Abstract
The InSight lander will deliver geophysical instruments to Mars in 2018, including seismometers installed directly on the surface (Seismic Experiment for Interior Structure, SEIS). Routine operations will be split into two services, the Mars Structure Service (MSS) and Marsquake Service (MQS), which will be responsible, respectively, for defining the structure models and seismicity catalogs from the mission. The MSS will deliver a series of products before the landing, during the operations, and finally to the Planetary Data System (PDS) archive. Prior to the mission, we assembled a suite of a priori models of Mars, based on estimates of bulk composition and thermal profiles. Initial models during the mission will rely on modeling surface waves and impact-generated body waves independent of prior knowledge of structure. Later modeling will include simultaneous inversion of seismic observations for source and structural parameters. We use Bayesian inversion techniques to obtain robust probability distribution functions of interior structure parameters. Shallow structure will be characterized using the hammering of the heatflow probe mole, as well as measurements of surface wave ellipticity. Crustal scale structure will be constrained by measurements of receiver function and broadband Rayleigh wave ellipticity measurements. Core interacting body wave phases should be observable above modeled martian noise levels, allowing us to constrain deep structure. Normal modes of Mars should also be observable and can be used to estimate the globally averaged 1D structure, while combination with results from the InSight radio science mission and orbital observations will allow for constraint of deeper structure.
Similar content being viewed by others
References
K. Aki, P.G. Richards, Quantitative Seismology, 2nd edn. (University Science Books, Sausalito, 2002)
C.J. Ammon, G.E. Randall, G. Zandt, On the nonuniqueness of receiver function inversions. J. Geophys. Res. 95(B10), 15303–15318 (1990)
D. Anderson, W. Miller, G. Latham, Y. Nakamura, M. Toksöz, Seismology on Mars. J. Geophys. Res. 82, 4524–4546 (1977)
J. Anderson, P. Bodin, J. Brune, J. Prince, S. Singh, R. Quaas, M. Onate, Strong ground motion from the Michoacan, Mexico, earthquake. Science 233, 1043–1049 (1986)
H. Arai, K. Tokimatsu, Three-dimensional Vs profiling using microtremors in Kushiro, Japan. Earthq. Eng. Struct. Dyn. 37, 845–859 (2008). doi:10.1002/eqe.788
W. Banerdt, S. Smrekar, P. Lognonné, T. Spohn, S. Asmar, D. Banfield, L. Boschi, U. Christensen, V. Dehant, W. Folkner, D. Giardini, W. Goetze, M. Golombek, M. Grott, T. Hudson, C. Johnson, G. Kargl, N. Kobayashi, J. Maki, D. Mimoun, A. Mocquet, P. Morgan, M. Panning, W. Pike, J. Tromp, T. van Zoest, R. Weber, M. Wieczorek, R. Garcia, K. Hurst, InSight: a discovery mission to explore the interior of Mars, in 44th Lunar and Planetary Science Conference, Lunar and Planetary Inst., Houston, TX (2013). p Abstract #1915. http://www.lpi.usra.edu/meetings/lpsc2013/pdf/1915.pdf
P.Y. Bard, H. Cadet, B. Endrun, M. Hobiger, F. Renalier, N. Theodulidis, M. Ohrnberger, D. Fäh, F. Sabetta, P. Teves-Costa, A.M. Duval, C. Cornou, B. Guilier, M. Wathelet, A. Savvaidis, A. Köhler, J. Burjanek, V. Poggi, G. Gassner-Stamm, H.B. Havenith, S. Hailemikael, J. Almeida, I. Rodrigues, I. Veludo, C. Lacave, S. Thomassin, M. Kristekova, From non-invasive site characterization to site amplification: recent advances in the use of ambient vibration measurements, in Earthquake Engineering in Europe, ed. by M. Garevski, A. Ansal. Geotechnical, Geological, and Earthquake Engineering, vol. 17 (Springer Science + Business Media B.V., Dordrecht, 2010), pp. 105–123. Chap. 5
V. Belleguic, P. Lognonné, M. Wieczorek, Constraints on the Martian lithosphere from gravity and topography data. J. Geophys. Res. 110(E11), 005 (2005). doi:10.1029/2005JE002437
P. Bézier, Définition numérique des courbes et surfaces I. Automatisme 11, 625–632 (1966)
P. Bézier, Définition numérique des courbes et surfaces II. Automatisme 12, 17–21 (1967)
B.G. Bills, A. Neumann, D.E. Smith, M.T. Zuber, Improved estimate of tidal dissipation within Mars from MOLA obervations of the shadow of Phobos. J. Geophys. Res. 110(E07), 004 (2005). doi:10.1029/2004JE002376
T. Bodin, M. Sambridge, H. Tkalčić, P. Arroucau, K. Gallagher, N. Rawlinson, Transdimensional inversion of receiver functions and surface wave dispersion. J. Geophys. Res. 117(B02), 301 (2012). doi:10.1029/2011JB008560
B.A. Bolt, J.S. Derr, Free bodily vibrations of the terrestrial planets Vistas Astron. 11, 69–102 (1969)
S. Bonnefoy-Claudet, C. Cornou, P.Y. Bard, F. Cotton, P. Moczo, J. Kristek, D. Fäh, H/V ratio: a tool for site effects evaluation. Results from 1-D noise simulations. Geophys. J. Int. 167, 827–837 (2006). doi:10.1111/j.1365-246X.2006.03154.x
S. Bonnefoy-Claudet, A. Köhler, C. Cornou, M. Wathelet, P.Y. Bard, Effects of Love waves on microtremor H/V ration. Bull. Seismol. Soc. Am. 98, 288–300 (2008). doi:10.1785/0120070063
R. Borchard, Effects of local geology on ground motion near San Francisco Bay. Bull. Seismol. Soc. Am. 60, 29–61 (1970)
