. Teanby, R.W. Zurek, The structure and dynamics of the martian lower and middle atmosphere as observed by the Mars Climate Sounder: 1. Seasonal variations in zonal mean temperature, dust and water ice aerosols. J. Geophys. Res. 115, E12016 (2010). doi: 10.1029/2010JE003677 ADSCrossRefGoogle Scholar
  129. A. McEwen, B. Preblich, E. Turtle, N. Artemieva, M. Golombek, M. Hurst, R. Kirk, D. Burr, P. Christensen, The rayed crater Zunil and interpretations of small impact craters on Mars. Icarus 176, 351–381 (2005). doi: 10.1016/j.icarus.2005.02.009 ADSCrossRefGoogle Scholar
  130. A.S. McEwen et al., Mars Reconnaissance Orbiter’s High Resolution Imaging Science Experiment (HiRISE). J. Geophys. Res. 112, E05S02 (2007). doi: 10.1029/2005JE002605 CrossRefGoogle Scholar
  131. A.S. McEwen et al., The High Resolution Imaging Science Experiment (HiRISE) during MRO’s Primary Science Phase (PSP). Icarus 205, 2–37 (2010). doi: 10.1016/j.icarus.2009.04.023 ADSCrossRefGoogle Scholar
  132. A.S. McEwen et al., For the people: HIRISE data products, in 44th Lunar and Planetary Science (Lunar and Planetary Institute, Houston, 2016). Abstract #1371 Google Scholar
  133. G.E. McGill, A.M. Dimitriou, Origin of the Martian global dichotomy by crustal thinning in the Late Noachian or Early Hesperian. J. Geophys. Res. 95, 12,595–12,605 (1990) ADSCrossRefGoogle Scholar
  134. M. Mehta et al., Explosive erosion during the Phoenix landing exposes subsurface water on Mars. Icarus 211, 172–194 (2011). doi: 10.1016/j.icarus.2010.10.003 ADSCrossRefGoogle Scholar
  135. M.T. Mellon, B.M. Jakosky, H.H. Kieffer, P.R. Christensen, High-resolution thermal inertia mapping from the Mars Global Surveyor Thermal Emission Spectrometer. Icarus 148, 437–455 (2000) ADSCrossRefGoogle Scholar
  136. M.T. Mellon et al., The thermal inertia of the surface of Mars, in The Martian Surface: Composition, Mineralogy and Physical Properties, ed. by J.F. Bell III (Cambridge University Press, Cambridge, 2008), pp. 399–427, Chap. 19 CrossRefGoogle Scholar
  137. H.J. Melosh, Impact Craters: A Geologic Process (Oxford University Press, London, 1989) Google Scholar
  138. D. Mimoun et al., The seismic noise model of the InSight mission to Mars. Space Sci. Rev. (2016, this issue), submitted Google Scholar
  139. I.G. Mitrofanov et al., Soil water content on Mars as estimated from neutron measurements by HEND instrument onboard 2001 Mars Odyssey spacecraft. Sol. Syst. Res. 38, 253–265 (2004) ADSCrossRefGoogle Scholar
  140. L. Montabone et al., Eight-year climatology of dust optical depth on Mars. Icarus 251, 65–95 (2015). doi: 10.1016/j.icarus.2014.12.034 ADSCrossRefGoogle Scholar
  141. H.J. Moore, B.M. Jakosky, Viking landing sites, remote-sensing observations, and physical properties of martian surface materials. Icarus 81, 164–184 (1989) ADSCrossRefGoogle Scholar
  142. H.J. Moore, J.M. Keller, Surface-material maps of Viking landing sites on Mars. Reports of Planetary Geology and Geophysics Program—1989 (1990), NASA Tech. Memo., TM-4210, pp. 533–535 Google Scholar
  143. H.J. Moore, J.M. Keller, Surface-material maps of Viking landing sites on Mars. Reports of Planetary Geology and Geophysics Program—1990 (1991), NASA Tech. Memo., TM-4300, pp. 160–162 Google Scholar
