Skip to main content
Log in

Planned Products of the Mars Structure Service for the InSight Mission to Mars

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

The InSight lander will deliver geophysical instruments to Mars in 2018, including seismometers installed directly on the surface (Seismic Experiment for Interior Structure, SEIS). Routine operations will be split into two services, the Mars Structure Service (MSS) and Marsquake Service (MQS), which will be responsible, respectively, for defining the structure models and seismicity catalogs from the mission. The MSS will deliver a series of products before the landing, during the operations, and finally to the Planetary Data System (PDS) archive. Prior to the mission, we assembled a suite of a priori models of Mars, based on estimates of bulk composition and thermal profiles. Initial models during the mission will rely on modeling surface waves and impact-generated body waves independent of prior knowledge of structure. Later modeling will include simultaneous inversion of seismic observations for source and structural parameters. We use Bayesian inversion techniques to obtain robust probability distribution functions of interior structure parameters. Shallow structure will be characterized using the hammering of the heatflow probe mole, as well as measurements of surface wave ellipticity. Crustal scale structure will be constrained by measurements of receiver function and broadband Rayleigh wave ellipticity measurements. Core interacting body wave phases should be observable above modeled martian noise levels, allowing us to constrain deep structure. Normal modes of Mars should also be observable and can be used to estimate the globally averaged 1D structure, while combination with results from the InSight radio science mission and orbital observations will allow for constraint of deeper structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • K. Aki, P.G. Richards, Quantitative Seismology, 2nd edn. (University Science Books, Sausalito, 2002)

    Google Scholar 

  • C.J. Ammon, G.E. Randall, G. Zandt, On the nonuniqueness of receiver function inversions. J. Geophys. Res. 95(B10), 15303–15318 (1990)

    Article  ADS  Google Scholar 

  • D. Anderson, W. Miller, G. Latham, Y. Nakamura, M. Toksöz, Seismology on Mars. J. Geophys. Res. 82, 4524–4546 (1977)

    Article  ADS  Google Scholar 

  • J. Anderson, P. Bodin, J. Brune, J. Prince, S. Singh, R. Quaas, M. Onate, Strong ground motion from the Michoacan, Mexico, earthquake. Science 233, 1043–1049 (1986)

    Article  ADS  Google Scholar 

  • H. Arai, K. Tokimatsu, Three-dimensional Vs profiling using microtremors in Kushiro, Japan. Earthq. Eng. Struct. Dyn. 37, 845–859 (2008). doi:10.1002/eqe.788

    Article  Google Scholar 

  • W. Banerdt, S. Smrekar, P. Lognonné, T. Spohn, S. Asmar, D. Banfield, L. Boschi, U. Christensen, V. Dehant, W. Folkner, D. Giardini, W. Goetze, M. Golombek, M. Grott, T. Hudson, C. Johnson, G. Kargl, N. Kobayashi, J. Maki, D. Mimoun, A. Mocquet, P. Morgan, M. Panning, W. Pike, J. Tromp, T. van Zoest, R. Weber, M. Wieczorek, R. Garcia, K. Hurst, InSight: a discovery mission to explore the interior of Mars, in 44th Lunar and Planetary Science Conference, Lunar and Planetary Inst., Houston, TX (2013). p Abstract #1915. http://www.lpi.usra.edu/meetings/lpsc2013/pdf/1915.pdf

    Google Scholar 

  • P.Y. Bard, H. Cadet, B. Endrun, M. Hobiger, F. Renalier, N. Theodulidis, M. Ohrnberger, D. Fäh, F. Sabetta, P. Teves-Costa, A.M. Duval, C. Cornou, B. Guilier, M. Wathelet, A. Savvaidis, A. Köhler, J. Burjanek, V. Poggi, G. Gassner-Stamm, H.B. Havenith, S. Hailemikael, J. Almeida, I. Rodrigues, I. Veludo, C. Lacave, S. Thomassin, M. Kristekova, From non-invasive site characterization to site amplification: recent advances in the use of ambient vibration measurements, in Earthquake Engineering in Europe, ed. by M. Garevski, A. Ansal. Geotechnical, Geological, and Earthquake Engineering, vol. 17 (Springer Science + Business Media B.V., Dordrecht, 2010), pp. 105–123. Chap. 5

    Chapter  Google Scholar 

  • V. Belleguic, P. Lognonné, M. Wieczorek, Constraints on the Martian lithosphere from gravity and topography data. J. Geophys. Res. 110(E11), 005 (2005). doi:10.1029/2005JE002437

    Article  Google Scholar 

  • P. Bézier, Définition numérique des courbes et surfaces I. Automatisme 11, 625–632 (1966)

    Google Scholar 

  • P. Bézier, Définition numérique des courbes et surfaces II. Automatisme 12, 17–21 (1967)

    Google Scholar 

  • B.G. Bills, A. Neumann, D.E. Smith, M.T. Zuber, Improved estimate of tidal dissipation within Mars from MOLA obervations of the shadow of Phobos. J. Geophys. Res. 110(E07), 004 (2005). doi:10.1029/2004JE002376

    Google Scholar 

  • T. Bodin, M. Sambridge, H. Tkalčić, P. Arroucau, K. Gallagher, N. Rawlinson, Transdimensional inversion of receiver functions and surface wave dispersion. J. Geophys. Res. 117(B02), 301 (2012). doi:10.1029/2011JB008560

    Google Scholar 

  • B.A. Bolt, J.S. Derr, Free bodily vibrations of the terrestrial planets Vistas Astron. 11, 69–102 (1969)

    Article  ADS  Google Scholar 

  • S. Bonnefoy-Claudet, C. Cornou, P.Y. Bard, F. Cotton, P. Moczo, J. Kristek, D. Fäh, H/V ratio: a tool for site effects evaluation. Results from 1-D noise simulations. Geophys. J. Int. 167, 827–837 (2006). doi:10.1111/j.1365-246X.2006.03154.x

    Article  ADS  Google Scholar 

  • S. Bonnefoy-Claudet, A. Köhler, C. Cornou, M. Wathelet, P.Y. Bard, Effects of Love waves on microtremor H/V ration. Bull. Seismol. Soc. Am. 98, 288–300 (2008). doi:10.1785/0120070063

    Article  Google Scholar 

  • R. Borchard, Effects of local geology on ground motion near San Francisco Bay. Bull. Seismol. Soc. Am. 60, 29–61 (1970)

    Google Scholar 

  • M. Böse, J.F. Clinton, S. Ceylan, F. Euchner, M. van Driel, A. Khan, D. Giardini, P. Lognonné, W.B. Banerdt, A probabilistic framework for single-station location of seismicity on Earth and Mars. Phys. Earth Planet. Inter. (2016). doi:10.1016/j.pepi.2016.11.003

    Google Scholar 

  • E. Bozdağ, Y. Ruan, N. Metthez, A. Khan, K. Leng, M. van Driel, C. Larmat, D. Giardini, J. Tromp, P. Lognonné, W.B. Banerdt, Simulations of seismic wave propagation on Mars. Space Sci. Rev. (2016, this issue)