M. Böse, J.F. Clinton, S. Ceylan, F. Euchner, M. van Driel, A. Khan, D. Giardini, P. Lognonné, W.B. Banerdt, A probabilistic framework for single-station location of seismicity on Earth and Mars. Phys. Earth Planet. Inter. (2016). doi:10.1016/j.pepi.2016.11.003
E. Bozdağ, Y. Ruan, N. Metthez, A. Khan, K. Leng, M. van Driel, C. Larmat, D. Giardini, J. Tromp, P. Lognonné, W.B. Banerdt, Simulations of seismic wave propagation on Mars. Space Sci. Rev. (2016, this issue)
D.M. Burr, J.A. Grier, A.S. McEwen, L.P. Keszthelyi, Repeated aqueous flooding from the Cerberus Fossae: evidence for very recently extant, deep groundwater on Mars. Icarus 159, 53–73 (2002). doi:10.1006/icar.2002.6921
H. Chenet, P. Lognonné, M. Wieczorek, H. Mizutani, Lateral variations of lunar crustal thickness from the apollo seismic data set. Earth Planet. Sci. Lett. 243, 1–14 (2006)
J.A.D. Connolly, Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation. Earth Planet. Sci. Lett. 236, 524–541 (2005)
J.A.D. Connolly, The geodynamic equation of state: what and how. Geochem. Geophys. Geosyst. 10(Q10), 014 (2009). doi:10.1029/2009GC002540
G. Dal Moro, Joint analysis of Rayleigh-wave dispersion and HVSR of lunar seismic data from the Apollo 14 and 16 sites. Icarus 254, 338–349 (2015). doi:10.1016/j.icarus.2015.03.017
G.H. Darwin, A numerical estimate of the rigidity of the Earth. Nature 27, 22–23 (1882). doi:10.1038/027022b0
I.J. Daubar, A.S. McEwen, S. Byrne, M.R. Kennedy, B. Ivanov, The current martian cratering rate. Icarus 225, 506–516 (2013)
P.M. Davis, Meteoroid impacts as seismic sources on Mars. Icarus 105, 469–478 (1993)
V. Dehant, B. Ducarme, Comparison between the theoretical and observed tidal gravimetric factors. Phys. Earth Planet. Inter. 49, 192–212 (1987)
P. Delage, F. Karakostas, A. Dhemaied, M. Belmokhtar, D. De Laure, J.C. Dupla, Y.J. Cui, An investigation of the geotechnical properties of some Martian regolith simulants with respect to the surface properties of the InSight mission landing site. Space Sci. Rev. (2016, this issue)
J. Dettmer, S.E. Dosso, T. Bodin, J. Stipčević, P.R. Cummins, Direct-seismogram inversion for receiver-side structure with uncertain source–time functions. Geophys. J. Int. 203(2), 1373–1387 (2015)
A. Deuss, Global observations of mantle discontinuities using SS and PP precursors. Surv. Geophys. 30, 301–326 (2009)
G. Dreibus, H. Wänke, Mars: a volatile rich planet. Meteoritics 20, 367–382 (1985)
M. Drilleau, E. Beucler, A. Mocquet, O. Verhoeven, G. Moebs, G. Burgos, J.P. Montagner, P. Vacher, A Bayesian approach to infer radial models of temperature and anisotropy in the transition zone from surface wave dispersion curves. Geophys. J. Int. 195, 1165–1183 (2013)
F. Duennebier, G.H. Sutton, Thermal moonquakes. J. Geophys. Res. 79, 4351–4363 (1974)
A. Dziewonski, D. Anderson, Preliminary Reference Earth Model. Phys. Earth Planet. Inter. 25, 297–356 (1981)
L.T. Elkins-Tanton, E.M. Parmentier, P.C. Hess, Magma ocean fractional crystallization and cumulate overturn in terrestrial planets: implications for Mars. Meteorit. Planet. Sci. 38(12), 1753–1771 (2003). doi:10.1111/j.1945-5100.2003.tb00013.x
L.T. Elkins-Tanton, S.E. Zaranek, E.M. Parmentier, P.C. Hess, Early magnetic field and magmatic activity on Mars from magma ocean cumulate overturn. Earth Planet. Sci. Lett. 236, 1–12 (2005)
B. Endrun, Love wave contribution to the ambient vibration H/V amplitude peak observed with array measurements. J. Seismol. 15, 443–472 (2011). doi:10.1007/s10950-010-9191-x
B. Endrun, M. Ohrnberger, A. Savvaidis, On the repeatability and consistency of ambient vibration array measurements. Bull. Earthq. Eng. 8, 535–570 (2010). doi:10.1007/s10518-009-9159-9
D. Fäh, F. Kind, D. Giardini, A theoretical investigation of average H/V ratios. Geophys. J. Int. 145, 535–549 (2001)
D. Fäh, M. Wathelet, M. Kristekova, H. Havenith, B. Endrun, G. Stamm, V. Poggi, J. Burjanek, C. Cornou, Using ellipticity information for site characterisation. NERIES JRA4 “Geotechnical Site Characterisation”. task B2, final report, EC project number: 026130 (2009)
V. Farra, L. Vinnik, Upper mantle stratification by P and S receiver functions. Geophys. J. Int. 141, 699–712 (2000)
A. Fichtner, B.L.N. Kennett, H. Igel, H.P. Bunge, Full seismic waveform tomography for upper-mantle structure in the Australasian region using adjoint methods. Geophys. J. Int. 179 (2009). doi:10.1111/j.1365-246X.2009.04368.x
W.M. Folkner, S.W. Asmar, V. Dehant, R.W. Warwick, The rotation and interior structure experiment (RISE) for the InSight mission to Mars, in 43rd Lunar and Planetary Science Conference, Lunar and Planetary Inst., Houston, TX (2012). p Abstract #1721. http://www.lpi.usra.edu/meetings/lpsc2012/pdf/1721.pdf
J. Gagnepain-Beyneix, P. Lognonné, H. Chenet, D. Lombardi, T. Spohn, A seismic model of the lunar mantle and constraints on temperature and mineralogy. Phys. Earth Planet. Inter. 159, 140–166 (2006)
R. Garcia, J. Gagnepain-Beyneix, S. Chevrot, P. Lognonné, Very preliminary reference Moon model. Phys. Earth Planet. Inter. 188, 96–113 (2011)