  144. Z.M. Moratto, M.J. Broxton, R.A. Beyer, M. Lundy, K. Husmann, Ames stereo pipeline, NASA’s open source automated stereogrammetry software, in Lunar Planet Sci. XLI (Lunar and Planetary Institute, Houston, 2010). Abstract #2364 Google Scholar
  145. G.A. Morgan, B.A. Campbell, L.M. Carter, J.J. Plaut, R.J. Phillips, 3D reconstruction of the source and scale of buried young flood channels on Mars. Science 340, 607–610 (2013). doi: 10.1126/science.1234787 ADSCrossRefGoogle Scholar
  146. G.A. Morgan, B.A. Campbell, L.M. Carter, J.J. Plaut, Evidence for the episodic erosion of the Medusae Fossae Formation preserved within the youngest volcanic province on Mars. Geophys. Res. Lett. 42(18), 7336–7342 (2015). ADSCrossRefGoogle Scholar
  147. J. Mouginot, A. Pommerol, P. Beck, W. Kofman, S.M. Clifford, Dielectric map of the Martian northern hemisphere and the nature of plain filling materials. Geophys. Res. Lett. 39, L02202 (2012). doi: 10.1029/2011GL050286 ADSCrossRefGoogle Scholar
  148. K. Mueller, M.P. Golombek, Compressional structures on Mars. Annu. Rev. Earth Planet. Sci. 32, 435–464 (2004) ADSCrossRefGoogle Scholar
  149. N. Murdock, D. Mimoun, R.F. Garcia, T. Kawamura, P. Lognonné, Evaluating the wind-induced mechanical noise on the InSight seismometers. Space Sci. Rev. (2016, this issue). doi: 10.1007/s11214-016-0311-y Google Scholar
  150. N.W. Murphy, B.M. Jakosky, S.C. Rafkin, K.W. Larsen, N.E. Putzig, M.T. Mellon, Thermophysical properties of the Isidis basin, Mars. J. Geophys. Res. 112, E05004 (2007). doi: 10.1029/2005JE002586 ADSGoogle Scholar
  151. M. Natarajan, A.D. Cianciolo, T.D. Fairlie, M.I. Richardson, T.H. McConnochie, Sensitivity of simulated Martian atmospheric temperature to prescribed dust opacity distribution: comparison of model results with reconstructed data from Mars Exploration Rover missions. J. Geophys. Res. 120, 11 (2015). doi: 10.1002/2015JE004813 CrossRefGoogle Scholar
  152. G. Neukum, R. Jaumann, the HRSC Co-Investigator Team, HRSC, The high resolution stereo camera of Mars express. ESA special publications, SP-1240 (2004) Google Scholar
  153. G.A. Neumann, J.B. Abshire, O. Aharonson, J.B. Garvin, X. Sun, M.T. Zuber, Mars Orbiter Laser Altimeter pulse width measurements and footprint scale roughness. Geophys. Res. Lett. 30, 1561–1565 (2003) ADSCrossRefGoogle Scholar
  154. S.A. Nowicki, P.R. Christensen, Rock abundance on Mars from the Thermal Emission Spectrometer. J. Geophys. Res. 112, E05007 (2007). doi: 10.1029/2006JE002798 ADSCrossRefGoogle Scholar
  155. F.D. Palluconi, H.H. Kieffer, Thermal inertia mapping of Mars from 60°S to 60°N. Icarus 45, 415–426 (1981) ADSCrossRefGoogle Scholar
  156. T.J. Parker, D. Gorsline, R.S. Saunders, D. Pieri, D. Schneeberger, Coastal geomorphology of the martian northern plains. J. Geophys. Res. 98(E6), 11061–11078 (1993) ADSCrossRefGoogle Scholar
  157. R.J. Pike, Control of crater morphology by gravity and target type: Mars, Earth, Moon, in 11th Lunar Planet. Sci. Conf. (1980), pp. 2159–2189 Google Scholar
  158. R.J. Pike, D.E. Wilhelms, Secondary-impact craters on the Moon: topographic form and geologic process, in 9th Lunar Planet. Sci. Conf. (1978), pp. 907–909 Google Scholar
