Advertisement

Space Science Reviews

, Volume 211, Issue 1–4, pp 611–650 | Cite as

Planned Products of the Mars Structure Service for the InSight Mission to Mars

  • Mark P. Panning
  • Philippe Lognonné
  • W. Bruce Banerdt
  • Raphaël Garcia
  • Matthew Golombek
  • Sharon Kedar
  • Brigitte Knapmeyer-Endrun
  • Antoine Mocquet
  • Nick A. Teanby
  • Jeroen Tromp
  • Renee Weber
  • Eric Beucler
  • Jean-Francois Blanchette-Guertin
  • Ebru Bozdağ
  • Mélanie Drilleau
  • Tamara Gudkova
  • Stefanie Hempel
  • Amir Khan
  • Vedran Lekić
  • Naomi Murdoch
  • Ana-Catalina Plesa
  • Atillio Rivoldini
  • Nicholas Schmerr
  • Youyi Ruan
  • Olivier Verhoeven
  • Chao Gao
  • Ulrich Christensen
  • John Clinton
  • Veronique Dehant
  • Domenico Giardini
  • David Mimoun
  • W. Thomas Pike
  • Sue Smrekar
  • Mark Wieczorek
  • Martin Knapmeyer
  • James Wookey
Article

Abstract

The InSight lander will deliver geophysical instruments to Mars in 2018, including seismometers installed directly on the surface (Seismic Experiment for Interior Structure, SEIS). Routine operations will be split into two services, the Mars Structure Service (MSS) and Marsquake Service (MQS), which will be responsible, respectively, for defining the structure models and seismicity catalogs from the mission. The MSS will deliver a series of products before the landing, during the operations, and finally to the Planetary Data System (PDS) archive. Prior to the mission, we assembled a suite of a priori models of Mars, based on estimates of bulk composition and thermal profiles. Initial models during the mission will rely on modeling surface waves and impact-generated body waves independent of prior knowledge of structure. Later modeling will include simultaneous inversion of seismic observations for source and structural parameters. We use Bayesian inversion techniques to obtain robust probability distribution functions of interior structure parameters. Shallow structure will be characterized using the hammering of the heatflow probe mole, as well as measurements of surface wave ellipticity. Crustal scale structure will be constrained by measurements of receiver function and broadband Rayleigh wave ellipticity measurements. Core interacting body wave phases should be observable above modeled martian noise levels, allowing us to constrain deep structure. Normal modes of Mars should also be observable and can be used to estimate the globally averaged 1D structure, while combination with results from the InSight radio science mission and orbital observations will allow for constraint of deeper structure.

Keywords

Mars Seismology Interior structure InSight mission 

Notes

Acknowledgements

Research described in this paper was partially done by the InSight Project, Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. This work has been supported by CNES for all French institutions’ co-authors. S.H., J.B.G. and the IPGP, ISAE and Univ. Nantes teams have been also supported by ANR (ANR-14-CE36-0012 “Seismology on Mars”) and PL by Institut Universitaire de France. The Bayesian inversions of Sect. 3 were performed using HPC resources of CINES (Centre Informatique National de l’Enseignement Superieur) under the allocation 2015047341 made by GENCI (Grand Equipement National de Calcul Intensif). A.K. was supported by grants from the Swiss National Science Foundation (SNF-ANR project 157133 “Seismology on Mars”) and from the Swiss National Supercomputing Centre (CSCS) under project ID s628. N.T. and J.W. were supported by funding from the U.K. Space Agency. The open source spectral-element software packages SPECFEM3D GLOBE and AxiSEM are freely available via the Computational Infrastructure for Geodynamics (CIG; geodynamics.org). For SPECFEM3D GLOBE simulations computational resources were provided by the Princeton Institute for Computational Science & Engineering (PICSciE). This paper is InSight Contribution Number 22.

References

  1. K. Aki, P.G. Richards, Quantitative Seismology, 2nd edn. (University Science Books, Sausalito, 2002) Google Scholar
  2. C.J. Ammon, G.E. Randall, G. Zandt, On the nonuniqueness of receiver function inversions. J. Geophys. Res. 95(B10), 15303–15318 (1990) ADSCrossRefGoogle Scholar
  3. D. Anderson, W. Miller, G. Latham, Y. Nakamura, M. Toksöz, Seismology on Mars. J. Geophys. Res. 82, 4524–4546 (1977) ADSCrossRefGoogle Scholar
  4. J. Anderson, P. Bodin, J. Brune, J. Prince, S. Singh, R. Quaas, M. Onate, Strong ground motion from the Michoacan, Mexico, earthquake. Science 233, 1043–1049 (1986) ADSCrossRefGoogle Scholar