  • D.M. Burr, J.A. Grier, A.S. McEwen, L.P. Keszthelyi, Repeated aqueous flooding from the Cerberus Fossae: evidence for very recently extant, deep groundwater on Mars. Icarus 159, 53–73 (2002). doi:10.1006/icar.2002.6921

    Article  ADS  Google Scholar 

  • H. Chenet, P. Lognonné, M. Wieczorek, H. Mizutani, Lateral variations of lunar crustal thickness from the apollo seismic data set. Earth Planet. Sci. Lett. 243, 1–14 (2006)

    Article  ADS  Google Scholar 

  • J.A.D. Connolly, Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation. Earth Planet. Sci. Lett. 236, 524–541 (2005)

    Article  ADS  Google Scholar 

  • J.A.D. Connolly, The geodynamic equation of state: what and how. Geochem. Geophys. Geosyst. 10(Q10), 014 (2009). doi:10.1029/2009GC002540

    Google Scholar 

  • G. Dal Moro, Joint analysis of Rayleigh-wave dispersion and HVSR of lunar seismic data from the Apollo 14 and 16 sites. Icarus 254, 338–349 (2015). doi:10.1016/j.icarus.2015.03.017

    Article  ADS  Google Scholar 

  • G.H. Darwin, A numerical estimate of the rigidity of the Earth. Nature 27, 22–23 (1882). doi:10.1038/027022b0

    Google Scholar 

  • I.J. Daubar, A.S. McEwen, S. Byrne, M.R. Kennedy, B. Ivanov, The current martian cratering rate. Icarus 225, 506–516 (2013)

    Article  ADS  Google Scholar 

  • P.M. Davis, Meteoroid impacts as seismic sources on Mars. Icarus 105, 469–478 (1993)

    Article  ADS  Google Scholar 

  • V. Dehant, B. Ducarme, Comparison between the theoretical and observed tidal gravimetric factors. Phys. Earth Planet. Inter. 49, 192–212 (1987)

    Article  ADS  Google Scholar 

  • P. Delage, F. Karakostas, A. Dhemaied, M. Belmokhtar, D. De Laure, J.C. Dupla, Y.J. Cui, An investigation of the geotechnical properties of some Martian regolith simulants with respect to the surface properties of the InSight mission landing site. Space Sci. Rev. (2016, this issue)

  • J. Dettmer, S.E. Dosso, T. Bodin, J. Stipčević, P.R. Cummins, Direct-seismogram inversion for receiver-side structure with uncertain source–time functions. Geophys. J. Int. 203(2), 1373–1387 (2015)

    Article  ADS  Google Scholar 

  • A. Deuss, Global observations of mantle discontinuities using SS and PP precursors. Surv. Geophys. 30, 301–326 (2009)

    Article  ADS  Google Scholar 

  • G. Dreibus, H. Wänke, Mars: a volatile rich planet. Meteoritics 20, 367–382 (1985)

    ADS  Google Scholar 

  • M. Drilleau, E. Beucler, A. Mocquet, O. Verhoeven, G. Moebs, G. Burgos, J.P. Montagner, P. Vacher, A Bayesian approach to infer radial models of temperature and anisotropy in the transition zone from surface wave dispersion curves. Geophys. J. Int. 195, 1165–1183 (2013)

    Article  ADS  Google Scholar 

  • F. Duennebier, G.H. Sutton, Thermal moonquakes. J. Geophys. Res. 79, 4351–4363 (1974)

    Article  ADS  Google Scholar 

  • A. Dziewonski, D. Anderson, Preliminary Reference Earth Model. Phys. Earth Planet. Inter. 25, 297–356 (1981)

    Article  ADS  Google Scholar 

  • L.T. Elkins-Tanton, E.M. Parmentier, P.C. Hess, Magma ocean fractional crystallization and cumulate overturn in terrestrial planets: implications for Mars. Meteorit. Planet. Sci. 38(12), 1753–1771 (2003). doi:10.1111/j.1945-5100.2003.tb00013.x

    Article  ADS  Google Scholar 

  • L.T. Elkins-Tanton, S.E. Zaranek, E.M. Parmentier, P.C. Hess, Early magnetic field and magmatic activity on Mars from magma ocean cumulate overturn. Earth Planet. Sci. Lett. 236, 1–12 (2005)

    Article  ADS  Google Scholar 

  • B. Endrun, Love wave contribution to the ambient vibration H/V amplitude peak observed with array measurements. J. Seismol. 15, 443–472 (2011). doi:10.1007/s10950-010-9191-x

    Article  ADS  Google Scholar 

  • B. Endrun, M. Ohrnberger, A. Savvaidis, On the repeatability and consistency of ambient vibration array measurements. Bull. Earthq. Eng. 8, 535–570 (2010). doi:10.1007/s10518-009-9159-9

    Article  Google Scholar 

  • D. Fäh, F. Kind, D. Giardini, A theoretical investigation of average H/V ratios. Geophys. J. Int. 145, 535–549 (2001)

    Article  ADS  Google Scholar 

  • D. Fäh, M. Wathelet, M. Kristekova, H. Havenith, B. Endrun, G. Stamm, V. Poggi, J. Burjanek, C. Cornou, Using ellipticity information for site characterisation. NERIES JRA4 “Geotechnical Site Characterisation”. task B2, final report, EC project number: 026130 (2009)

  • V. Farra, L. Vinnik, Upper mantle stratification by P and S receiver functions. Geophys. J. Int. 141, 699–712 (2000)

    Article  ADS  Google Scholar 

  • A. Fichtner, B.L.N. Kennett, H. Igel, H.P. Bunge, Full seismic waveform tomography for upper-mantle structure in the Australasian region using adjoint methods. Geophys. J. Int. 179 (2009). doi:10.1111/j.1365-246X.2009.04368.x

  • W.M. Folkner, S.W. Asmar, V. Dehant, R.W. Warwick, The rotation and interior structure experiment (RISE) for the InSight mission to Mars, in 43rd Lunar and Planetary Science Conference, Lunar and Planetary Inst., Houston, TX (2012). p Abstract #1721. http://www.lpi.usra.edu/meetings/lpsc2012/pdf/1721.pdf

    Google Scholar 

  • J. Gagnepain-Beyneix, P. Lognonné, H. Chenet, D. Lombardi, T. Spohn, A seismic model of the lunar mantle and constraints on temperature and mineralogy. Phys. Earth Planet. Inter. 159, 140–166 (2006)

    Article  ADS  Google Scholar 

  • R. Garcia, J. Gagnepain-Beyneix, S. Chevrot, P. Lognonné, Very preliminary reference Moon model. Phys. Earth Planet. Inter. 188, 96–113 (2011)

    Article  ADS  Google Scholar 

  • A. García-Jerez, F. Luzón, F.J. Sánchez-Sesma, E. Lunedei, D. Albarello, M.A. Santoyo, J. Almendros, Diffuse elastic wavefield within a simple crustal model. Some consequences for low and high frequencies. J. Geophys. Res. 118, 5577–5595 (2013). doi:10.1002/2013JB010107