  159. S. Piqueux, P.R. Christensen, A model of thermal conductivity for planetary soils: 2. Theory for cemented soils. J. Geophys. Res. 114, E09006 (2009). doi: 10.1029/2008je003309 ADSGoogle Scholar
  160. S. Piqueux, P.R. Christensen, Temperature-dependent thermal inertia of homogeneous Martian regolith. J. Geophys. Res. 116, E07004 (2011). doi: 10.1029/2011je003805 ADSCrossRefGoogle Scholar
  161. S. Piqueux, A. Kleinboehl, M.P. Golombek, Thermal inertia mapping using Climate Sounder measurements, in Fall Meeting, Dec. 15–19, 2014 (American Geophys. Un., San Francisco, 2014). Abstract P32A-4021 Google Scholar
  162. A. Pivarunas, N.H. Warner, M.P. Golombek, Onset diameter of rocky ejecta craters in western Elysium Planitia, Mars: Constraints for regolith thickness at the InSight landing site, in 46th Lunar and Planetary Science (Lunar and Planetary Institute, Houston, 2015). Abstract #1129 Google Scholar
  163. L.K. Pleskot, E.D. Miner, Time variability of Martian bolometric albedo. Icarus 45, 179–201 (1981) ADSCrossRefGoogle Scholar
  164. B.S. Preblich, A.S. McEwen, D.M. Studer, Mapping rays and secondary craters from the Martian crater Zunil. J. Geophys. Res. 112, E05006 (2007). doi: 10.1029/2006JE002817 ADSCrossRefGoogle Scholar
  165. M.A. Presley, P.R. Christensen, Thermal conductivity measurements of particulate materials, Part II: Results. J. Geophys. Res. 102, 6551–6566 (1997a) ADSCrossRefGoogle Scholar
  166. M.A. Presley, P.R. Christensen, Thermal conductivity measurements of particulate materials, Part I: A review. J. Geophys. Res. 102, 6535–6549 (1997b) ADSCrossRefGoogle Scholar
  167. N.E. Putzig, M.T. Mellon, Apparent thermal inertia and the surface heterogeneity of Mars. Icarus 191(1), 68–94 (2007a). doi: 10.1016/j.icarus.2007.1005.1013 ADSCrossRefGoogle Scholar
  168. N.E. Putzig, M.T. Mellon, Thermal behavior of horizontally mixed surfaces on Mars. Icarus 191(1), 52–67 (2007b). doi: 10.1016/j.icarus.2007.1003.1022 ADSCrossRefGoogle Scholar
  169. N.E. Putzig, M.T. Mellon, R.E. Arvidson, K.A. Kretke, Global thermal inertia and surface properties of Mars from the MGS mapping mission. Icarus 173, 325–341 (2005) ADSCrossRefGoogle Scholar
  170. N.E. Putzig, R.J. Phillips, B.A. Campbell, J.W. Holt, J.J. Plaut, L.M. Carter, A.F. Egan, F. Bernardini, A. Safaeinili, R. Seu, Subsurface structure of Planum Boreum from Mars Reconnaissance Orbiter Shallow Radar soundings. Icarus 204, 443–457 (2009) ADSCrossRefGoogle Scholar
  171. N.E. Putzig, R.J. Phillips, B.A. Campbell, M.T. Mellon, J.W. Holt, B.J. Davis, T.C. Brothers, Shallow Radar soundings and surface roughness at past, present, and proposed landing sites on Mars. J. Geophys. Res. 119, 1936–1949 (2014). doi: 10.1002/2014JE004646 CrossRefGoogle Scholar
  172. N.E. Putzig, G.A. Morgan, B.A. Campbell, C. Grima, I.B. Smith, R.J. Phillips, M. Golombek, Radar properties of the proposed InSight landing site in western Elysium Planitia on Mars, in 47th Lunar Planetary Science (Lunar and Planetary Institute, Houston, 2016). Abstract #1655 Google Scholar
  173. N.E. Putzig, G.A. Morgan, B.A. Campbell, C. Grima, I.B. Smith, R.J. Phillips, Radar-Derived Properties of the InSight Landing Site in Western Elysium Planitia on Mars. Space Sci. Rev. (2016, this issue). doi: 10.1007/s11214-016-0322-8 Google Scholar