  5. H. Arai, K. Tokimatsu, Three-dimensional Vs profiling using microtremors in Kushiro, Japan. Earthq. Eng. Struct. Dyn. 37, 845–859 (2008). doi: 10.1002/eqe.788 CrossRefGoogle Scholar
  6. W. Banerdt, S. Smrekar, P. Lognonné, T. Spohn, S. Asmar, D. Banfield, L. Boschi, U. Christensen, V. Dehant, W. Folkner, D. Giardini, W. Goetze, M. Golombek, M. Grott, T. Hudson, C. Johnson, G. Kargl, N. Kobayashi, J. Maki, D. Mimoun, A. Mocquet, P. Morgan, M. Panning, W. Pike, J. Tromp, T. van Zoest, R. Weber, M. Wieczorek, R. Garcia, K. Hurst, InSight: a discovery mission to explore the interior of Mars, in 44th Lunar and Planetary Science Conference, Lunar and Planetary Inst., Houston, TX (2013). p Abstract #1915. http://www.lpi.usra.edu/meetings/lpsc2013/pdf/1915.pdf Google Scholar
  7. P.Y. Bard, H. Cadet, B. Endrun, M. Hobiger, F. Renalier, N. Theodulidis, M. Ohrnberger, D. Fäh, F. Sabetta, P. Teves-Costa, A.M. Duval, C. Cornou, B. Guilier, M. Wathelet, A. Savvaidis, A. Köhler, J. Burjanek, V. Poggi, G. Gassner-Stamm, H.B. Havenith, S. Hailemikael, J. Almeida, I. Rodrigues, I. Veludo, C. Lacave, S. Thomassin, M. Kristekova, From non-invasive site characterization to site amplification: recent advances in the use of ambient vibration measurements, in Earthquake Engineering in Europe, ed. by M. Garevski, A. Ansal. Geotechnical, Geological, and Earthquake Engineering, vol. 17 (Springer Science + Business Media B.V., Dordrecht, 2010), pp. 105–123. Chap. 5 CrossRefGoogle Scholar
  8. V. Belleguic, P. Lognonné, M. Wieczorek, Constraints on the Martian lithosphere from gravity and topography data. J. Geophys. Res. 110(E11), 005 (2005). doi: 10.1029/2005JE002437 CrossRefGoogle Scholar
  9. P. Bézier, Définition numérique des courbes et surfaces I. Automatisme 11, 625–632 (1966) Google Scholar
  10. P. Bézier, Définition numérique des courbes et surfaces II. Automatisme 12, 17–21 (1967) Google Scholar
  11. B.G. Bills, A. Neumann, D.E. Smith, M.T. Zuber, Improved estimate of tidal dissipation within Mars from MOLA obervations of the shadow of Phobos. J. Geophys. Res. 110(E07), 004 (2005). doi: 10.1029/2004JE002376 Google Scholar
  12. T. Bodin, M. Sambridge, H. Tkalčić, P. Arroucau, K. Gallagher, N. Rawlinson, Transdimensional inversion of receiver functions and surface wave dispersion. J. Geophys. Res. 117(B02), 301 (2012). doi: 10.1029/2011JB008560 Google Scholar
  13. B.A. Bolt, J.S. Derr, Free bodily vibrations of the terrestrial planets Vistas Astron. 11, 69–102 (1969) ADSCrossRefGoogle Scholar
  14. S. Bonnefoy-Claudet, C. Cornou, P.Y. Bard, F. Cotton, P. Moczo, J. Kristek, D. Fäh, H/V ratio: a tool for site effects evaluation. Results from 1-D noise simulations. Geophys. J. Int. 167, 827–837 (2006). doi: 10.1111/j.1365-246X.2006.03154.x ADSCrossRefGoogle Scholar
  15. S. Bonnefoy-Claudet, A. Köhler, C. Cornou, M. Wathelet, P.Y. Bard, Effects of Love waves on microtremor H/V ration. Bull. Seismol. Soc. Am. 98, 288–300 (2008). doi: 10.1785/0120070063 CrossRefGoogle Scholar
  16. R. Borchard, Effects of local geology on ground motion near San Francisco Bay. Bull. Seismol. Soc. Am. 60, 29–61 (1970) Google Scholar
  17. M. Böse, J.F. Clinton, S. Ceylan, F. Euchner, M. van Driel, A. Khan, D. Giardini, P. Lognonné, W.B. Banerdt, A probabilistic framework for single-station location of seismicity on Earth and Mars. Phys. Earth Planet. Inter. (2016). doi: 10.1016/j.pepi.2016.11.003 Google Scholar
  18. E. Bozdağ, Y. Ruan, N. Metthez, A. Khan, K. Leng, M. van Driel, C. Larmat, D. Giardini, J. Tromp, P. Lognonné, W.B. Banerdt, Simulations of seismic wave propagation on Mars. Space Sci. Rev. (2016, this issue) Google Scholar
  19. D.M. Burr, J.A. Grier, A.S. McEwen, L.P. Keszthelyi, Repeated aqueous flooding from the Cerberus Fossae: evidence for very recently extant, deep groundwater on Mars. Icarus 159, 53–73 (2002). doi: 10.1006/icar.2002.6921 ADSCrossRefGoogle Scholar
  20. H. Chenet, P. Lognonné, M. Wieczorek, H. Mizutani, Lateral variations of lunar crustal thickness from the apollo seismic data set. Earth Planet. Sci. Lett. 243, 1–14 (2006) ADSCrossRefGoogle Scholar
  21. J.A.D. Connolly, Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation. Earth Planet. Sci. Lett. 236, 524–541 (2005) ADSCrossRefGoogle Scholar
  22. J.A.D. Connolly, The geodynamic equation of state: what and how. Geochem. Geophys. Geosyst. 10(Q10), 014 (2009). doi: 10.1029/2009GC002540 Google Scholar
  23. G. Dal Moro, Joint analysis of Rayleigh-wave dispersion and HVSR of lunar seismic data from the Apollo 14 and 16 sites. Icarus 254, 338–349 (2015). doi: 10.1016/j.icarus.2015.03.017 ADSCrossRefGoogle Scholar
  24. G.H. Darwin, A numerical estimate of the rigidity of the Earth. Nature 27, 22–23 (1882). doi: 10.1038/027022b0 Google Scholar