A. García-Jerez, F. Luzón, F.J. Sánchez-Sesma, E. Lunedei, D. Albarello, M.A. Santoyo, J. Almendros, Diffuse elastic wavefield within a simple crustal model. Some consequences for low and high frequencies. J. Geophys. Res. 118, 5577–5595 (2013). doi:10.1002/2013JB010107
A. Genova, S. Goosens, F.G. Lemoine, E. Mazarico, G.A. Neumann, D.E. Smith, M.T. Zuber, Seasonal and static gravity field of Mars from MGS, Mars Odyssey and MRO radio science. Icarus 272, 228–245 (2016). doi:10.1016/j.icarus.2016.02.050
F. Gilbert, A. Dziewoński, An application of normal mode theory to the retrieval of structural parameters and source mechanisms from seismic spectra. Philos. Trans. R. Soc. Lond. A 278, 187–269 (1975)
M. Golombek, A revision of Mars seismicity from surface faulting, in 33rd Lunar and Planetary Science Conference, Lunar and Planetary Inst., Houston, TX (2002). p Abstract #1244
M. Golombek, W. Banerdt, K. Tanaka, D. Tralli, A prediction of Mars seismicity from surface faulting. Science 258, 979–981 (1992)
M.P. Golombek, Constraints on the largest marsquake, in 25th Lunar and Planetary Science Conference (1994), pp. 441–442
M.P. Golombek, D. Kipp, N. Warner, I.J. Daubar, R. Fergason, R. Kirk, R. Beyer, A. Huertas, S. Piqueux, N. Putzig, B.A. Campbell, G. Morgan, C. Charalambous, W.T. Pike, K. Gwinner, F. Calef, J. Ashley, D. Kass, M. Mischna, C. Bloom, N. Wigton, C. Schwartz, H. Gengl, L. Redmond, J. Sweeney, E. Sklyanskiy, M. Lisano, J. Benardino, S. Smrekar, W.B. Banerdt, Selection of the InSight landing site. Space Sci. Rev. (2016, this issue)
T. Gudkova, V. Zharkov, Mars: interior sturcture and excitation of free oscillations. Phys. Earth Planet. Inter. 142, 1–22 (2004)
T. Gudkova, P. Lognonné, K. Miljković, J. Gagnepain-Beyneix, Impact cutoff frequency—momentum scaling law inverted from Apollo seismic data. Earth Planet. Sci. Lett. 427, 57–65 (2015). doi:10.1016/j.epsl.2015.06.037
T.C. Hanks, D.M. Boore, Moment-magnitude relations in theory and practice. J. Geophys. Res. B89, 6229–6235 (1984)
W.K. Hartmann, Martian cratering 8: isochron refinement and the chronology of Mars. Icarus 174, 294–320 (2005)
W. Hastings, Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57, 97–109 (1970)
R.B. Herrmann, Computer programs in seismology: an evolving tool for instruction and research. Seismol. Res. Lett. 84, 1081–1088 (2013). doi:10.1785/0220110096
M. Hobiger, P.Y. Bard, C. Cornou, N. Le Bihan, Single station determination of Rayleigh wave ellipticity by using the random decrement technique (RayDec). Geophys. Res. Lett. 36(L14), 303 (2009). doi:10.1029/2009GL038863
M. Hobiger, N. Le Bihan, C. Cornou, P.Y. Bard, Multicomponent signal processing for Rayleigh wave ellipticity estimation: application to seismic hazard assessment. IEEE Signal Process. Mag. 29, 29–39 (2012). doi:10.1109/MSP.2012.2184969
M. Hobiger, C. Cornou, M. Wathelet, G. Di Giulio, B. Knapmeyer-Endrun, F. Renalier, P.Y. Bard, A. Savvaidis, S. Hailemikael, N. Le Bihan, M. Ohrnberger, N. Theodoulidis, Ground structure imaging by inversions of Rayleigh wave ellipticity: sensitivity analysis and application to European strong-motion sites. Geophys. J. Int. 192, 207–229 (2013). doi:10.1093/gji/ggs005
I. Jackson, U.H. Faul, Grainsize-sensitive viscoelastic relaxation in olivine: Towards a robust laboratory-based model for seismological application. Phys. Earth Planet. Inter. 183, 151–163 (2010). doi:10.1016/j.pepi.2010.09.005
W.L. Jaeger, L.P. Keszthelyi, A.S. McEwen, C.M. Dundas, P.S. Russell, Athabasca Valles, Mars: a lava-draped channel system. Science 317, 1709–1711 (2007). doi:10.1126/science.1143315
H.S. Jarosch, The use of surface reflections in lunar seismograms. Bull. Seismol. Soc. Am. 67(6), 1647–1659 (1977)
J. Julia, C.J. Ammon, R.B. Herrmann, A.M. Correig, Joint inversion of receiver function and surface wave dispersion observations. Geophys. J. Int. 143(1), 99–112 (2000)
H. Kawase, S. Matsushima, T. Satoh, F.J. Sánchez-Sesma, Applicability of theoretical horizontal-to-vertical ratio of microtremors based on the diffuse field concept to previously observed data. Bull. Seismol. Soc. Am. 105 (2015). doi:10.1785/0120150134
S. Kedar, J. Andrade, W.B. Banerdt, P. Delage, M. Golombek, M. Grott, T. Hudson, A. Kiely, M. Knapmeyer, B. Knapmeyer-Endrun, C. Krause, T. Kawamura, P. Lognonné, W.T. Pike, Y. Ruan, N. Teanby, J. Tromp, J. Wookey, Analysis of regolith properties using seismic signals generated by InSight’s \(\mathrm{HP}^{3}\) penetrator. Space Sci. Rev. (2016, this issue)
B. Kenda, P. Lognonné, A. Spiga, T. Kawamura, S. Kedar, W.B. Banerdt, R.D. Lorenz, Modeling of ground deformation and shallow surface waves generated by Martian dust devils and perspectives for near-surface structure inversion. Space Sci. Rev. (2016, this issue)
B.L.N. Kennett, The removal of free surface interactions from three component seismograms. Geophys. J. Int. 104(1), 153–163 (1991)
A. Khan, J. Connolly, Constraining the composition and thermal state of Mars from inversion of geophysical data. J. Geophys. Res. 113(E07), 003 (2008). doi:10.1029/2007JE002996