  174. S.C. Rafkin, R.M. Haberle, T.I. Michaels, The Mars Regional Atmospheric Modeling System (MRAMS): model description and selected simulations. Icarus 151, 228–256 (2001). doi: 10.1006/icar.2001.6605 ADSCrossRefGoogle Scholar
  175. S.C.R. Rafkin, T.I. Michaels, Meteorological predictions for 2003 Mars Exploration Rover high-priority landing sites. J. Geophys. Res. 108(E12), 8091 (2003). doi: 10.1029/2002JE002027 CrossRefGoogle Scholar
  176. M.A. Ravine, R.A.F. Grieve, An analysis of morphologic variations in simple lunar craters, J. Geophys. Res, 81, E75–E83 (1986). Proc. 17th Lunar Planet. Sci. Conf. ADSCrossRefGoogle Scholar
  177. J.J. Rennilson, J.L. Dragg, E.C. Morris, E.M. Shoemaker, A. Turkevich, Lunar surface topography. Surveyor I mission report, part II: Scientific data and results. NASA JPL Technical Report #32-1023, p. 7–44 (1966) Google Scholar
  178. P. Rosin, E. Rammler, The laws governing the fineness of powdered coal. J. Inst. Fuel 7, 29–36 (1933) Google Scholar
  179. S. Ruff, P.R. Christensen, Bright and dark regions on Mars: particle size and mineralogical characteristics based on Thermal Emission Spectrometer data. J. Geophys. Res. 107(E12), 5127 (2002). doi: 10.1029/2001JE001580 CrossRefGoogle Scholar
  180. J.D. Rummel et al., A new analysis of Mars “special regions”: findings of the second MEPAG special regions science analysis group (SR-SAG2). Astrobiology 14(11), 887–968 (2014). doi: 10.1089/ast.2014.1227 ADSCrossRefGoogle Scholar
  181. P.S. Russell, J.A. Grant, K.K. Williams, L.M. Carter, W. Brent Garry, I.J. Daubar, Ground penetrating radar geologic field studies of the ejecta of Barringer Meteorite Crater, Arizona, as a planetary analog. J. Geophys. Res. 118, 1915–1933 (2013). doi: 10.1002/jgre.20145 CrossRefGoogle Scholar
  182. P. Schultz, J. Singer, A comparison of secondary craters on the Moon, Mercury, and Mars, in 11th Lunar Planet. Sci. Conf. (1980), pp. 2243–2259 Google Scholar
  183. R. Seu, D. Biccari, R. Orosei, L.V. Lorenzoni, R.J. Phillips, L. Marinangeli, G. Picardi, A. Masdea, E. Zampolini, SHARAD: the MRO 2005 shallow radar. Planet. Space Sci. 52, 157–166 (2004) ADSCrossRefGoogle Scholar
  184. R. Seu, R.J. Phillips, D. Biccari, R. Orosei, A. Masdea, G. Picardi, A. Safaeinili, B.A. Campbell, J.J. Plaut, L. Marinangeli, S.E. Smrekar, D.C. Nunes, SHARAD sounding radar on the Mars Reconnaissance Orbiter. J. Geophys. Res. 112(E5), E05S05 (2007). doi: 10.1029/2006JE002745 ADSCrossRefGoogle Scholar
  185. E.M. Shoemaker, E.C. Morris, Thickness of the regolith, in Surveyor: Program Results, NASA Special Paper, vol. 184 (U.S. Government Printing Office, Washington, 1969), pp. 96–98 Google Scholar
  186. D.E. Smith et al., Mars Orbiter Laser Altimeter (MOLA): experiment summary after the first year of global mapping of Mars. J. Geophys. Res. 106, 23,689–23,722 (2001b) ADSCrossRefGoogle Scholar
  187. M.D. Smith, J.C. Pearl, B.J. Conrath, P.R. Christensen, Thermal Emission Spectrometer results: Mars atmospheric thermal structure and aerosol distribution. J. Geophys. Res. 106(E10), 23929–23945 (2001a) ADSCrossRefGoogle Scholar