    Article  ADS  Google Scholar 

  • A. Genova, S. Goosens, F.G. Lemoine, E. Mazarico, G.A. Neumann, D.E. Smith, M.T. Zuber, Seasonal and static gravity field of Mars from MGS, Mars Odyssey and MRO radio science. Icarus 272, 228–245 (2016). doi:10.1016/j.icarus.2016.02.050

    Article  ADS  Google Scholar 

  • F. Gilbert, A. Dziewoński, An application of normal mode theory to the retrieval of structural parameters and source mechanisms from seismic spectra. Philos. Trans. R. Soc. Lond. A 278, 187–269 (1975)

    Article  ADS  Google Scholar 

  • M. Golombek, A revision of Mars seismicity from surface faulting, in 33rd Lunar and Planetary Science Conference, Lunar and Planetary Inst., Houston, TX (2002). p Abstract #1244

    Google Scholar 

  • M. Golombek, W. Banerdt, K. Tanaka, D. Tralli, A prediction of Mars seismicity from surface faulting. Science 258, 979–981 (1992)

    Article  ADS  Google Scholar 

  • M.P. Golombek, Constraints on the largest marsquake, in 25th Lunar and Planetary Science Conference (1994), pp. 441–442

    Google Scholar 

  • M.P. Golombek, D. Kipp, N. Warner, I.J. Daubar, R. Fergason, R. Kirk, R. Beyer, A. Huertas, S. Piqueux, N. Putzig, B.A. Campbell, G. Morgan, C. Charalambous, W.T. Pike, K. Gwinner, F. Calef, J. Ashley, D. Kass, M. Mischna, C. Bloom, N. Wigton, C. Schwartz, H. Gengl, L. Redmond, J. Sweeney, E. Sklyanskiy, M. Lisano, J. Benardino, S. Smrekar, W.B. Banerdt, Selection of the InSight landing site. Space Sci. Rev. (2016, this issue)

  • T. Gudkova, V. Zharkov, Mars: interior sturcture and excitation of free oscillations. Phys. Earth Planet. Inter. 142, 1–22 (2004)

    Article  ADS  Google Scholar 

  • T. Gudkova, P. Lognonné, K. Miljković, J. Gagnepain-Beyneix, Impact cutoff frequency—momentum scaling law inverted from Apollo seismic data. Earth Planet. Sci. Lett. 427, 57–65 (2015). doi:10.1016/j.epsl.2015.06.037

    Article  ADS  Google Scholar 

  • T.C. Hanks, D.M. Boore, Moment-magnitude relations in theory and practice. J. Geophys. Res. B89, 6229–6235 (1984)

    Article  ADS  Google Scholar 

  • W.K. Hartmann, Martian cratering 8: isochron refinement and the chronology of Mars. Icarus 174, 294–320 (2005)

    Article  ADS  Google Scholar 

  • W. Hastings, Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57, 97–109 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  • R.B. Herrmann, Computer programs in seismology: an evolving tool for instruction and research. Seismol. Res. Lett. 84, 1081–1088 (2013). doi:10.1785/0220110096

    Article  Google Scholar 

  • M. Hobiger, P.Y. Bard, C. Cornou, N. Le Bihan, Single station determination of Rayleigh wave ellipticity by using the random decrement technique (RayDec). Geophys. Res. Lett. 36(L14), 303 (2009). doi:10.1029/2009GL038863

    Google Scholar 

  • M. Hobiger, N. Le Bihan, C. Cornou, P.Y. Bard, Multicomponent signal processing for Rayleigh wave ellipticity estimation: application to seismic hazard assessment. IEEE Signal Process. Mag. 29, 29–39 (2012). doi:10.1109/MSP.2012.2184969

    Article  ADS  Google Scholar 

  • M. Hobiger, C. Cornou, M. Wathelet, G. Di Giulio, B. Knapmeyer-Endrun, F. Renalier, P.Y. Bard, A. Savvaidis, S. Hailemikael, N. Le Bihan, M. Ohrnberger, N. Theodoulidis, Ground structure imaging by inversions of Rayleigh wave ellipticity: sensitivity analysis and application to European strong-motion sites. Geophys. J. Int. 192, 207–229 (2013). doi:10.1093/gji/ggs005

    Article  ADS  Google Scholar 

  • I. Jackson, U.H. Faul, Grainsize-sensitive viscoelastic relaxation in olivine: Towards a robust laboratory-based model for seismological application. Phys. Earth Planet. Inter. 183, 151–163 (2010). doi:10.1016/j.pepi.2010.09.005

    Article  ADS  Google Scholar 

  • W.L. Jaeger, L.P. Keszthelyi, A.S. McEwen, C.M. Dundas, P.S. Russell, Athabasca Valles, Mars: a lava-draped channel system. Science 317, 1709–1711 (2007). doi:10.1126/science.1143315

    Article  ADS  Google Scholar 

  • H.S. Jarosch, The use of surface reflections in lunar seismograms. Bull. Seismol. Soc. Am. 67(6), 1647–1659 (1977)

    ADS  Google Scholar 

  • J. Julia, C.J. Ammon, R.B. Herrmann, A.M. Correig, Joint inversion of receiver function and surface wave dispersion observations. Geophys. J. Int. 143(1), 99–112 (2000)

    Article  ADS  Google Scholar 

  • H. Kawase, S. Matsushima, T. Satoh, F.J. Sánchez-Sesma, Applicability of theoretical horizontal-to-vertical ratio of microtremors based on the diffuse field concept to previously observed data. Bull. Seismol. Soc. Am. 105 (2015). doi:10.1785/0120150134

  • S. Kedar, J. Andrade, W.B. Banerdt, P. Delage, M. Golombek, M. Grott, T. Hudson, A. Kiely, M. Knapmeyer, B. Knapmeyer-Endrun, C. Krause, T. Kawamura, P. Lognonné, W.T. Pike, Y. Ruan, N. Teanby, J. Tromp, J. Wookey, Analysis of regolith properties using seismic signals generated by InSight’s \(\mathrm{HP}^{3}\) penetrator. Space Sci. Rev. (2016, this issue)

  • B. Kenda, P. Lognonné, A. Spiga, T. Kawamura, S. Kedar, W.B. Banerdt, R.D. Lorenz, Modeling of ground deformation and shallow surface waves generated by Martian dust devils and perspectives for near-surface structure inversion. Space Sci. Rev. (2016, this issue)

  • B.L.N. Kennett, The removal of free surface interactions from three component seismograms. Geophys. J. Int. 104(1), 153–163 (1991)

    Article  ADS  Google Scholar 

  • A. Khan, J. Connolly, Constraining the composition and thermal state of Mars from inversion of geophysical data. J. Geophys. Res. 113(E07), 003 (2008). doi:10.1029/2007JE002996

    Google Scholar 

  • A. Khan, K. Mosegaard, An inquiry into the lunar interior: a nonlinear inversion of the Apollo lunar seismic data. J. Geophys. Res. 107, 5036 (2002). doi:10.1029/2001JE001658

    Article  Google Scholar 

  • A. Khan, K. Mosegaard, K.L. Rasmussen, A new seismic velocity model for the Moon from a Monte Carlo inversion of the Apollo lunar seismic data. Geophys. Res. Lett. 27, 1591 (2000)