  25. I.J. Daubar, A.S. McEwen, S. Byrne, M.R. Kennedy, B. Ivanov, The current martian cratering rate. Icarus 225, 506–516 (2013) ADSCrossRefGoogle Scholar
  26. P.M. Davis, Meteoroid impacts as seismic sources on Mars. Icarus 105, 469–478 (1993) ADSCrossRefGoogle Scholar
  27. V. Dehant, B. Ducarme, Comparison between the theoretical and observed tidal gravimetric factors. Phys. Earth Planet. Inter. 49, 192–212 (1987) ADSCrossRefGoogle Scholar
  28. P. Delage, F. Karakostas, A. Dhemaied, M. Belmokhtar, D. De Laure, J.C. Dupla, Y.J. Cui, An investigation of the geotechnical properties of some Martian regolith simulants with respect to the surface properties of the InSight mission landing site. Space Sci. Rev. (2016, this issue) Google Scholar
  29. J. Dettmer, S.E. Dosso, T. Bodin, J. Stipčević, P.R. Cummins, Direct-seismogram inversion for receiver-side structure with uncertain source–time functions. Geophys. J. Int. 203(2), 1373–1387 (2015) ADSCrossRefGoogle Scholar
  30. A. Deuss, Global observations of mantle discontinuities using SS and PP precursors. Surv. Geophys. 30, 301–326 (2009) ADSCrossRefGoogle Scholar
  31. G. Dreibus, H. Wänke, Mars: a volatile rich planet. Meteoritics 20, 367–382 (1985) ADSGoogle Scholar
  32. M. Drilleau, E. Beucler, A. Mocquet, O. Verhoeven, G. Moebs, G. Burgos, J.P. Montagner, P. Vacher, A Bayesian approach to infer radial models of temperature and anisotropy in the transition zone from surface wave dispersion curves. Geophys. J. Int. 195, 1165–1183 (2013) ADSCrossRefGoogle Scholar
  33. F. Duennebier, G.H. Sutton, Thermal moonquakes. J. Geophys. Res. 79, 4351–4363 (1974) ADSCrossRefGoogle Scholar
  34. A. Dziewonski, D. Anderson, Preliminary Reference Earth Model. Phys. Earth Planet. Inter. 25, 297–356 (1981) ADSCrossRefGoogle Scholar
  35. L.T. Elkins-Tanton, E.M. Parmentier, P.C. Hess, Magma ocean fractional crystallization and cumulate overturn in terrestrial planets: implications for Mars. Meteorit. Planet. Sci. 38(12), 1753–1771 (2003). doi: 10.1111/j.1945-5100.2003.tb00013.x ADSCrossRefGoogle Scholar
  36. L.T. Elkins-Tanton, S.E. Zaranek, E.M. Parmentier, P.C. Hess, Early magnetic field and magmatic activity on Mars from magma ocean cumulate overturn. Earth Planet. Sci. Lett. 236, 1–12 (2005) ADSCrossRefGoogle Scholar
  37. B. Endrun, Love wave contribution to the ambient vibration H/V amplitude peak observed with array measurements. J. Seismol. 15, 443–472 (2011). doi: 10.1007/s10950-010-9191-x ADSCrossRefGoogle Scholar
  38. B. Endrun, M. Ohrnberger, A. Savvaidis, On the repeatability and consistency of ambient vibration array measurements. Bull. Earthq. Eng. 8, 535–570 (2010). doi: 10.1007/s10518-009-9159-9 CrossRefGoogle Scholar
  39. D. Fäh, F. Kind, D. Giardini, A theoretical investigation of average H/V ratios. Geophys. J. Int. 145, 535–549 (2001) ADSCrossRefGoogle Scholar
  40. D. Fäh, M. Wathelet, M. Kristekova, H. Havenith, B. Endrun, G. Stamm, V. Poggi, J. Burjanek, C. Cornou, Using ellipticity information for site characterisation. NERIES JRA4 “Geotechnical Site Characterisation”. task B2, final report, EC project number: 026130 (2009) Google Scholar
  41. V. Farra, L. Vinnik, Upper mantle stratification by P and S receiver functions. Geophys. J. Int. 141, 699–712 (2000) ADSCrossRefGoogle Scholar
  42. A. Fichtner, B.L.N. Kennett, H. Igel, H.P. Bunge, Full seismic waveform tomography for upper-mantle structure in the Australasian region using adjoint methods. Geophys. J. Int. 179 (2009). doi: 10.1111/j.1365-246X.2009.04368.x
  43. W.M. Folkner, S.W. Asmar, V. Dehant, R.W. Warwick, The rotation and interior structure experiment (RISE) for the InSight mission to Mars, in 43rd Lunar and Planetary Science Conference, Lunar and Planetary Inst., Houston, TX (2012). p Abstract #1721. http://www.lpi.usra.edu/meetings/lpsc2012/pdf/1721.pdf Google Scholar
  44. J. Gagnepain-Beyneix, P. Lognonné, H. Chenet, D. Lombardi, T. Spohn, A seismic model of the lunar mantle and constraints on temperature and mineralogy. Phys. Earth Planet. Inter. 159, 140–166 (2006) ADSCrossRefGoogle Scholar
  45. R. Garcia, J. Gagnepain-Beyneix, S. Chevrot, P. Lognonné, Very preliminary reference Moon model. Phys. Earth Planet. Inter. 188, 96–113 (2011) ADSCrossRefGoogle Scholar
  46. A. García-Jerez, F. Luzón, F.J. Sánchez-Sesma, E. Lunedei, D. Albarello, M.A. Santoyo, J. Almendros, Diffuse elastic wavefield within a simple crustal model. Some consequences for low and high frequencies. J. Geophys. Res. 118, 5577–5595 (2013). doi: 10.1002/2013JB010107 ADSCrossRefGoogle Scholar