  188. G.G. Sorrells, J.A. McDonald, Z.A. Der, E. Herrin, Earth motion caused by local atmospheric pressure changes. Geophys. J. R. Astron. Soc. 26, 83–98 (1971) ADSCrossRefGoogle Scholar
  189. D.A. Spencer, D.S. Adams, E. Bonfiglio, M. Golombek, R. Arvidson, K. Seelos, Phoenix landing site hazard assessment and selection. J. Spacecr. Rockets 46(6), 1196–1201 (2009). doi: 10.2514/1.43932 ADSCrossRefGoogle Scholar
  190. M. Spiegel, Kombinierte Ausgleichung der Mars Express HRSC Zeilenbilddaten und des Mars Global Surveyor MOLA DGM. PhD thesis, DGK-C, 610 (Deutsche Geodätische Kommission, Munich, 2007) Google Scholar
  191. A. Spiga, F. Forget, A new model to simulate the Martian mesoscale and microscale atmospheric circulation: validation and first results. J. Geophys. Res. 114, E02009 (2009). doi: 10.1029/2008JE003242 ADSCrossRefGoogle Scholar
  192. T. Spohn et al., InSight: Measuring the martian heat flow using the Heat Flow and Physical Properties Package (HP3), in 43rd Lunar Planetary Science (Lunar and Planetary Institute, Houston, 2012). Abstract #1445 Google Scholar
  193. S.W. Squyres et al., Ice in the Martian regolith, in MARS, ed. by H.H. Kieffer, B.M. Jakosky, C.W. Snyder, M.S. Matthews (University of Arizona Press, Tucson, 1992), pp. 523–554. Chap. 16, 1498 pp. Google Scholar
  194. L.J. Steele, S.R. Lewis, M.R. Patel, The radiative impact of water ice clouds from a reanalysis of Mars Climate Sounder data. Geophys. Res. Lett. 41(13), 4471–4478 (2014). doi: 10.1002/2014gl060235 ADSCrossRefGoogle Scholar
  195. P.M. Stella, J.A. Herman, The Mars surface and solar array performance, in 35th IEEE Photovoltaic Specialists Conference, Honolulu, 20–25 June 2010 (2010), pp. 002631–002635. doi: 10.1109/PVSC.2010.5617185 Google Scholar
  196. R. Sullivan et al., Aeolian processes at the Mars Exploration Rover Meridiani Planum landing site. Nature 436, 58–61 (2005, July). doi: 10.1038/nature03641 ADSCrossRefGoogle Scholar
  197. S. Sutton et al., HIRISE digital terrain models: updates and advances, in 2nd Planetary Data Workshop, Flagstaff, AZ, June 8–11, 2015 (Lunar and Planetary Institute, Houston, 2015). Abstract #7056 Google Scholar
  198. J. Sweeney, N.H. Warner, M.P. Golombek, R. Kirk, R.L. Fergason, A. Pivarunas, Crater degradation and surface erosion rates at the InSight landing site, western Elysium Planitia, Mars, in 47th Lunar Planetary Science (Lunar and Planetary Institute, Houston, 2016). Abstract #1576 Google Scholar
  199. L.K. Tamppari, J. Barnes, E. Bonfiglio, B. Cantor, A.J. Friedson, A. Ghosh, M.R. Grover, D. Kass, T.Z. Martin, M. Mellon, T. Michaels, J. Murphy, S.C.R. Rafkin, M.D. Smith, G. Tsuyuki, D. Tyler Jr., M. Wolff, Expected atmospheric environment for the Phoenix landing season and location. J. Geophys. Res. 113, E00A20 (2008). doi: 10.1029/2007JE003034 ADSCrossRefGoogle Scholar
  200. K. Tanaka et al., Geologic map of Mars. U.S. Geol. Surv. Sci. Invest. Map 3292 (2014) Google Scholar
  201. T.W. Thompson, W.J. Roberts, W.K. Hartmann, R.W. Shorthill, S.H. Zisk, Blocky craters—implications about the lunar megaregolith. Moon Planets 21, 319–342 (1979) ADSCrossRefGoogle Scholar
  202. A.D. Toigo, M.I. Richardson, Meteorology of proposed Mars Exploration Rover landing sites. J. Geophys. Res. 108(E12), 8092 (2003). doi: 10.1029/2003JE002064 CrossRefGoogle Scholar