A. Khan, K. Mosegaard, An inquiry into the lunar interior: a nonlinear inversion of the Apollo lunar seismic data. J. Geophys. Res. 107, 5036 (2002). doi:10.1029/2001JE001658
A. Khan, K. Mosegaard, K.L. Rasmussen, A new seismic velocity model for the Moon from a Monte Carlo inversion of the Apollo lunar seismic data. Geophys. Res. Lett. 27, 1591 (2000)
A. Khan, J. Connolly, J. Maclennan, K. Mosegaard, Joint inversion of seismic and gravity data for lunar composition and thermal state. Geophys. J. Int. 168, 243–258 (2007)
A. Khan, L. Boschi, A. Connolly, On mantle chemical and thermal heterogeneities and anisotropy as mapped by inversion of global surface wave data. J. Geophys. Res. 114(B09), 305 (2009). doi:10.1029/2009JB006399
A. Khan, A. Zunino, F. Deschamps, Upper mantle compositional variations and discontinuity topography imaged beneath Australia from bayesian inversion of surface-wave phase velocities and thermochemical modeling. J. Geophys. Res. 116 (2013). doi:10.1002/jgrb.50304
A. Khan, J.A.D. Connolly, A. Pommier, J. Noir, Geophysical evidence for melt in the deep lunar interior and implications for lunar evolution. J. Geophys. Res. 119, 2197–2221 (2014). doi:10.1002/2014JE004661
A. Khan, M. van Driel, M. Böse, D. Giardini, S. Ceylan, J. Yan, J. Clinton, F. Euchner, P. Lognonné, N. Murdoch, D. Mimoun, M.P. Panning, M. Knapmeyer, W.B. Banerdt, Single-station and single-event marsquake location and inversion for structure using synthetic Martian waveforms. Phys. Earth Planet. Inter. 258, 28–42 (2016). doi:10.1016/j.pepi.2016.05.017
S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by simulated annealing. Science 220, 671–680 (1983). doi:10.1126/science.220.4598.671
M. Knapmeyer, Planetary seismology, in Solar System, Landolt-Börnstein ed. by J.E. Trümper. Group VI Astronomy and Astrophysics, vol. 4B (Springer, Berlin, 2009), pp. 282–322. Chap. 4.2.3.3
M. Knapmeyer, Planetary core size: a seismological approach. Planet. Space Sci. 59(10), 1062–1068 (2011)
M. Knapmeyer, J. Oberst, E. Hauber, M. Wählisch, C. Deuchler, R. Wagner, Working models for spatial distribution and level of Mars’ seismicity. J. Geophys. Res. 111(E11), 006 (2006). doi:10.1029/2006JE002708
B. Knapmeyer-Endrun, M.P. Golombek, M. Ohrnberger, Rayleigh wave ellipticity modeling and inversion for shallow structure at the proposed InSight landing site in Elysium Planitia. Mars. Space Sci. Rev. (2016, this issue). doi:10.1007/s11214-016-0300-1
N. Kobayashi, K. Nishida, Continuous excitation of planetary free oscillations by atmospheric disturbances. Nature 395, 357–360 (1998)
J. Kolb, V. Lekić, Receiver function deconvolution using transdimensional hierarchical Bayesian inference. Geophys. J. Int. 197(3), 1719–1735 (2014). doi:10.1093/gji/ggu079
D. Komatitsch, J. Tromp, Spectral-element simulations of global seismic wave propagation—I. Validation. Geophys. J. Int. 149, 390–412 (2002a). doi:10.1046/j.1365-246X.2002.01653.x
D. Komatitsch, J. Tromp, Spectral-element simulations of global seismic wave propagation—II. 3-D models, oceans, rotation, self-gravitation. Geophys. J. Int. 150, 303–318 (2002b). doi:10.1046/j.1365-246X.2002.01716.x
A.S. Konopliv, R.S. Park, W.M. Folkner, An improved JPL Mars gravity field and orientation from Mars orbiter and lander tracking data. Icarus 274, 253–260 (2016). doi:10.1016/j.icarus.2016.02.052
G.L. Kosarev, L.I. Makeyeva, L. Vinnik, Anisotropy of the mantle inferred from observations of P to S converted waves. Geophys. J. R. Astron. Soc. 76, 209–220 (1984)
C. Lachet, P.Y. Bard, Numerical and theoretical investigations on the possibilities and limitations of Nakamura’s technique. J. Phys. Earth 42, 377–397 (1994)
D. Lammlein, G. Latham, J. Dorman, Y. Nakamura, M. Ewing, Lunar seismicity, structure and tectonics. Rev. Geophys. Space Phys. 12, 1–21 (1974)
C.A. Langston, Structure under Mount Rainier, Washington, inferred from teleseismic body waves. J. Geophys. Res. 84(B9), 4749–4762 (1979)
C. Larmat, J.P. Montagner, Y. Capdeville, W. Banerdt, P. Lognonné, J.P. Vilotte, Numerical assessment of the effects of topography and crustal thickness on Martian seismograms using a coupled modal solution–spectral element method. Icarus 196(1), 78–89 (2008)
E. Larose, A. Khan, Y. Nakamura, M. Campillo, Lunar subsurface investigated from correlation of seismic noise. Geophys. Res. Lett. 32(L16), 201 (2005). doi:10.1029/2005GL023518
T. Lay, T. Wallace, Modern Global Seismology (Academic Press, San Diego, 1995)
V. Lekić, J. Matas, M.P. Panning, B.A. Romanowicz, Measurement and implications of frequency dependence of attenuation. Earth Planet. Sci. Lett. 282, 285–293 (2009). doi:10.1016/j.epsl.2009.03.030
J. Lermo, F. Chávez-García, Are microtremors useful in site response evaluation? Bull. Seismol. Soc. Am. 84, 1350–1364 (1994)
J.P. Ligorría, C.J. Ammon, Iterative deconvolution and receiver-function estimation. Bull. Seismol. Soc. Am. 89(5), 1395–1400 (1999)