  47. A. Genova, S. Goosens, F.G. Lemoine, E. Mazarico, G.A. Neumann, D.E. Smith, M.T. Zuber, Seasonal and static gravity field of Mars from MGS, Mars Odyssey and MRO radio science. Icarus 272, 228–245 (2016). doi: 10.1016/j.icarus.2016.02.050 ADSCrossRefGoogle Scholar
  48. F. Gilbert, A. Dziewoński, An application of normal mode theory to the retrieval of structural parameters and source mechanisms from seismic spectra. Philos. Trans. R. Soc. Lond. A 278, 187–269 (1975) ADSCrossRefGoogle Scholar
  49. M. Golombek, A revision of Mars seismicity from surface faulting, in 33rd Lunar and Planetary Science Conference, Lunar and Planetary Inst., Houston, TX (2002). p Abstract #1244 Google Scholar
  50. M. Golombek, W. Banerdt, K. Tanaka, D. Tralli, A prediction of Mars seismicity from surface faulting. Science 258, 979–981 (1992) ADSCrossRefGoogle Scholar
  51. M.P. Golombek, Constraints on the largest marsquake, in 25th Lunar and Planetary Science Conference (1994), pp. 441–442 Google Scholar
  52. M.P. Golombek, D. Kipp, N. Warner, I.J. Daubar, R. Fergason, R. Kirk, R. Beyer, A. Huertas, S. Piqueux, N. Putzig, B.A. Campbell, G. Morgan, C. Charalambous, W.T. Pike, K. Gwinner, F. Calef, J. Ashley, D. Kass, M. Mischna, C. Bloom, N. Wigton, C. Schwartz, H. Gengl, L. Redmond, J. Sweeney, E. Sklyanskiy, M. Lisano, J. Benardino, S. Smrekar, W.B. Banerdt, Selection of the InSight landing site. Space Sci. Rev. (2016, this issue) Google Scholar
  53. T. Gudkova, V. Zharkov, Mars: interior sturcture and excitation of free oscillations. Phys. Earth Planet. Inter. 142, 1–22 (2004) ADSCrossRefGoogle Scholar
  54. T. Gudkova, P. Lognonné, K. Miljković, J. Gagnepain-Beyneix, Impact cutoff frequency—momentum scaling law inverted from Apollo seismic data. Earth Planet. Sci. Lett. 427, 57–65 (2015). doi: 10.1016/j.epsl.2015.06.037 ADSCrossRefGoogle Scholar
  55. T.C. Hanks, D.M. Boore, Moment-magnitude relations in theory and practice. J. Geophys. Res. B89, 6229–6235 (1984) ADSCrossRefGoogle Scholar
  56. W.K. Hartmann, Martian cratering 8: isochron refinement and the chronology of Mars. Icarus 174, 294–320 (2005) ADSCrossRefGoogle Scholar
  57. W. Hastings, Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57, 97–109 (1970) MathSciNetzbMATHCrossRefGoogle Scholar
  58. R.B. Herrmann, Computer programs in seismology: an evolving tool for instruction and research. Seismol. Res. Lett. 84, 1081–1088 (2013). doi: 10.1785/0220110096 CrossRefGoogle Scholar
  59. M. Hobiger, P.Y. Bard, C. Cornou, N. Le Bihan, Single station determination of Rayleigh wave ellipticity by using the random decrement technique (RayDec). Geophys. Res. Lett. 36(L14), 303 (2009). doi: 10.1029/2009GL038863 Google Scholar
  60. M. Hobiger, N. Le Bihan, C. Cornou, P.Y. Bard, Multicomponent signal processing for Rayleigh wave ellipticity estimation: application to seismic hazard assessment. IEEE Signal Process. Mag. 29, 29–39 (2012). doi: 10.1109/MSP.2012.2184969 ADSCrossRefGoogle Scholar
  61. M. Hobiger, C. Cornou, M. Wathelet, G. Di Giulio, B. Knapmeyer-Endrun, F. Renalier, P.Y. Bard, A. Savvaidis, S. Hailemikael, N. Le Bihan, M. Ohrnberger, N. Theodoulidis, Ground structure imaging by inversions of Rayleigh wave ellipticity: sensitivity analysis and application to European strong-motion sites. Geophys. J. Int. 192, 207–229 (2013). doi: 10.1093/gji/ggs005 ADSCrossRefGoogle Scholar
  62. I. Jackson, U.H. Faul, Grainsize-sensitive viscoelastic relaxation in olivine: Towards a robust laboratory-based model for seismological application. Phys. Earth Planet. Inter. 183, 151–163 (2010). doi: 10.1016/j.pepi.2010.09.005 ADSCrossRefGoogle Scholar
  63. W.L. Jaeger, L.P. Keszthelyi, A.S. McEwen, C.M. Dundas, P.S. Russell, Athabasca Valles, Mars: a lava-draped channel system. Science 317, 1709–1711 (2007). doi: 10.1126/science.1143315 ADSCrossRefGoogle Scholar
  64. H.S. Jarosch, The use of surface reflections in lunar seismograms. Bull. Seismol. Soc. Am. 67(6), 1647–1659 (1977) ADSGoogle Scholar
  65. J. Julia, C.J. Ammon, R.B. Herrmann, A.M. Correig, Joint inversion of receiver function and surface wave dispersion observations. Geophys. J. Int. 143(1), 99–112 (2000) ADSCrossRefGoogle Scholar
  66. H. Kawase, S. Matsushima, T. Satoh, F.J. Sánchez-Sesma, Applicability of theoretical horizontal-to-vertical ratio of microtremors based on the diffuse field concept to previously observed data. Bull. Seismol. Soc. Am. 105 (2015). doi: 10.1785/0120150134
  67. S. Kedar, J. Andrade, W.B. Banerdt, P. Delage, M. Golombek, M. Grott, T. Hudson, A. Kiely, M. Knapmeyer, B. Knapmeyer-Endrun, C. Krause, T. Kawamura, P. Lognonné, W.T. Pike, Y. Ruan, N. Teanby, J. Tromp, J. Wookey, Analysis of regolith properties using seismic signals generated by InSight’s \(\mathrm{HP}^{3}\) penetrator. Space Sci. Rev. (2016, this issue) Google Scholar