    Article  ADS  Google Scholar 

  • A. Khan, J. Connolly, J. Maclennan, K. Mosegaard, Joint inversion of seismic and gravity data for lunar composition and thermal state. Geophys. J. Int. 168, 243–258 (2007)

    Article  ADS  Google Scholar 

  • A. Khan, L. Boschi, A. Connolly, On mantle chemical and thermal heterogeneities and anisotropy as mapped by inversion of global surface wave data. J. Geophys. Res. 114(B09), 305 (2009). doi:10.1029/2009JB006399

    Google Scholar 

  • A. Khan, A. Zunino, F. Deschamps, Upper mantle compositional variations and discontinuity topography imaged beneath Australia from bayesian inversion of surface-wave phase velocities and thermochemical modeling. J. Geophys. Res. 116 (2013). doi:10.1002/jgrb.50304

  • A. Khan, J.A.D. Connolly, A. Pommier, J. Noir, Geophysical evidence for melt in the deep lunar interior and implications for lunar evolution. J. Geophys. Res. 119, 2197–2221 (2014). doi:10.1002/2014JE004661

    Article  Google Scholar 

  • A. Khan, M. van Driel, M. Böse, D. Giardini, S. Ceylan, J. Yan, J. Clinton, F. Euchner, P. Lognonné, N. Murdoch, D. Mimoun, M.P. Panning, M. Knapmeyer, W.B. Banerdt, Single-station and single-event marsquake location and inversion for structure using synthetic Martian waveforms. Phys. Earth Planet. Inter. 258, 28–42 (2016). doi:10.1016/j.pepi.2016.05.017

    Article  ADS  Google Scholar 

  • S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by simulated annealing. Science 220, 671–680 (1983). doi:10.1126/science.220.4598.671

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • M. Knapmeyer, Planetary seismology, in Solar System, Landolt-Börnstein ed. by J.E. Trümper. Group VI Astronomy and Astrophysics, vol. 4B (Springer, Berlin, 2009), pp. 282–322. Chap. 4.2.3.3

    Google Scholar 

  • M. Knapmeyer, Planetary core size: a seismological approach. Planet. Space Sci. 59(10), 1062–1068 (2011)

    Article  ADS  Google Scholar 

  • M. Knapmeyer, J. Oberst, E. Hauber, M. Wählisch, C. Deuchler, R. Wagner, Working models for spatial distribution and level of Mars’ seismicity. J. Geophys. Res. 111(E11), 006 (2006). doi:10.1029/2006JE002708

    Article  Google Scholar 

  • B. Knapmeyer-Endrun, M.P. Golombek, M. Ohrnberger, Rayleigh wave ellipticity modeling and inversion for shallow structure at the proposed InSight landing site in Elysium Planitia. Mars. Space Sci. Rev. (2016, this issue). doi:10.1007/s11214-016-0300-1

  • N. Kobayashi, K. Nishida, Continuous excitation of planetary free oscillations by atmospheric disturbances. Nature 395, 357–360 (1998)

    Article  ADS  Google Scholar 

  • J. Kolb, V. Lekić, Receiver function deconvolution using transdimensional hierarchical Bayesian inference. Geophys. J. Int. 197(3), 1719–1735 (2014). doi:10.1093/gji/ggu079

    Article  ADS  Google Scholar 

  • D. Komatitsch, J. Tromp, Spectral-element simulations of global seismic wave propagation—I. Validation. Geophys. J. Int. 149, 390–412 (2002a). doi:10.1046/j.1365-246X.2002.01653.x

    Article  ADS  Google Scholar 

  • D. Komatitsch, J. Tromp, Spectral-element simulations of global seismic wave propagation—II. 3-D models, oceans, rotation, self-gravitation. Geophys. J. Int. 150, 303–318 (2002b). doi:10.1046/j.1365-246X.2002.01716.x

    Article  ADS  Google Scholar 

  • A.S. Konopliv, R.S. Park, W.M. Folkner, An improved JPL Mars gravity field and orientation from Mars orbiter and lander tracking data. Icarus 274, 253–260 (2016). doi:10.1016/j.icarus.2016.02.052

    Article  ADS  Google Scholar 

  • G.L. Kosarev, L.I. Makeyeva, L. Vinnik, Anisotropy of the mantle inferred from observations of P to S converted waves. Geophys. J. R. Astron. Soc. 76, 209–220 (1984)

    Article  ADS  Google Scholar 

  • C. Lachet, P.Y. Bard, Numerical and theoretical investigations on the possibilities and limitations of Nakamura’s technique. J. Phys. Earth 42, 377–397 (1994)

    Article  Google Scholar 

  • D. Lammlein, G. Latham, J. Dorman, Y. Nakamura, M. Ewing, Lunar seismicity, structure and tectonics. Rev. Geophys. Space Phys. 12, 1–21 (1974)

    Article  ADS  Google Scholar 

  • C.A. Langston, Structure under Mount Rainier, Washington, inferred from teleseismic body waves. J. Geophys. Res. 84(B9), 4749–4762 (1979)

    Article  ADS  Google Scholar 

  • C. Larmat, J.P. Montagner, Y. Capdeville, W. Banerdt, P. Lognonné, J.P. Vilotte, Numerical assessment of the effects of topography and crustal thickness on Martian seismograms using a coupled modal solution–spectral element method. Icarus 196(1), 78–89 (2008)

    Article  ADS  Google Scholar 

  • E. Larose, A. Khan, Y. Nakamura, M. Campillo, Lunar subsurface investigated from correlation of seismic noise. Geophys. Res. Lett. 32(L16), 201 (2005). doi:10.1029/2005GL023518

    Google Scholar 

  • T. Lay, T. Wallace, Modern Global Seismology (Academic Press, San Diego, 1995)

    Google Scholar 

  • V. Lekić, J. Matas, M.P. Panning, B.A. Romanowicz, Measurement and implications of frequency dependence of attenuation. Earth Planet. Sci. Lett. 282, 285–293 (2009). doi:10.1016/j.epsl.2009.03.030

    Article  ADS  Google Scholar 

  • J. Lermo, F. Chávez-García, Are microtremors useful in site response evaluation? Bull. Seismol. Soc. Am. 84, 1350–1364 (1994)

    Google Scholar 

  • J.P. Ligorría, C.J. Ammon, Iterative deconvolution and receiver-function estimation. Bull. Seismol. Soc. Am. 89(5), 1395–1400 (1999)

    Google Scholar 

  • V. Linkin, A.M. Harri, A. Lipatov, K. Belostotskaja, B. Derbunovich, A. Ekonomov, L. Khloustova, R. Kremnev, V. Makarov, B. Martinov, D. Nenarokov, M. Prostov, A. Pustovalov, G. Shustko, I. Järvinen, H. Kivilinna, S. Korpela, K. Kumpulainen, A. Lehto, R. Pellinen, R. Pirjola, P. Riihelä, A. Salminen, W. Schmidt, T. Siili, J. Blamont, T. Carpentier, A. Debus, C.T. Hua, J.F. Karczewski, H. Laplace, P. Levacher, P. Lognonné, C. Malique, M. Menvielle, G. Mouli, J.P. Pommereau, K. Quotb, J. Runavot, D. Vienne, F. Grunthaner, F. Kuhnke, G. Musmann, R. Rieder, H. Wänke, T. Economou, M. Herring, A. Lane, C.P. McKay, A sophisticated lander for scientific exploration of Mars: scientific objectives and implementation of the Mars-96 Small Station. Planet. Space Sci. 46, 717–737 (1998). doi:10.1016/S0032-0633(98)00008-7