V. Linkin, A.M. Harri, A. Lipatov, K. Belostotskaja, B. Derbunovich, A. Ekonomov, L. Khloustova, R. Kremnev, V. Makarov, B. Martinov, D. Nenarokov, M. Prostov, A. Pustovalov, G. Shustko, I. Järvinen, H. Kivilinna, S. Korpela, K. Kumpulainen, A. Lehto, R. Pellinen, R. Pirjola, P. Riihelä, A. Salminen, W. Schmidt, T. Siili, J. Blamont, T. Carpentier, A. Debus, C.T. Hua, J.F. Karczewski, H. Laplace, P. Levacher, P. Lognonné, C. Malique, M. Menvielle, G. Mouli, J.P. Pommereau, K. Quotb, J. Runavot, D. Vienne, F. Grunthaner, F. Kuhnke, G. Musmann, R. Rieder, H. Wänke, T. Economou, M. Herring, A. Lane, C.P. McKay, A sophisticated lander for scientific exploration of Mars: scientific objectives and implementation of the Mars-96 Small Station. Planet. Space Sci. 46, 717–737 (1998). doi:10.1016/S0032-0633(98)00008-7
K. Lodders, B. Fegley, An oxygen isotope model for the composition of Mars. Icarus 126, 373–394 (1997)
P. Lognonné, C. Johnson, Planetary seismology, in Treatise on Geophysics, vol. 10, ed. by G. Schubert (Elsevier, Amsterdam, 2007), pp. 69–122
P. Lognonné, C.L. Johnson, Planetary seismology, in Treatise on Geophysics, vol. 10, ed. by G. Schubert 2nd edn. (Elsevier, Oxford, 2015), pp. 65–120
P. Lognonné, B. Mosser, Planetary seismology. Surv. Geophys. 14, 239–302 (1993)
P. Lognonné, W.T. Pike, Planetary seismometry, in Extraterrestrial Seismology, ed. by V.C.H. Tong, R. Garcia (Cambridge University Press, Cambridge, 2015), pp. 36–48. Chap. 3. doi:10.1017/CBO9781107300668.006
P. Lognonné, J.G. Beyneix, W.B. Banerdt, S. Cacho, J.F. Karczewski, M. Morand, Ultra broad band seismology on InterMarsNet. Planet. Space Sci. 44, 1237 (1996). doi:10.1016/S0032-0633(96)00083-9
P. Lognonné, E. Clévédé, H. Kanamori, Computation of seismograms and atmospheric oscillations by normal-mode summation for a spherical Earth model with realistic atmosphere. Geophys. J. Int. 135, 388–406 (1998)
P. Lognonné, D. Giardini, W. Banerdt, J. Gagnepain-Beyneix, A. Mocquet, T. Spohn, J. Karczewski, P. Schibler, S. Cacho, W. Pike, C. Cavoit, A. Desautez, M. Favède, T. Gabsi, L. Simoulin, N. Striebig, M. Campillo, A. Deschamp, J. Hinderer, J. Lévéque, J.P. Montagner, L. Rivéra, W. Benz, D. Breuer, P. Defraigne, V. Dehant, A. Fujimura, H. Mizutani, J. Oberst, The NetLander very broad band seismometer. Planet. Space Sci. 48, 1289–1302 (2000)
P. Lognonné, J. Gagnepain-Beyneix, W. Banerdt, H. Chenet, A new seismic model of the Moon: implication in terms of structure, formation, and evolution. Earth Planet. Sci. Lett. 211, 27–44 (2003)
P. Lognonné, M. Le Feuvre, C. Johnson, R.C. Weber, Moon meteoritic seismic hum: steady state prediction. J. Geophys. Res. 114(E12), 003 (2009). doi:10.1029/2008JE003294
P. Lognonné, W.B. Banerdt, K. Hurst, D. Mimoun, R. Garcia, M. Lefeuvre, J. Gagnepain-Beyneix, M. Wieczorek, A. Mocquet, M. Panning, E. Beucler, S. Deraucourt, D. Giardini, L. Boschi, U. Christensen, W. Goetz, T. Pike, C. Johnson, R. Weber, K. Larmat, N. Kobayashi, J. Tromp, Insight and single-station broadband seismology: from signal and noise to interior structure determination, in Lunar and Planetary Institute Science Conference Abstracts, Lunar and Planetary Institute Science Conference Abstracts, vol. 43 (2012), p. 1983
A.M. Lontsi, F.J. Sánchez-Sesma, J.C. Molina-Villegas, M. Ohrnberger, F. Krüger, Full microtremor H/V(z, f) inversion for shallow subsurface characterization. Geophys. J. Int. 202, 298–312 (2015). doi:10.1093/gji/ggv132
M.C. Malin, K.S. Edgett, L.V. Posiolova, S.M. McColley, E.Z.N. Dobrea, Present-day impact cratering rate and contemporary gully activity on Mars. Science 314, 1573–1577 (2006)
P. Malischewsky, F. Scherbaum, Love’s formula and H/V ratio (ellipticity) of Rayleigh waves. Wave Motion 40, 57–67 (2004). doi:10.1016/j.wavemoti.2003.12.015
K. Matsumoto, R. Yamada, F. Kikuchi, S. Kamata, Y. Ishihara, T. Iwata, H. Hanada, S. Sasaki, Internal structure of the Moon inferred from Apollo seismic data and selenodetic data from GRAIL and LLR. Geophys. Res. Lett. 42, 7351–7358 (2015). doi:10.1002/2015GL065335
H. McSween, What we have learned about Mars from SNC meteorites. Meteoritics 29, 757–779 (1994)
N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, E. Teller, Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1091 (1953)
D. Mimoun, P. Lognonné, W.B. Banerdt, K. Hurst, S. Deraucourt, J. Gagnepain-Beyneix, T. Pike, S. Calcutt, M. Bierwirth, R. Roll, P. Zweifel, D. Mance, O. Robert, T. Nébut, S. Tillier, P. Laudet, L. Kerjean, R. Perez, D. Giardini, U. Christenssen, R. Garcia, The InSight SEIS experiment, in Lunar and Planetary Institute Science Conference Abstracts, Lunar and Planetary Institute Science Conference Abstracts, vol. 43 (2012), p. 1493
D. Mimoun, N. Murdoch, P. Lognonné, W.T. Pike, K. Hurst (the SEIS Team), The seismic noise model of the InSight mission to Mars. Space Sci. Rev. (2016, this issue)
A. Mocquet, P. Vacher, O. Grasset, C. Sotin, Theoretical seismic models of Mars: the importance of the iron content of the mantle. Planet. Space Sci. 44, 1251–1268 (1996)
R.K. Mohapatra, S.V.S. Murty, Precursors of Mars—constraints from nitrogen and oxygen isotopic compositions of martian meteorites. Meteorit. Planet. Sci. 38, 225–242 (2003)
J.W. Morgan, E. Anders, Chemical composition of Mars. EOS Trans AGU 60:306 (1979)