  68. B. Kenda, P. Lognonné, A. Spiga, T. Kawamura, S. Kedar, W.B. Banerdt, R.D. Lorenz, Modeling of ground deformation and shallow surface waves generated by Martian dust devils and perspectives for near-surface structure inversion. Space Sci. Rev. (2016, this issue) Google Scholar
  69. B.L.N. Kennett, The removal of free surface interactions from three component seismograms. Geophys. J. Int. 104(1), 153–163 (1991) ADSCrossRefGoogle Scholar
  70. A. Khan, J. Connolly, Constraining the composition and thermal state of Mars from inversion of geophysical data. J. Geophys. Res. 113(E07), 003 (2008). doi: 10.1029/2007JE002996 Google Scholar
  71. A. Khan, K. Mosegaard, An inquiry into the lunar interior: a nonlinear inversion of the Apollo lunar seismic data. J. Geophys. Res. 107, 5036 (2002). doi: 10.1029/2001JE001658 CrossRefGoogle Scholar
  72. A. Khan, K. Mosegaard, K.L. Rasmussen, A new seismic velocity model for the Moon from a Monte Carlo inversion of the Apollo lunar seismic data. Geophys. Res. Lett. 27, 1591 (2000) ADSCrossRefGoogle Scholar
  73. A. Khan, J. Connolly, J. Maclennan, K. Mosegaard, Joint inversion of seismic and gravity data for lunar composition and thermal state. Geophys. J. Int. 168, 243–258 (2007) ADSCrossRefGoogle Scholar
  74. A. Khan, L. Boschi, A. Connolly, On mantle chemical and thermal heterogeneities and anisotropy as mapped by inversion of global surface wave data. J. Geophys. Res. 114(B09), 305 (2009). doi: 10.1029/2009JB006399 Google Scholar
  75. A. Khan, A. Zunino, F. Deschamps, Upper mantle compositional variations and discontinuity topography imaged beneath Australia from bayesian inversion of surface-wave phase velocities and thermochemical modeling. J. Geophys. Res. 116 (2013). doi: 10.1002/jgrb.50304
  76. A. Khan, J.A.D. Connolly, A. Pommier, J. Noir, Geophysical evidence for melt in the deep lunar interior and implications for lunar evolution. J. Geophys. Res. 119, 2197–2221 (2014). doi: 10.1002/2014JE004661 CrossRefGoogle Scholar
  77. A. Khan, M. van Driel, M. Böse, D. Giardini, S. Ceylan, J. Yan, J. Clinton, F. Euchner, P. Lognonné, N. Murdoch, D. Mimoun, M.P. Panning, M. Knapmeyer, W.B. Banerdt, Single-station and single-event marsquake location and inversion for structure using synthetic Martian waveforms. Phys. Earth Planet. Inter. 258, 28–42 (2016). doi: 10.1016/j.pepi.2016.05.017 ADSCrossRefGoogle Scholar
  78. S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by simulated annealing. Science 220, 671–680 (1983). doi: 10.1126/science.220.4598.671 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  79. M. Knapmeyer, Planetary seismology, in Solar System, Landolt-Börnstein ed. by J.E. Trümper. Group VI Astronomy and Astrophysics, vol. 4B (Springer, Berlin, 2009), pp. 282–322. Chap. 4.2.3.3 Google Scholar
  80. M. Knapmeyer, Planetary core size: a seismological approach. Planet. Space Sci. 59(10), 1062–1068 (2011) ADSCrossRefGoogle Scholar
  81. M. Knapmeyer, J. Oberst, E. Hauber, M. Wählisch, C. Deuchler, R. Wagner, Working models for spatial distribution and level of Mars’ seismicity. J. Geophys. Res. 111(E11), 006 (2006). doi: 10.1029/2006JE002708 CrossRefGoogle Scholar
  82. B. Knapmeyer-Endrun, M.P. Golombek, M. Ohrnberger, Rayleigh wave ellipticity modeling and inversion for shallow structure at the proposed InSight landing site in Elysium Planitia. Mars. Space Sci. Rev. (2016, this issue). doi: 10.1007/s11214-016-0300-1
  83. N. Kobayashi, K. Nishida, Continuous excitation of planetary free oscillations by atmospheric disturbances. Nature 395, 357–360 (1998) ADSCrossRefGoogle Scholar
  84. J. Kolb, V. Lekić, Receiver function deconvolution using transdimensional hierarchical Bayesian inference. Geophys. J. Int. 197(3), 1719–1735 (2014). doi: 10.1093/gji/ggu079 ADSCrossRefGoogle Scholar
  85. D. Komatitsch, J. Tromp, Spectral-element simulations of global seismic wave propagation—I. Validation. Geophys. J. Int. 149, 390–412 (2002a). doi: 10.1046/j.1365-246X.2002.01653.x ADSCrossRefGoogle Scholar
  86. D. Komatitsch, J. Tromp, Spectral-element simulations of global seismic wave propagation—II. 3-D models, oceans, rotation, self-gravitation. Geophys. J. Int. 150, 303–318 (2002b). doi: 10.1046/j.1365-246X.2002.01716.x ADSCrossRefGoogle Scholar
  87. A.S. Konopliv, R.S. Park, W.M. Folkner, An improved JPL Mars gravity field and orientation from Mars orbiter and lander tracking data. Icarus 274, 253–260 (2016). doi: 10.1016/j.icarus.2016.02.052 ADSCrossRefGoogle Scholar