    Article  ADS  Google Scholar 

  • K. Lodders, B. Fegley, An oxygen isotope model for the composition of Mars. Icarus 126, 373–394 (1997)

    Article  ADS  Google Scholar 

  • P. Lognonné, C. Johnson, Planetary seismology, in Treatise on Geophysics, vol. 10, ed. by G. Schubert (Elsevier, Amsterdam, 2007), pp. 69–122

    Chapter  Google Scholar 

  • P. Lognonné, C.L. Johnson, Planetary seismology, in Treatise on Geophysics, vol. 10, ed. by G. Schubert 2nd edn. (Elsevier, Oxford, 2015), pp. 65–120

    Chapter  Google Scholar 

  • P. Lognonné, B. Mosser, Planetary seismology. Surv. Geophys. 14, 239–302 (1993)

    Article  ADS  Google Scholar 

  • P. Lognonné, W.T. Pike, Planetary seismometry, in Extraterrestrial Seismology, ed. by V.C.H. Tong, R. Garcia (Cambridge University Press, Cambridge, 2015), pp. 36–48. Chap. 3. doi:10.1017/CBO9781107300668.006

    Chapter  Google Scholar 

  • P. Lognonné, J.G. Beyneix, W.B. Banerdt, S. Cacho, J.F. Karczewski, M. Morand, Ultra broad band seismology on InterMarsNet. Planet. Space Sci. 44, 1237 (1996). doi:10.1016/S0032-0633(96)00083-9

    Article  ADS  Google Scholar 

  • P. Lognonné, E. Clévédé, H. Kanamori, Computation of seismograms and atmospheric oscillations by normal-mode summation for a spherical Earth model with realistic atmosphere. Geophys. J. Int. 135, 388–406 (1998)

    Article  ADS  Google Scholar 

  • P. Lognonné, D. Giardini, W. Banerdt, J. Gagnepain-Beyneix, A. Mocquet, T. Spohn, J. Karczewski, P. Schibler, S. Cacho, W. Pike, C. Cavoit, A. Desautez, M. Favède, T. Gabsi, L. Simoulin, N. Striebig, M. Campillo, A. Deschamp, J. Hinderer, J. Lévéque, J.P. Montagner, L. Rivéra, W. Benz, D. Breuer, P. Defraigne, V. Dehant, A. Fujimura, H. Mizutani, J. Oberst, The NetLander very broad band seismometer. Planet. Space Sci. 48, 1289–1302 (2000)

    Article  ADS  Google Scholar 

  • P. Lognonné, J. Gagnepain-Beyneix, W. Banerdt, H. Chenet, A new seismic model of the Moon: implication in terms of structure, formation, and evolution. Earth Planet. Sci. Lett. 211, 27–44 (2003)

    Article  ADS  Google Scholar 

  • P. Lognonné, M. Le Feuvre, C. Johnson, R.C. Weber, Moon meteoritic seismic hum: steady state prediction. J. Geophys. Res. 114(E12), 003 (2009). doi:10.1029/2008JE003294

    Article  Google Scholar 

  • P. Lognonné, W.B. Banerdt, K. Hurst, D. Mimoun, R. Garcia, M. Lefeuvre, J. Gagnepain-Beyneix, M. Wieczorek, A. Mocquet, M. Panning, E. Beucler, S. Deraucourt, D. Giardini, L. Boschi, U. Christensen, W. Goetz, T. Pike, C. Johnson, R. Weber, K. Larmat, N. Kobayashi, J. Tromp, Insight and single-station broadband seismology: from signal and noise to interior structure determination, in Lunar and Planetary Institute Science Conference Abstracts, Lunar and Planetary Institute Science Conference Abstracts, vol. 43 (2012), p. 1983

    Google Scholar 

  • A.M. Lontsi, F.J. Sánchez-Sesma, J.C. Molina-Villegas, M. Ohrnberger, F. Krüger, Full microtremor H/V(z, f) inversion for shallow subsurface characterization. Geophys. J. Int. 202, 298–312 (2015). doi:10.1093/gji/ggv132

    Article  ADS  Google Scholar 

  • M.C. Malin, K.S. Edgett, L.V. Posiolova, S.M. McColley, E.Z.N. Dobrea, Present-day impact cratering rate and contemporary gully activity on Mars. Science 314, 1573–1577 (2006)

    Article  ADS  Google Scholar 

  • P. Malischewsky, F. Scherbaum, Love’s formula and H/V ratio (ellipticity) of Rayleigh waves. Wave Motion 40, 57–67 (2004). doi:10.1016/j.wavemoti.2003.12.015

    Article  MathSciNet  MATH  Google Scholar 

  • K. Matsumoto, R. Yamada, F. Kikuchi, S. Kamata, Y. Ishihara, T. Iwata, H. Hanada, S. Sasaki, Internal structure of the Moon inferred from Apollo seismic data and selenodetic data from GRAIL and LLR. Geophys. Res. Lett. 42, 7351–7358 (2015). doi:10.1002/2015GL065335

    Article  ADS  Google Scholar 

  • H. McSween, What we have learned about Mars from SNC meteorites. Meteoritics 29, 757–779 (1994)

    Article  ADS  Google Scholar 

  • N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, E. Teller, Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1091 (1953)

    Article  ADS  Google Scholar 

  • D. Mimoun, P. Lognonné, W.B. Banerdt, K. Hurst, S. Deraucourt, J. Gagnepain-Beyneix, T. Pike, S. Calcutt, M. Bierwirth, R. Roll, P. Zweifel, D. Mance, O. Robert, T. Nébut, S. Tillier, P. Laudet, L. Kerjean, R. Perez, D. Giardini, U. Christenssen, R. Garcia, The InSight SEIS experiment, in Lunar and Planetary Institute Science Conference Abstracts, Lunar and Planetary Institute Science Conference Abstracts, vol. 43 (2012), p. 1493

    Google Scholar 

  • D. Mimoun, N. Murdoch, P. Lognonné, W.T. Pike, K. Hurst (the SEIS Team), The seismic noise model of the InSight mission to Mars. Space Sci. Rev. (2016, this issue)

  • A. Mocquet, P. Vacher, O. Grasset, C. Sotin, Theoretical seismic models of Mars: the importance of the iron content of the mantle. Planet. Space Sci. 44, 1251–1268 (1996)

    Article  ADS  Google Scholar 

  • R.K. Mohapatra, S.V.S. Murty, Precursors of Mars—constraints from nitrogen and oxygen isotopic compositions of martian meteorites. Meteorit. Planet. Sci. 38, 225–242 (2003)