K. Mosegaard, A. Tarantola, Monte-Carlo sampling of solutions to inverse problems. J. Geophys. Res. 100, 12431–12447 (1995)
N. Murdoch, D. Mimoun, P. Lognonné (SEIS Science Team), SEIS performance model environment document. Tech. Rep. ISGH-SEIS-JF-ISAE-0030, ISAE (2015)
N. Murdoch, B. Kenda, T. Kawamura, A. Spiga, P. Lognonné, D. Mimoun, W.B. Banerdt, Estimations of the seismic pressure noise on Mars determined from Large Eddy Simulations and demonstration of pressure decorrelation techniques for the InSight mission. Space Sci. Rev. (2016a, this issue)
N. Murdoch, D. Mimoun, R.F. Garcia, W. Rapin, T. Kawamura, P. Lognonné, Evaluating the wind-induced mechanical noise on the InSight seismometers. Space Sci. Rev. (2016b, this issue)
Y. Nakamura, Seismic velocity structure of the lunar mantle. J. Geophys. Res. 88, 677–686 (1983)
Y. Nakamura, A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Q. Rep. RTRI 30, 25–33 (1989)
Y. Nakamura, Clear identification of fundamental idea of Nakamura’s technique and its applications, in Proceedings of the 12th World Conference on Earthquake Engineering, Auckland (2000)
Y. Nakamura, Farside deep moonquakes and deep interior of the Moon. J. Geophys. Res. 110(E01), 001 (2005). doi:10.1029/2004JE002332
Y. Nakamura, On the H/V spectrum, in Proceedings of the 14th World Conference on Earthquake Engineering, Beijing (2008)
Y. Nakamura, D. Anderson, Martian wind activity detected by a seismometer at Viking Lander 2 site. Geophys. Res. Lett. 6, 499–502 (1979). doi:10.1029/GL006i006p00499
Y. Nakamura, J. Dorman, F. Duennebier, D. Lammlein, G. Latham, Shallow lunar structure determined from the passive seismic experiment. Moon 13, 57–66 (1975)
Y. Nakamura, G. Latham, H. Dorman, A.B. Ibrahim, J. Koyama, P. Horvarth, Shallow moonquakes—depth, distribution and implications as to the present state of the lunar interior, in Proc. Lunar Planet. Sci. Conf., vol. 10 (1979), pp. 2299–2309
G. Neumann, M. Zuber, M. Wieczorek, P. McGovern, F. Lemoine, D. Smith, Crustal structure of Mars from gravity and topography. J. Geophys. Res. 109(E8), 002 (2004). doi:10.1029/2004JE002262
F. Nimmo, U.H. Faul, Dissipation at tidal and seismic frequencies in a melt-free, anhydrous Mars. J. Geophys. Res. 118(12), 2558–2569 (2013). http://dx.doi.org/10.1002/2013JE004499. doi:10.1002/2013JE004499
Nishikawa et al., Title to be completed. Space Sci. Rev. (2016, this issue)
T. Nissen-Meyer, M. van Driel, S.C. Stähler, K. Hosseini, S. Hempel, L. Auer, A. Colombi, A. Fournier, AxiSEM: broadband 3-D seismic wavefields in axisymmetric media. Solid Earth 5(1), 425–445 (2014)
E.A. Okal, D.L. Anderson, Theoretical models for Mars and their seismic properties. Icarus 33, 514–528 (1978). doi:10.1016/0019-1035(78)90187-2
R.D. Oldham, The constitution of the interior of the Earth, as revealed by earthquakes. Q. J. Geol. Soc. Lond. 62(1–4), 456–475 (1906)
M.P. Panning, E. Beucler, M. Drilleau, A. Mocquet, P. Lognonné, W.B. Banerdt, Verifying single-station seismic approaches using Earth-based data: Preparation for data return from the InSight mission to Mars. Icarus 248, 230–242 (2015). doi:10.1016/j.icarus.2014.10.035
A. Panou, N. Theodulidis, P. Hatzidimitriou, K. Stylianidis, C. Papazachos, Ambient noise horizontal-to-vertical spectral ration in site effects estimation and correlation with seismic damage distribution in urban environment: the case of the city of Thessaloniki (Northern Greece). Soil Dyn. Earthq. Eng. 25, 261–274 (2005). doi:10.1016/j.soildyn.2005.02.004
J. Park, V. Levin, Receiver functions from multiple-taper spectral correlation estimates. Bull. Seismol. Soc. Am. 90(6), 1507–1520 (2000)
J. Park, C.R. Lindberg, D.J. Thomson, Multiple-taper spectral analysis of terrestrial free oscillations: part I. Geophys. J. Int. 91(3), 755–794 (1987). doi:10.1111/j.1365-246X.1987.tb01668.x
R. Phillips, Expected rate of marsquakes, in Scientifc Rationale and Requirements for a Global Seismic Network on Mars (1991), pp. 35–38. LPI Tech. Rept., 91-02, Lunar and Planetary Inst., Houston
A. Pivarunas, N.H. Warner, M.P. Golombek, Onset diameter of rocky ejecta craters in western Elysium Planitia, Mars: constraints for regolith thickness at the InSight landing site, in 46th Lunar and Planetary Science Conference, Lunar and Planetary Inst., Houston, TX (2015). p Abstract # 1129. http://www.hou.usra.edu/meetings/lpsc2015/pdf/1129.pdf
A.C. Plesa, M. Grott, N. Tosi, D. Breuer, T. Spohn, M. Wieczorek, How large are present-day heat flux variations across the surface of Mars? J. Geophys. Res. (2016, accepted). doi:10.1002/2016JE005126
J.B. Plescia, Recent flood lavas in the Elysium region of Mars. Icarus 88, 465–490 (1990)
V. Poggi, D. Fäh, J. Burjanek, D. Giardini, The use of Rayleigh-wave ellipticity for site-specific hazard assessment and microzonation: application to the city of Lucerne, Switzerland. Geophys. J. Int. 188, 1154–1172 (2012). doi:10.1111/j.1365-246X.2011.05305.x
F. Press, Earth models obtained by Monte Carlo inversion. J. Geophys. Res. 73, 5223–5234 (1968). doi:10.1029/JB073i016p05223