  88. G.L. Kosarev, L.I. Makeyeva, L. Vinnik, Anisotropy of the mantle inferred from observations of P to S converted waves. Geophys. J. R. Astron. Soc. 76, 209–220 (1984) ADSCrossRefGoogle Scholar
  89. C. Lachet, P.Y. Bard, Numerical and theoretical investigations on the possibilities and limitations of Nakamura’s technique. J. Phys. Earth 42, 377–397 (1994) CrossRefGoogle Scholar
  90. D. Lammlein, G. Latham, J. Dorman, Y. Nakamura, M. Ewing, Lunar seismicity, structure and tectonics. Rev. Geophys. Space Phys. 12, 1–21 (1974) ADSCrossRefGoogle Scholar
  91. C.A. Langston, Structure under Mount Rainier, Washington, inferred from teleseismic body waves. J. Geophys. Res. 84(B9), 4749–4762 (1979) ADSCrossRefGoogle Scholar
  92. C. Larmat, J.P. Montagner, Y. Capdeville, W. Banerdt, P. Lognonné, J.P. Vilotte, Numerical assessment of the effects of topography and crustal thickness on Martian seismograms using a coupled modal solution–spectral element method. Icarus 196(1), 78–89 (2008) ADSCrossRefGoogle Scholar
  93. E. Larose, A. Khan, Y. Nakamura, M. Campillo, Lunar subsurface investigated from correlation of seismic noise. Geophys. Res. Lett. 32(L16), 201 (2005). doi: 10.1029/2005GL023518 Google Scholar
  94. T. Lay, T. Wallace, Modern Global Seismology (Academic Press, San Diego, 1995) Google Scholar
  95. V. Lekić, J. Matas, M.P. Panning, B.A. Romanowicz, Measurement and implications of frequency dependence of attenuation. Earth Planet. Sci. Lett. 282, 285–293 (2009). doi: 10.1016/j.epsl.2009.03.030 ADSCrossRefGoogle Scholar
  96. J. Lermo, F. Chávez-García, Are microtremors useful in site response evaluation? Bull. Seismol. Soc. Am. 84, 1350–1364 (1994) Google Scholar
  97. J.P. Ligorría, C.J. Ammon, Iterative deconvolution and receiver-function estimation. Bull. Seismol. Soc. Am. 89(5), 1395–1400 (1999) Google Scholar
  98. V. Linkin, A.M. Harri, A. Lipatov, K. Belostotskaja, B. Derbunovich, A. Ekonomov, L. Khloustova, R. Kremnev, V. Makarov, B. Martinov, D. Nenarokov, M. Prostov, A. Pustovalov, G. Shustko, I. Järvinen, H. Kivilinna, S. Korpela, K. Kumpulainen, A. Lehto, R. Pellinen, R. Pirjola, P. Riihelä, A. Salminen, W. Schmidt, T. Siili, J. Blamont, T. Carpentier, A. Debus, C.T. Hua, J.F. Karczewski, H. Laplace, P. Levacher, P. Lognonné, C. Malique, M. Menvielle, G. Mouli, J.P. Pommereau, K. Quotb, J. Runavot, D. Vienne, F. Grunthaner, F. Kuhnke, G. Musmann, R. Rieder, H. Wänke, T. Economou, M. Herring, A. Lane, C.P. McKay, A sophisticated lander for scientific exploration of Mars: scientific objectives and implementation of the Mars-96 Small Station. Planet. Space Sci. 46, 717–737 (1998). doi: 10.1016/S0032-0633(98)00008-7 ADSCrossRefGoogle Scholar
  99. K. Lodders, B. Fegley, An oxygen isotope model for the composition of Mars. Icarus 126, 373–394 (1997) ADSCrossRefGoogle Scholar
  100. P. Lognonné, C. Johnson, Planetary seismology, in Treatise on Geophysics, vol. 10, ed. by G. Schubert (Elsevier, Amsterdam, 2007), pp. 69–122 CrossRefGoogle Scholar
  101. P. Lognonné, C.L. Johnson, Planetary seismology, in Treatise on Geophysics, vol. 10, ed. by G. Schubert 2nd edn. (Elsevier, Oxford, 2015), pp. 65–120 CrossRefGoogle Scholar
  102. P. Lognonné, B. Mosser, Planetary seismology. Surv. Geophys. 14, 239–302 (1993) ADSCrossRefGoogle Scholar
  103. P. Lognonné, W.T. Pike, Planetary seismometry, in Extraterrestrial Seismology, ed. by V.C.H. Tong, R. Garcia (Cambridge University Press, Cambridge, 2015), pp. 36–48. Chap. 3. doi: 10.1017/CBO9781107300668.006 CrossRefGoogle Scholar
  104. P. Lognonné, J.G. Beyneix, W.B. Banerdt, S. Cacho, J.F. Karczewski, M. Morand, Ultra broad band seismology on InterMarsNet. Planet. Space Sci. 44, 1237 (1996). doi: 10.1016/S0032-0633(96)00083-9 ADSCrossRefGoogle Scholar
  105. P. Lognonné, E. Clévédé, H. Kanamori, Computation of seismograms and atmospheric oscillations by normal-mode summation for a spherical Earth model with realistic atmosphere. Geophys. J. Int. 135, 388–406 (1998) ADSCrossRefGoogle Scholar
  106. P. Lognonné, D. Giardini, W. Banerdt, J. Gagnepain-Beyneix, A. Mocquet, T. Spohn, J. Karczewski, P. Schibler, S. Cacho, W. Pike, C. Cavoit, A. Desautez, M. Favède, T. Gabsi, L. Simoulin, N. Striebig, M. Campillo, A. Deschamp, J. Hinderer, J. Lévéque, J.P. Montagner, L. Rivéra, W. Benz, D. Breuer, P. Defraigne, V. Dehant, A. Fujimura, H. Mizutani, J. Oberst, The NetLander very broad band seismometer. Planet. Space Sci. 48, 1289–1302 (2000) ADSCrossRefGoogle Scholar
  107. P. Lognonné, J. Gagnepain-Beyneix, W. Banerdt, H. Chenet, A new seismic model of the Moon: implication in terms of structure, formation, and evolution. Earth Planet. Sci. Lett. 211, 27–44 (2003) ADSCrossRefGoogle Scholar