    Article  ADS  Google Scholar 

  • J.W. Morgan, E. Anders, Chemical composition of Mars. EOS Trans AGU 60:306 (1979)

  • K. Mosegaard, A. Tarantola, Monte-Carlo sampling of solutions to inverse problems. J. Geophys. Res. 100, 12431–12447 (1995)

    Article  ADS  Google Scholar 

  • N. Murdoch, D. Mimoun, P. Lognonné (SEIS Science Team), SEIS performance model environment document. Tech. Rep. ISGH-SEIS-JF-ISAE-0030, ISAE (2015)

  • N. Murdoch, B. Kenda, T. Kawamura, A. Spiga, P. Lognonné, D. Mimoun, W.B. Banerdt, Estimations of the seismic pressure noise on Mars determined from Large Eddy Simulations and demonstration of pressure decorrelation techniques for the InSight mission. Space Sci. Rev. (2016a, this issue)

  • N. Murdoch, D. Mimoun, R.F. Garcia, W. Rapin, T. Kawamura, P. Lognonné, Evaluating the wind-induced mechanical noise on the InSight seismometers. Space Sci. Rev. (2016b, this issue)

  • Y. Nakamura, Seismic velocity structure of the lunar mantle. J. Geophys. Res. 88, 677–686 (1983)

    Article  ADS  Google Scholar 

  • Y. Nakamura, A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Q. Rep. RTRI 30, 25–33 (1989)

    Google Scholar 

  • Y. Nakamura, Clear identification of fundamental idea of Nakamura’s technique and its applications, in Proceedings of the 12th World Conference on Earthquake Engineering, Auckland (2000)

    Google Scholar 

  • Y. Nakamura, Farside deep moonquakes and deep interior of the Moon. J. Geophys. Res. 110(E01), 001 (2005). doi:10.1029/2004JE002332

    Google Scholar 

  • Y. Nakamura, On the H/V spectrum, in Proceedings of the 14th World Conference on Earthquake Engineering, Beijing (2008)

    Google Scholar 

  • Y. Nakamura, D. Anderson, Martian wind activity detected by a seismometer at Viking Lander 2 site. Geophys. Res. Lett. 6, 499–502 (1979). doi:10.1029/GL006i006p00499

    Article  ADS  Google Scholar 

  • Y. Nakamura, J. Dorman, F. Duennebier, D. Lammlein, G. Latham, Shallow lunar structure determined from the passive seismic experiment. Moon 13, 57–66 (1975)

    Article  ADS  Google Scholar 

  • Y. Nakamura, G. Latham, H. Dorman, A.B. Ibrahim, J. Koyama, P. Horvarth, Shallow moonquakes—depth, distribution and implications as to the present state of the lunar interior, in Proc. Lunar Planet. Sci. Conf., vol. 10 (1979), pp. 2299–2309

    Google Scholar 

  • G. Neumann, M. Zuber, M. Wieczorek, P. McGovern, F. Lemoine, D. Smith, Crustal structure of Mars from gravity and topography. J. Geophys. Res. 109(E8), 002 (2004). doi:10.1029/2004JE002262

    Article  Google Scholar 

  • F. Nimmo, U.H. Faul, Dissipation at tidal and seismic frequencies in a melt-free, anhydrous Mars. J. Geophys. Res. 118(12), 2558–2569 (2013). http://dx.doi.org/10.1002/2013JE004499. doi:10.1002/2013JE004499

    Article  Google Scholar 

  • Nishikawa et al., Title to be completed. Space Sci. Rev. (2016, this issue)

  • T. Nissen-Meyer, M. van Driel, S.C. Stähler, K. Hosseini, S. Hempel, L. Auer, A. Colombi, A. Fournier, AxiSEM: broadband 3-D seismic wavefields in axisymmetric media. Solid Earth 5(1), 425–445 (2014)

    Article  ADS  Google Scholar 

  • E.A. Okal, D.L. Anderson, Theoretical models for Mars and their seismic properties. Icarus 33, 514–528 (1978). doi:10.1016/0019-1035(78)90187-2

    Article  ADS  Google Scholar 

  • R.D. Oldham, The constitution of the interior of the Earth, as revealed by earthquakes. Q. J. Geol. Soc. Lond. 62(1–4), 456–475 (1906)

    Article  Google Scholar 

  • M.P. Panning, E. Beucler, M. Drilleau, A. Mocquet, P. Lognonné, W.B. Banerdt, Verifying single-station seismic approaches using Earth-based data: Preparation for data return from the InSight mission to Mars. Icarus 248, 230–242 (2015). doi:10.1016/j.icarus.2014.10.035

    Article  ADS  Google Scholar 

  • A. Panou, N. Theodulidis, P. Hatzidimitriou, K. Stylianidis, C. Papazachos, Ambient noise horizontal-to-vertical spectral ration in site effects estimation and correlation with seismic damage distribution in urban environment: the case of the city of Thessaloniki (Northern Greece). Soil Dyn. Earthq. Eng. 25, 261–274 (2005). doi:10.1016/j.soildyn.2005.02.004

    Article  Google Scholar 

  • J. Park, V. Levin, Receiver functions from multiple-taper spectral correlation estimates. Bull. Seismol. Soc. Am. 90(6), 1507–1520 (2000)

    Article  Google Scholar 

  • J. Park, C.R. Lindberg, D.J. Thomson, Multiple-taper spectral analysis of terrestrial free oscillations: part I. Geophys. J. Int. 91(3), 755–794 (1987). doi:10.1111/j.1365-246X.1987.tb01668.x

    Article  ADS  Google Scholar 

  • R. Phillips, Expected rate of marsquakes, in Scientifc Rationale and Requirements for a Global Seismic Network on Mars (1991), pp. 35–38. LPI Tech. Rept., 91-02, Lunar and Planetary Inst., Houston

    Google Scholar 

  • A. Pivarunas, N.H. Warner, M.P. Golombek, Onset diameter of rocky ejecta craters in western Elysium Planitia, Mars: constraints for regolith thickness at the InSight landing site, in 46th Lunar and Planetary Science Conference, Lunar and Planetary Inst., Houston, TX (2015). p Abstract # 1129. http://www.hou.usra.edu/meetings/lpsc2015/pdf/1129.pdf

    Google Scholar 

  • A.C. Plesa, M. Grott, N. Tosi, D. Breuer, T. Spohn, M. Wieczorek, How large are present-day heat flux variations across the surface of Mars? J. Geophys. Res. (2016, accepted). doi:10.1002/2016JE005126

  • J.B. Plescia, Recent flood lavas in the Elysium region of Mars. Icarus 88, 465–490 (1990)

    Article  ADS  Google Scholar 

  • V. Poggi, D. Fäh, J. Burjanek, D. Giardini, The use of Rayleigh-wave ellipticity for site-specific hazard assessment and microzonation: application to the city of Lucerne, Switzerland. Geophys. J. Int. 188, 1154–1172 (2012). doi:10.1111/j.1365-246X.2011.05305.x

    Article  ADS  Google Scholar 

  • F. Press, Earth models obtained by Monte Carlo inversion. J. Geophys. Res. 73, 5223–5234 (1968). doi:10.1029/JB073i016p05223