D.A. Quiros, L.D. Brown, D. Kim, Seismic interferometry of railroad induced ground motions: body and surface wave imaging. Geophys. J. Int. 205, 301–313 (2016). doi:10.1093/gji/ggw033
J.E. Richardson, H.J. Melosh, R.J. Greenberg, D.P. O’Brien, The global effects of impact-induced seismic activity on fractured asteroid surface morphology. Icarus 179, 325–349 (2005)
A. Rivoldini, T. Van Hoolst, The interior structure of Mercury constrained by the low-degree gravity field and the rotation of Mercury. Earth Planet. Sci. Lett. 377–378, 67–72 (2013). doi:10.1016/j.epsl.2013.07.021
A. Rivoldini, T. Van Hoolst, O. Verhoeven, A. Mocquet, V. Dehant, Geodesy constraints on the interior structure and composition of Mars. Icarus 213, 451–472 (2011)
G.P. Roberts, B. Matthews, C. Bristow, L. Guerrieri, J. Vetterlein, Possible evidence of paleomarsquakes from fallen boulder populations, Cerberus Fossae, Mars. J. Geophys. Res. 117(E003), 816 (2012)
S. Rost, C. Thomas, Improving seismic resolution through array processing techniques. Surv. Geophys. 30, 271–299 (2009)
M. Sambridge, Geophysical inversion with a neighbourhood algorithm—I. searching a parameter space. Geophys. J. Int. 138, 479–494 (1999). doi:10.1046/j.1365-246X.19993.00876.x
F.J. Sánchez-Sesma, C.B. Crouse, Effects of site geology on seismic ground motion: Early history. Earthq. Eng. Struct. Dyn. 44, 1099–1113 (2015). doi:10.1002/eqe.2503
F.J. Sánchez-Sesma, M. Rodríguez, U. Iturrarán-Viveros, F. Luzón, M. Campillo, L. Margerin, A. García-Jerez, M. Suarez, M.A. Santoyo, A. Rodriguez-Castellanos, A theory for microtremor H/V spectral ratio: application for a layered medium. Geophys. J. Int. 186, 221–225 (2011). doi:10.1111/j.1365-246X.2011.05064.x
C. Sanloup, A. Jambon, P. Gillet, A simple chondritic model of Mars. Phys. Earth Planet. Inter. 112, 43–54 (1999)
F. Scherbaum, K.G. Hinzen, M. Ohrnberger, Determination of shallow shear wave velocity profiles in the Cologne, Germany area using ambient vibrations. Geophys. J. Int. 152, 597–612 (2003). doi:10.1046/j.1365-246X.2003.01856.x
N.C. Schmerr, B.M. Kelly, M.S. Thorne, Broadband array observations of the 300 km seismic discontinuity. Geophys. Res. Lett. 40(5), 841–846 (2013)
J. Schweitzer, J. Fyen, S. Mykkeltveit, T. Kværna, Seismic arrays, in IASPEI New Manual of Seismological Observatory Practice, ed. by P. Bormann (2002). GFZ German Research Center for Geosciences, Potsdam
N. Shapiro, M. Ritzwoller, Monte-Carlo inversion for a global shear-velocity model of the crust and upper mantle. Geophys. J. Int. 151, 88–105 (2002)
P. Shearer, Introduction to Seismology (Cambridge University Press, Cambridge, 2009)
F. Sohl, T. Spohn, The interior structure of Mars: implications from SNC meteorites. J. Geophys. Res. 102(E1), 1613–1635 (1997)
T. Spohn, M. Grott, S. Smrekar, C. Krause, T.L. Hudson (the \(\mathrm{HP}^{3}\) instrument team), Measuring the martian heat flow using the heat flow and physical properties package (\(\mathrm{HP}^{3}\)), in 45th Lunar and Planetary Science Conference, Lunar and Planetary Inst., Houston, TX (2014). http://www.hou.usra.edu/meetings/lpsc2014/pdf/1916.pdf
B. Steinberger, D. Zhao, S.C. Werner, Interior structure of the Moon: constraints from seismic tomography, gravity and topography. Phys. Earth Planet. Inter. 245, 26–39 (2015). doi:10.1016/j.pepi.2015.05.005
L. Stixrude, C. Lithgow-Bertelloni, Thermodynamics of mantle minerals—II. phase equilibria. Geophys. J. Int. 184(3), 1180–1213 (2011). doi:10.1111/j.1365-246X.2010.04890.x
R. Takashi, K. Hirano, Seismic vibrations of soft ground (in Japanese). Bull. Earthq. Res. Inst. Univ. Tokyo 19, 534–543 (1941)
T. Tanimoto, L. Rivera, The zh ratio method for long-period seismic data: sensitivity kernels and observational techniques. Geophys. J. Int. 172(1), 214–219 (2008)
T. Tanimoto, M. Eitzel, T. Yano, The noise cross-correlation approach for Apollo 17 LPSE data: Diurnal change in seismic parameters in the shallow lunar crust. J. Geophys. Res. 113(E08), 011 (2008). doi:10.1029/2007JE003016
G.J. Taylor, The bulk composition of Mars. Chemie der Erde. Geochem. J. 73(4), 401–420 (2013). doi:10.1016/j.chemer.2013.09.006
J. Taylor, N.A. Teanby, J. Wookey, Estimates of seismic activity in the Cerberus Fossae region of Mars. J. Geophys. Res. E118, 2570–2581 (2013)
N.A. Teanby, Predicted detection rates of regional-scale meteorite impacts on Mars with the InSight short-period seismometer. Icarus 256, 49–62 (2015)
N.A. Teanby, J. Wookey, Seismic detection of meteorite impacts on Mars. Phys. Earth Planet. Inter. 186, 70–80 (2011)
N.A. Teanby, J. Stevanović, J. Wookey, N. Murdoch, J. Hurley, R. Myhill, N.E. Bowles, S.B. Calcutt, W.T. Pike, Seismic coupling of short-period wind noise through Mars’ regolith for NASA’s InSight lander. Space Sci. Rev. (2016, this issue)
W. Thomson, On the rigidity of the Earth. Philos. Trans. R. Soc. Lond. 153, 573–582 (1863). doi:10.1098/rstl.1863.0027
T. Van Hoolst, V. Dehant, F. Roosbeek, P. Lognonné, Tidally induced surface displacements, external potential variations, and gravity variations on Mars. Icarus 161(2), 281–296 (2003). doi:10.1016/S0019-1035(02)00045-3