  108. P. Lognonné, M. Le Feuvre, C. Johnson, R.C. Weber, Moon meteoritic seismic hum: steady state prediction. J. Geophys. Res. 114(E12), 003 (2009). doi: 10.1029/2008JE003294 CrossRefGoogle Scholar
  109. P. Lognonné, W.B. Banerdt, K. Hurst, D. Mimoun, R. Garcia, M. Lefeuvre, J. Gagnepain-Beyneix, M. Wieczorek, A. Mocquet, M. Panning, E. Beucler, S. Deraucourt, D. Giardini, L. Boschi, U. Christensen, W. Goetz, T. Pike, C. Johnson, R. Weber, K. Larmat, N. Kobayashi, J. Tromp, Insight and single-station broadband seismology: from signal and noise to interior structure determination, in Lunar and Planetary Institute Science Conference Abstracts, Lunar and Planetary Institute Science Conference Abstracts, vol. 43 (2012), p. 1983 Google Scholar
  110. A.M. Lontsi, F.J. Sánchez-Sesma, J.C. Molina-Villegas, M. Ohrnberger, F. Krüger, Full microtremor H/V(z, f) inversion for shallow subsurface characterization. Geophys. J. Int. 202, 298–312 (2015). doi: 10.1093/gji/ggv132 ADSCrossRefGoogle Scholar
  111. M.C. Malin, K.S. Edgett, L.V. Posiolova, S.M. McColley, E.Z.N. Dobrea, Present-day impact cratering rate and contemporary gully activity on Mars. Science 314, 1573–1577 (2006) ADSCrossRefGoogle Scholar
  112. P. Malischewsky, F. Scherbaum, Love’s formula and H/V ratio (ellipticity) of Rayleigh waves. Wave Motion 40, 57–67 (2004). doi: 10.1016/j.wavemoti.2003.12.015 MathSciNetzbMATHCrossRefGoogle Scholar
  113. K. Matsumoto, R. Yamada, F. Kikuchi, S. Kamata, Y. Ishihara, T. Iwata, H. Hanada, S. Sasaki, Internal structure of the Moon inferred from Apollo seismic data and selenodetic data from GRAIL and LLR. Geophys. Res. Lett. 42, 7351–7358 (2015). doi: 10.1002/2015GL065335 ADSCrossRefGoogle Scholar
  114. H. McSween, What we have learned about Mars from SNC meteorites. Meteoritics 29, 757–779 (1994) ADSCrossRefGoogle Scholar
  115. N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, E. Teller, Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1091 (1953) ADSCrossRefGoogle Scholar
  116. D. Mimoun, P. Lognonné, W.B. Banerdt, K. Hurst, S. Deraucourt, J. Gagnepain-Beyneix, T. Pike, S. Calcutt, M. Bierwirth, R. Roll, P. Zweifel, D. Mance, O. Robert, T. Nébut, S. Tillier, P. Laudet, L. Kerjean, R. Perez, D. Giardini, U. Christenssen, R. Garcia, The InSight SEIS experiment, in Lunar and Planetary Institute Science Conference Abstracts, Lunar and Planetary Institute Science Conference Abstracts, vol. 43 (2012), p. 1493 Google Scholar
  117. D. Mimoun, N. Murdoch, P. Lognonné, W.T. Pike, K. Hurst (the SEIS Team), The seismic noise model of the InSight mission to Mars. Space Sci. Rev. (2016, this issue) Google Scholar
  118. A. Mocquet, P. Vacher, O. Grasset, C. Sotin, Theoretical seismic models of Mars: the importance of the iron content of the mantle. Planet. Space Sci. 44, 1251–1268 (1996) ADSCrossRefGoogle Scholar
  119. R.K. Mohapatra, S.V.S. Murty, Precursors of Mars—constraints from nitrogen and oxygen isotopic compositions of martian meteorites. Meteorit. Planet. Sci. 38, 225–242 (2003) ADSCrossRefGoogle Scholar
  120. J.W. Morgan, E. Anders, Chemical composition of Mars. EOS Trans AGU 60:306 (1979) Google Scholar
  121. K. Mosegaard, A. Tarantola, Monte-Carlo sampling of solutions to inverse problems. J. Geophys. Res. 100, 12431–12447 (1995) ADSCrossRefGoogle Scholar
  122. N. Murdoch, D. Mimoun, P. Lognonné (SEIS Science Team), SEIS performance model environment document. Tech. Rep. ISGH-SEIS-JF-ISAE-0030, ISAE (2015) Google Scholar
  123. N. Murdoch, B. Kenda, T. Kawamura, A. Spiga, P. Lognonné, D. Mimoun, W.B. Banerdt, Estimations of the seismic pressure noise on Mars determined from Large Eddy Simulations and demonstration of pressure decorrelation techniques for the InSight mission. Space Sci. Rev. (2016a, this issue) Google Scholar
  124. N. Murdoch, D. Mimoun, R.F. Garcia, W. Rapin, T. Kawamura, P. Lognonné, Evaluating the wind-induced mechanical noise on the InSight seismometers. Space Sci. Rev. (2016b, this issue) Google Scholar
  125. Y. Nakamura, Seismic velocity structure of the lunar mantle. J. Geophys. Res. 88, 677–686 (1983) ADSCrossRefGoogle Scholar
  126. Y. Nakamura, A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Q. Rep. RTRI 30, 25–33 (1989) Google Scholar
  127. Y. Nakamura, Clear identification of fundamental idea of Nakamura’s technique and its applications, in Proceedings of the 12th World Conference on Earthquake Engineering, Auckland (2000) Google Scholar
  128. Y. Nakamura, Farside deep moonquakes and deep interior of the Moon. J. Geophys. Res. 110(E01), 001 (2005). doi: 10.1029/2004JE002332 Google Scholar