    Article  ADS  Google Scholar 

  • D.A. Quiros, L.D. Brown, D. Kim, Seismic interferometry of railroad induced ground motions: body and surface wave imaging. Geophys. J. Int. 205, 301–313 (2016). doi:10.1093/gji/ggw033

    Article  ADS  Google Scholar 

  • J.E. Richardson, H.J. Melosh, R.J. Greenberg, D.P. O’Brien, The global effects of impact-induced seismic activity on fractured asteroid surface morphology. Icarus 179, 325–349 (2005)

    Article  ADS  Google Scholar 

  • A. Rivoldini, T. Van Hoolst, The interior structure of Mercury constrained by the low-degree gravity field and the rotation of Mercury. Earth Planet. Sci. Lett. 377–378, 67–72 (2013). doi:10.1016/j.epsl.2013.07.021

    Google Scholar 

  • A. Rivoldini, T. Van Hoolst, O. Verhoeven, A. Mocquet, V. Dehant, Geodesy constraints on the interior structure and composition of Mars. Icarus 213, 451–472 (2011)

    Article  ADS  Google Scholar 

  • G.P. Roberts, B. Matthews, C. Bristow, L. Guerrieri, J. Vetterlein, Possible evidence of paleomarsquakes from fallen boulder populations, Cerberus Fossae, Mars. J. Geophys. Res. 117(E003), 816 (2012)

    Google Scholar 

  • S. Rost, C. Thomas, Improving seismic resolution through array processing techniques. Surv. Geophys. 30, 271–299 (2009)

    Article  ADS  Google Scholar 

  • M. Sambridge, Geophysical inversion with a neighbourhood algorithm—I. searching a parameter space. Geophys. J. Int. 138, 479–494 (1999). doi:10.1046/j.1365-246X.19993.00876.x

    Article  ADS  Google Scholar 

  • F.J. Sánchez-Sesma, C.B. Crouse, Effects of site geology on seismic ground motion: Early history. Earthq. Eng. Struct. Dyn. 44, 1099–1113 (2015). doi:10.1002/eqe.2503

    Article  Google Scholar 

  • F.J. Sánchez-Sesma, M. Rodríguez, U. Iturrarán-Viveros, F. Luzón, M. Campillo, L. Margerin, A. García-Jerez, M. Suarez, M.A. Santoyo, A. Rodriguez-Castellanos, A theory for microtremor H/V spectral ratio: application for a layered medium. Geophys. J. Int. 186, 221–225 (2011). doi:10.1111/j.1365-246X.2011.05064.x

    Article  ADS  Google Scholar 

  • C. Sanloup, A. Jambon, P. Gillet, A simple chondritic model of Mars. Phys. Earth Planet. Inter. 112, 43–54 (1999)

    Article  ADS  Google Scholar 

  • F. Scherbaum, K.G. Hinzen, M. Ohrnberger, Determination of shallow shear wave velocity profiles in the Cologne, Germany area using ambient vibrations. Geophys. J. Int. 152, 597–612 (2003). doi:10.1046/j.1365-246X.2003.01856.x

    Article  ADS  Google Scholar 

  • N.C. Schmerr, B.M. Kelly, M.S. Thorne, Broadband array observations of the 300 km seismic discontinuity. Geophys. Res. Lett. 40(5), 841–846 (2013)

    Article  ADS  Google Scholar 

  • J. Schweitzer, J. Fyen, S. Mykkeltveit, T. Kværna, Seismic arrays, in IASPEI New Manual of Seismological Observatory Practice, ed. by P. Bormann (2002). GFZ German Research Center for Geosciences, Potsdam

    Google Scholar 

  • N. Shapiro, M. Ritzwoller, Monte-Carlo inversion for a global shear-velocity model of the crust and upper mantle. Geophys. J. Int. 151, 88–105 (2002)

    Article  ADS  Google Scholar 

  • P. Shearer, Introduction to Seismology (Cambridge University Press, Cambridge, 2009)

    Book  Google Scholar 

  • F. Sohl, T. Spohn, The interior structure of Mars: implications from SNC meteorites. J. Geophys. Res. 102(E1), 1613–1635 (1997)

    Article  ADS  Google Scholar 

  • T. Spohn, M. Grott, S. Smrekar, C. Krause, T.L. Hudson (the \(\mathrm{HP}^{3}\) instrument team), Measuring the martian heat flow using the heat flow and physical properties package (\(\mathrm{HP}^{3}\)), in 45th Lunar and Planetary Science Conference, Lunar and Planetary Inst., Houston, TX (2014). http://www.hou.usra.edu/meetings/lpsc2014/pdf/1916.pdf

    Google Scholar 

  • B. Steinberger, D. Zhao, S.C. Werner, Interior structure of the Moon: constraints from seismic tomography, gravity and topography. Phys. Earth Planet. Inter. 245, 26–39 (2015). doi:10.1016/j.pepi.2015.05.005

    Article  ADS  Google Scholar 

  • L. Stixrude, C. Lithgow-Bertelloni, Thermodynamics of mantle minerals—II. phase equilibria. Geophys. J. Int. 184(3), 1180–1213 (2011). doi:10.1111/j.1365-246X.2010.04890.x

    Article  ADS  Google Scholar 

  • R. Takashi, K. Hirano, Seismic vibrations of soft ground (in Japanese). Bull. Earthq. Res. Inst. Univ. Tokyo 19, 534–543 (1941)

    Google Scholar 

  • T. Tanimoto, L. Rivera, The zh ratio method for long-period seismic data: sensitivity kernels and observational techniques. Geophys. J. Int. 172(1), 214–219 (2008)

    Article  Google Scholar 

  • T. Tanimoto, M. Eitzel, T. Yano, The noise cross-correlation approach for Apollo 17 LPSE data: Diurnal change in seismic parameters in the shallow lunar crust. J. Geophys. Res. 113(E08), 011 (2008). doi:10.1029/2007JE003016

    Google Scholar 

  • G.J. Taylor, The bulk composition of Mars. Chemie der Erde. Geochem. J. 73(4), 401–420 (2013). doi:10.1016/j.chemer.2013.09.006

    Google Scholar 

  • J. Taylor, N.A. Teanby, J. Wookey, Estimates of seismic activity in the Cerberus Fossae region of Mars. J. Geophys. Res. E118, 2570–2581 (2013)

    Article  ADS  Google Scholar 

  • N.A. Teanby, Predicted detection rates of regional-scale meteorite impacts on Mars with the InSight short-period seismometer. Icarus 256, 49–62 (2015)

    Article  ADS  Google Scholar 

  • N.A. Teanby, J. Wookey, Seismic detection of meteorite impacts on Mars. Phys. Earth Planet. Inter. 186, 70–80 (2011)

    Article  ADS  Google Scholar 

  • N.A. Teanby, J. Stevanović, J. Wookey, N. Murdoch, J. Hurley, R. Myhill, N.E. Bowles, S.B. Calcutt, W.T. Pike, Seismic coupling of short-period wind noise through Mars’ regolith for NASA’s InSight lander. Space Sci. Rev. (2016, this issue)