  203. L.L. Tornabene, J.E. Moersch, H.Y. McSween, A.S. McEwen, J.L. Piatek, K.A. Milam, P.R. Christensen, Identification of large (2–10 km) rayed craters on Mars in THEMIS thermal infrared images: implications for possible Martian meteorite source regions. J. Geophys. Res. 111, E10006 (2006). doi: 10.1029/2005JE002600 ADSCrossRefGoogle Scholar
  204. L.L. Tornabene, V. Ling, G.R. Osinski, J.M. Boyce, T.N. Harrison, A.S. McEwen, A revised global depth-diameter scaling relationship for Mars based on pitted impact melt-bearing craters, in 44th Lunar Planetary Science Conference (Lunar and Planetary Institute, Houston, 2013). Abstract #2592 Google Scholar
  205. D.L. Turcotte, Fractals and Chaos in Geology and Geophysics, 2nd edn. (Cambridge U. Press, Cambridge, 1997) zbMATHCrossRefGoogle Scholar
  206. D. Tyler Jr., J.R. Barnes, R.M. Haberle, Simulation of surface meteorology at the Pathfinder and VL1 sites using a Mars mesoscale model. J. Geophys. Res. 107(E4), 5018 (2002). doi: 10.1029/2001JE001618 CrossRefGoogle Scholar
  207. J. Vaucher, D. Baratoux, N. Mangold, P. Pinet, K. Kurita, M. Grégoire, The volcanic history of central Elysium Planitia: implications for martian magmatism. Icarus 204, 418–442 (2009) ADSCrossRefGoogle Scholar
  208. H. Wang, M.I. Richardson, The origin, evolution, and trajectory of large dust storms on Mars during Mars years 24–30 (1999–2011). Icarus 251, 112–127 (2015). doi: 10.1016/j.icarus.2013.10.033 ADSCrossRefGoogle Scholar
  209. N.H. Warner, T.K.P. Gregg, Evolved lavas on Mars? Observations from southwest Arsia Mons and Sabancaya volcano. Peru. J. Geophys. Res. 108 (2003). doi: 10.1029/2002JE001969
  210. N.H. Warner, M.P. Golombek, C. Bloom, N. Wigton, C. Schwartz, Regolith thickness in western Elysium Planitia: Constraints for the InSight mission, in 45th Lunar Planetary Science (Lunar and Planetary Institute, Houston, 2014). Abstract #2217 Google Scholar
  211. N.H. Warner, M.P. Golombek, J. Sweeney, A. Pivarunas, Regolith thickness estimates from the size frequency distribution of rocky ejecta craters in southwestern Elysium Planitia, Mars, in 47th Lunar Planetary Science (Lunar and Planetary Institute, Houston, 2016). Abstract #2231 Google Scholar
  212. N.H. Warner, M.P. Golombek, J. Sweeney, R. Fergason, R. Kirk, C. Schwartz Near surface stratigraphy and regolith production in southwestern Elysium Planitia, Mars: implications for Hesperian-Amazonian terrains and the InSight lander mission. Space Sci. Rev. (2016, this issue), submitted Google Scholar
  213. T.R. Watters, B. Campbell, L. Carter, C.J. Leuschen, J.J. Plaut, G. Picardi, R. Orosei, A. Safaeinili, S.M. Clifford, W.M. Farrell, A.B. Ivanov, R.J. Phillips, E.R. Stofan, Radar sounding of the Medusae Fossae Formation Mars: equatorial ice or dry, low-density deposits? Science 318(5853), 1125–1128 (2007). ADSCrossRefGoogle Scholar
  214. N.R. Wigton, N. Warner, M. Golombek, Terrain mapping of the InSight landing region: Western Elysium Planitia, Mars, in 45th Lunar and Planetary Science (Lunar and Planetary Institute, Houston, 2014). Abstract #1234 Google Scholar
  215. R.M.E. Williams et al., Martian fluvial conglomerates at Gale crater. Science 340, 1068–1072 (2013). doi: 10.1126/science.1237317 ADSCrossRefGoogle Scholar