J.D. Vaucher, D. Baratoux, N. Mangold, P. Pinet, K. Kurita, M. Grégoire, The volcanic history of central Elysium Planitia: implications for martian magmatism. Icarus 204, 418–442 (2009)
O. Verhoeven, A. Rivoldini, P. Vacher, A. Mocquet, G. Choblet, M. Menvielle, V. Dehant, T. Van Hoolst, J. Sleewaegen, J.P. Barriot, P. Lognonné, Interior structure of terrestrial planets: modeling Mars’ mantle and its electromagnetic, geodetic, and seismic properties. J. Geophys. Res. 110(E04), 009 (2005). doi:10.1029/2004JE002271
J. Vetterlein, G.P. Roberts, Structural evolution of the Northern Cerberus Fossae graben system, Elysium Planitia, Mars. J. Struct. Geol. 32, 394–406 (2010). doi:10.1016/j.jsg.2009.11.004
S. Vinciguerra, C. Trovato, P.G. Meredith, P.M. Benson, Relating seismic velocities, thermal cracking and permeability in Mt. Etna and Iceland basalts. Int. J. Rock Mech. Min. Sci. 42, 900–910 (2005). doi:10.1016/j.ijrmms.2005.05.022
L. Vinnik, H. Chenet, J. Gagnepain-Beyneix, P. Lognonné, First seismic receiver functions on the Moon. Geophys. Res. Lett. 28, 3031–3034 (2001)
E. Von Rebeur-Paschwitz, The earthquake of Tokio 18 April 1889. Nature 40, 294–295 (1889). doi:10.1038/040294e0
N. Warner, M.P. Golombek, J. Sweeney, R. Fergason, R. Kirk, C. Schwartz, Near surface stratigraphy and regolith production in southwestern Elysium Planitia, Mars: Implications of Hesperian-Amazonian terrains and the InSight lander mission. Space Sci. Rev. (2016, this issue)
M. Wathelet, An improved neighborhood algorithm: parameter conditions and dynamic scaling. Geophys. Res. Lett. 35(L09), 301 (2008). doi:10.1046/j.1365-246X.19993.00876.x
M. Wathelet, D. Jongmans, M. Ohrnberger, Surface-wave inversion using a direct search algorithm and its application to ambient vibration measurements. Near Surf. Geophys. 2, 211–221 (2004)
R. Weber, P.Y. Lin, E. Garnero, Q. Williams, P. Lognonné, Seismic detection of the lunar core. Science 331(6015), 309–312 (2011)
S.G. Wells, J.C. Dohrenwend, L.D. McFadden, B.D. Turrin, K.D. Mahrer, Late Cenozoic landscape evolution on lava flow surfaces of the Cima volcanic field, Mojave Desert, California. Geol. Soc. Am. Bull. 96, 1518–1529 (1985)
M. Wieczorek, M. Zuber, Thickness of the Martian crust: Improved constraints from geoid-to-topography ratios. J. Geophys. Res. 109(E01), 009 (2004). doi:10.1029/2003JE002153
D.R. Williams (2016). http://nssdc.gsfc.nasa.gov/planetary/factsheet/marsfact.html
J.P. Williams, A.V. Pathare, O. Aharonson, The production of small primary craters on Mars and the Moon. Icarus 235, 23–36 (2014)
J. Woodhouse, The calculation of eigenfrequencies and eigenfunctions of the free oscillations of the Earth and the Sun, in Seismological Algorithms, ed. by D. Doornbos (Academic Press, London, 1988), pp. 321–370
D. Zhao, T. Arai, L. Liu, E. Ohtani, Seismic tomography and geochemical evidence for lunar mantle heterogeneity: comparing with Earth. Glob. Planet. Change 90, 29–36 (2012). doi:10.1016/j.gloplacha.2012.01.004
V.N. Zharkov, T.V. Gudkova, On the dissipative factor of the martian interiors. Planet. Space Sci. 45, 401–407 (1997)
V.N. Zharkov, T.V. Gudkova, S.M. Molodensky, On models of Mars’ interior and amplitudes of forced nutations: 1. the effects of deviation of Mars from its equilibrium state on the flattening of the core–mantle boundary. Phys. Earth Planet. Inter. 172, 324–334 (2009). doi:10.1016/j.pepi.2008.10.009
Y. Zheng, F. Nimmo, T. Lay, Seismological implications of a lithospheric low seismic velocity zone in Mars. Phys. Earth Planet. Inter. 240, 132–141 (2015). doi:10.1016/j.pepi.2014.10.004
Acknowledgements
Research described in this paper was partially done by the InSight Project, Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. This work has been supported by CNES for all French institutions’ co-authors. S.H., J.B.G. and the IPGP, ISAE and Univ. Nantes teams have been also supported by ANR (ANR-14-CE36-0012 “Seismology on Mars”) and PL by Institut Universitaire de France. The Bayesian inversions of Sect. 3 were performed using HPC resources of CINES (Centre Informatique National de l’Enseignement Superieur) under the allocation 2015047341 made by GENCI (Grand Equipement National de Calcul Intensif). A.K. was supported by grants from the Swiss National Science Foundation (SNF-ANR project 157133 “Seismology on Mars”) and from the Swiss National Supercomputing Centre (CSCS) under project ID s628. N.T. and J.W. were supported by funding from the U.K. Space Agency. The open source spectral-element software packages SPECFEM3D GLOBE and AxiSEM are freely available via the Computational Infrastructure for Geodynamics (CIG; geodynamics.org). For SPECFEM3D GLOBE simulations computational resources were provided by the Princeton Institute for Computational Science & Engineering (PICSciE). This paper is InSight Contribution Number 22.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Panning, M.P., Lognonné, P., Bruce Banerdt, W. et al. Planned Products of the Mars Structure Service for the InSight Mission to Mars. Space Sci Rev 211, 611–650 (2017). https://doi.org/10.1007/s11214-016-0317-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11214-016-0317-5