  • W. Thomson, On the rigidity of the Earth. Philos. Trans. R. Soc. Lond. 153, 573–582 (1863). doi:10.1098/rstl.1863.0027

    Article  Google Scholar 

  • T. Van Hoolst, V. Dehant, F. Roosbeek, P. Lognonné, Tidally induced surface displacements, external potential variations, and gravity variations on Mars. Icarus 161(2), 281–296 (2003). doi:10.1016/S0019-1035(02)00045-3

    Article  ADS  Google Scholar 

  • J.D. Vaucher, D. Baratoux, N. Mangold, P. Pinet, K. Kurita, M. Grégoire, The volcanic history of central Elysium Planitia: implications for martian magmatism. Icarus 204, 418–442 (2009)

    Article  ADS  Google Scholar 

  • O. Verhoeven, A. Rivoldini, P. Vacher, A. Mocquet, G. Choblet, M. Menvielle, V. Dehant, T. Van Hoolst, J. Sleewaegen, J.P. Barriot, P. Lognonné, Interior structure of terrestrial planets: modeling Mars’ mantle and its electromagnetic, geodetic, and seismic properties. J. Geophys. Res. 110(E04), 009 (2005). doi:10.1029/2004JE002271

    Google Scholar 

  • J. Vetterlein, G.P. Roberts, Structural evolution of the Northern Cerberus Fossae graben system, Elysium Planitia, Mars. J. Struct. Geol. 32, 394–406 (2010). doi:10.1016/j.jsg.2009.11.004

    Article  ADS  Google Scholar 

  • S. Vinciguerra, C. Trovato, P.G. Meredith, P.M. Benson, Relating seismic velocities, thermal cracking and permeability in Mt. Etna and Iceland basalts. Int. J. Rock Mech. Min. Sci. 42, 900–910 (2005). doi:10.1016/j.ijrmms.2005.05.022

    Article  Google Scholar 

  • L. Vinnik, H. Chenet, J. Gagnepain-Beyneix, P. Lognonné, First seismic receiver functions on the Moon. Geophys. Res. Lett. 28, 3031–3034 (2001)

    Article  ADS  Google Scholar 

  • E. Von Rebeur-Paschwitz, The earthquake of Tokio 18 April 1889. Nature 40, 294–295 (1889). doi:10.1038/040294e0

    Article  ADS  Google Scholar 

  • N. Warner, M.P. Golombek, J. Sweeney, R. Fergason, R. Kirk, C. Schwartz, Near surface stratigraphy and regolith production in southwestern Elysium Planitia, Mars: Implications of Hesperian-Amazonian terrains and the InSight lander mission. Space Sci. Rev. (2016, this issue)

  • M. Wathelet, An improved neighborhood algorithm: parameter conditions and dynamic scaling. Geophys. Res. Lett. 35(L09), 301 (2008). doi:10.1046/j.1365-246X.19993.00876.x

    Google Scholar 

  • M. Wathelet, D. Jongmans, M. Ohrnberger, Surface-wave inversion using a direct search algorithm and its application to ambient vibration measurements. Near Surf. Geophys. 2, 211–221 (2004)

    Article  Google Scholar 

  • R. Weber, P.Y. Lin, E. Garnero, Q. Williams, P. Lognonné, Seismic detection of the lunar core. Science 331(6015), 309–312 (2011)

    Article  ADS  Google Scholar 

  • S.G. Wells, J.C. Dohrenwend, L.D. McFadden, B.D. Turrin, K.D. Mahrer, Late Cenozoic landscape evolution on lava flow surfaces of the Cima volcanic field, Mojave Desert, California. Geol. Soc. Am. Bull. 96, 1518–1529 (1985)

    Article  ADS  Google Scholar 

  • M. Wieczorek, M. Zuber, Thickness of the Martian crust: Improved constraints from geoid-to-topography ratios. J. Geophys. Res. 109(E01), 009 (2004). doi:10.1029/2003JE002153

    Google Scholar 

  • D.R. Williams (2016). http://nssdc.gsfc.nasa.gov/planetary/factsheet/marsfact.html

  • J.P. Williams, A.V. Pathare, O. Aharonson, The production of small primary craters on Mars and the Moon. Icarus 235, 23–36 (2014)

    Article  ADS  Google Scholar 

  • J. Woodhouse, The calculation of eigenfrequencies and eigenfunctions of the free oscillations of the Earth and the Sun, in Seismological Algorithms, ed. by D. Doornbos (Academic Press, London, 1988), pp. 321–370

    Google Scholar 

  • D. Zhao, T. Arai, L. Liu, E. Ohtani, Seismic tomography and geochemical evidence for lunar mantle heterogeneity: comparing with Earth. Glob. Planet. Change 90, 29–36 (2012). doi:10.1016/j.gloplacha.2012.01.004

    Article  ADS  Google Scholar 

  • V.N. Zharkov, T.V. Gudkova, On the dissipative factor of the martian interiors. Planet. Space Sci. 45, 401–407 (1997)

    Article  ADS  Google Scholar 

  • V.N. Zharkov, T.V. Gudkova, S.M. Molodensky, On models of Mars’ interior and amplitudes of forced nutations: 1. the effects of deviation of Mars from its equilibrium state on the flattening of the core–mantle boundary. Phys. Earth Planet. Inter. 172, 324–334 (2009). doi:10.1016/j.pepi.2008.10.009

    Article  ADS  Google Scholar 

  • Y. Zheng, F. Nimmo, T. Lay, Seismological implications of a lithospheric low seismic velocity zone in Mars. Phys. Earth Planet. Inter. 240, 132–141 (2015). doi:10.1016/j.pepi.2014.10.004

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Research described in this paper was partially done by the InSight Project, Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. This work has been supported by CNES for all French institutions’ co-authors. S.H., J.B.G. and the IPGP, ISAE and Univ. Nantes teams have been also supported by ANR (ANR-14-CE36-0012 “Seismology on Mars”) and PL by Institut Universitaire de France. The Bayesian inversions of Sect. 3 were performed using HPC resources of CINES (Centre Informatique National de l’Enseignement Superieur) under the allocation 2015047341 made by GENCI (Grand Equipement National de Calcul Intensif). A.K. was supported by grants from the Swiss National Science Foundation (SNF-ANR project 157133 “Seismology on Mars”) and from the Swiss National Supercomputing Centre (CSCS) under project ID s628. N.T. and J.W. were supported by funding from the U.K. Space Agency. The open source spectral-element software packages SPECFEM3D GLOBE and AxiSEM are freely available via the Computational Infrastructure for Geodynamics (CIG; geodynamics.org). For SPECFEM3D GLOBE simulations computational resources were provided by the Princeton Institute for Computational Science & Engineering (PICSciE). This paper is InSight Contribution Number 22.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark P. Panning.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panning, M.P., Lognonné, P., Bruce Banerdt, W. et al. Planned Products of the Mars Structure Service for the InSight Mission to Mars. Space Sci Rev 211, 611–650 (2017). https://doi.org/10.1007/s11214-016-0317-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-016-0317-5

Keywords

Navigation