  216. R.J. Wilson, S.D. Guzewich, Influence of water ice clouds on nighttime tropical temperature structure as seen by the Mars Climate Sounder. Geophys. Res. Lett. 41(10), 3375–3381 (2014). doi: 10.1002/2014gl060086 ADSCrossRefGoogle Scholar
  217. M.M. Withers, R.C. Aster, C.J. Young, E.P. Chael, High-Frequency analysis of seismic background noise as a function of wind speed and shallow depth. Bull. Seismol. Soc. Am. 86, 1507–1515 (1996) Google Scholar
  218. K.H. Wohletz, M.F. Sheridan, W.K. Brown, Particle size distributions and the sequential fragmentation/transport theory applied to volcanic ash. J. Geophys. Res. 94, 15,703–15,721 (1989). 1989 ADSCrossRefGoogle Scholar
  219. C.A. Wood, L. Andersson, New morphometric data for fresh lunar craters, in 9th Proc. Lunar Planet. Sci. Conf. (1978), pp. 3669–3689 Google Scholar
  220. M.T. Zuber, D.E. Smith, S.C. Solomon, D.O. Muhleman, J.W. Head, J.B. Garvin, J.B. Abshire, J.L. Bufton, The Mars Observer Laser Altimeter investigation. J. Geophys. Res. 97(E5), 7781–7797 (1992). doi: 10.1029/2005JE002605 ADSCrossRefGoogle Scholar
  221. R.W. Zurek, L.J. Martin, Interannual variability of planet-encircling dust storms on Mars. J. Geophys. Res. 98, 3247–3325 (1993) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • M. Golombek
    • 1
    Email author
  • D. Kipp
    • 1
  • N. Warner
    • 1
    • 2
  • I. J. Daubar
    • 1
  • R. Fergason
    • 3
  • R. L. Kirk
    • 3
  • R. Beyer
    • 4
  • A. Huertas
    • 1
  • S. Piqueux
    • 1
  • N. E. Putzig
    • 5
    • 6
  • B. A. Campbell
    • 7
  • G. A. Morgan
    • 7
  • C. Charalambous
    • 8
  • W. T. Pike
    • 8
  • K. Gwinner
    • 9
  • F. Calef
    • 1
  • D. Kass
    • 1
  • M. Mischna
    • 1
  • J. Ashley
    • 1
  • C. Bloom
    • 1
    • 10
    • 11
  • N. Wigton
    • 1
    • 12
  • T. Hare
    • 3
  • C. Schwartz
    • 1
  • H. Gengl
    • 1
  • L. Redmond
    • 1
    • 13
  • M. Trautman
    • 1
    • 14
  • J. Sweeney
    • 2
  • C. Grima
    • 13
  • I. B. Smith
    • 5
    • 6
  • E. Sklyanskiy
    • 1
  • M. Lisano
    • 1
  • J. Benardini
    • 1
  • S. Smrekar
    • 1
  • P. Lognonné
    • 15
  • W. B. Banerdt
    • 1
  1. 1.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA
  2. 2.Department of Geological SciencesState University of New York at GeneseoGeneseoUSA
  3. 3.Astrogeology Science CenterU.S. Geological SurveyFlagstaffUSA
  4. 4.Sagan Center at the SETI Institute and NASA Ames Research CenterMoffett FieldUSA
  5. 5.Southwest Research InstituteBoulderUSA
  6. 6.Planetary Science InstituteLakewoodUSA
  7. 7.NASM CEPSSmithsonian InstitutionWashingtonUSA
  8. 8.Department of Electrical and Electronic EngineeringImperial CollegeLondonUK
  9. 9.German Aerospace Center (DLR)Institute of Planetary ResearchBerlinGermany
  10. 10.Occidental CollegeLos AngelesUSA
  11. 11.Central Washington UniversityEllensburgUSA
  12. 12.Department of Earth and Planetary SciencesUniversity of TennesseeKnoxvilleUSA
  13. 13.Institute for GeophysicsUniversity of TexasAustinUSA
  14. 14.MS GIS ProgramUniversity of RedlandsRedlandsUSA
  15. 15.Institut Physique du Globe de ParisUniversité Paris SorbonneParisFrance

Personalised recommendations