  129. Y. Nakamura, On the H/V spectrum, in Proceedings of the 14th World Conference on Earthquake Engineering, Beijing (2008) Google Scholar
  130. Y. Nakamura, D. Anderson, Martian wind activity detected by a seismometer at Viking Lander 2 site. Geophys. Res. Lett. 6, 499–502 (1979). doi: 10.1029/GL006i006p00499 ADSCrossRefGoogle Scholar
  131. Y. Nakamura, J. Dorman, F. Duennebier, D. Lammlein, G. Latham, Shallow lunar structure determined from the passive seismic experiment. Moon 13, 57–66 (1975) ADSCrossRefGoogle Scholar
  132. Y. Nakamura, G. Latham, H. Dorman, A.B. Ibrahim, J. Koyama, P. Horvarth, Shallow moonquakes—depth, distribution and implications as to the present state of the lunar interior, in Proc. Lunar Planet. Sci. Conf., vol. 10 (1979), pp. 2299–2309 Google Scholar
  133. G. Neumann, M. Zuber, M. Wieczorek, P. McGovern, F. Lemoine, D. Smith, Crustal structure of Mars from gravity and topography. J. Geophys. Res. 109(E8), 002 (2004). doi: 10.1029/2004JE002262 CrossRefGoogle Scholar
  134. F. Nimmo, U.H. Faul, Dissipation at tidal and seismic frequencies in a melt-free, anhydrous Mars. J. Geophys. Res. 118(12), 2558–2569 (2013). http://dx.doi.org/10.1002/2013JE004499. doi: 10.1002/2013JE004499 CrossRefGoogle Scholar
  135. Nishikawa et al., Title to be completed. Space Sci. Rev. (2016, this issue) Google Scholar
  136. T. Nissen-Meyer, M. van Driel, S.C. Stähler, K. Hosseini, S. Hempel, L. Auer, A. Colombi, A. Fournier, AxiSEM: broadband 3-D seismic wavefields in axisymmetric media. Solid Earth 5(1), 425–445 (2014) ADSCrossRefGoogle Scholar
  137. E.A. Okal, D.L. Anderson, Theoretical models for Mars and their seismic properties. Icarus 33, 514–528 (1978). doi: 10.1016/0019-1035(78)90187-2 ADSCrossRefGoogle Scholar
  138. R.D. Oldham, The constitution of the interior of the Earth, as revealed by earthquakes. Q. J. Geol. Soc. Lond. 62(1–4), 456–475 (1906) CrossRefGoogle Scholar
  139. M.P. Panning, E. Beucler, M. Drilleau, A. Mocquet, P. Lognonné, W.B. Banerdt, Verifying single-station seismic approaches using Earth-based data: Preparation for data return from the InSight mission to Mars. Icarus 248, 230–242 (2015). doi: 10.1016/j.icarus.2014.10.035 ADSCrossRefGoogle Scholar
  140. A. Panou, N. Theodulidis, P. Hatzidimitriou, K. Stylianidis, C. Papazachos, Ambient noise horizontal-to-vertical spectral ration in site effects estimation and correlation with seismic damage distribution in urban environment: the case of the city of Thessaloniki (Northern Greece). Soil Dyn. Earthq. Eng. 25, 261–274 (2005). doi: 10.1016/j.soildyn.2005.02.004 CrossRefGoogle Scholar
  141. J. Park, V. Levin, Receiver functions from multiple-taper spectral correlation estimates. Bull. Seismol. Soc. Am. 90(6), 1507–1520 (2000) CrossRefGoogle Scholar
  142. J. Park, C.R. Lindberg, D.J. Thomson, Multiple-taper spectral analysis of terrestrial free oscillations: part I. Geophys. J. Int. 91(3), 755–794 (1987). doi: 10.1111/j.1365-246X.1987.tb01668.x ADSCrossRefGoogle Scholar
  143. R. Phillips, Expected rate of marsquakes, in Scientifc Rationale and Requirements for a Global Seismic Network on Mars (1991), pp. 35–38. LPI Tech. Rept., 91-02, Lunar and Planetary Inst., Houston Google Scholar
  144. A. Pivarunas, N.H. Warner, M.P. Golombek, Onset diameter of rocky ejecta craters in western Elysium Planitia, Mars: constraints for regolith thickness at the InSight landing site, in 46th Lunar and Planetary Science Conference, Lunar and Planetary Inst., Houston, TX (2015). p Abstract # 1129. http://www.hou.usra.edu/meetings/lpsc2015/pdf/1129.pdf Google Scholar
  145. A.C. Plesa, M. Grott, N. Tosi, D. Breuer, T. Spohn, M. Wieczorek, How large are present-day heat flux variations across the surface of Mars? J. Geophys. Res. (2016, accepted). doi: 10.1002/2016JE005126
  146. J.B. Plescia, Recent flood lavas in the Elysium region of Mars. Icarus 88, 465–490 (1990) ADSCrossRefGoogle Scholar
  147. V. Poggi, D. Fäh, J. Burjanek, D. Giardini, The use of Rayleigh-wave ellipticity for site-specific hazard assessment and microzonation: application to the city of Lucerne, Switzerland. Geophys. J. Int. 188, 1154–1172 (2012). doi: 10.1111/j.1365-246X.2011.05305.x ADSCrossRefGoogle Scholar
  148. F. Press, Earth models obtained by Monte Carlo inversion. J. Geophys. Res. 73, 5223–5234 (1968). doi: 10.1029/JB073i016p05223 ADSCrossRefGoogle Scholar
  149. D.A. Quiros, L.D. Brown, D. Kim, Seismic interferometry of railroad induced ground motions: body and surface wave imaging. Geophys. J. Int. 205, 301–313 (2016). doi: 10.1093/gji/ggw033 ADSCrossRefGoogle Scholar
  150. J.E. Richardson, H.J. Melosh, R.J. Greenberg, D.P. O’Brien, The global effects of impact-induced seismic activity on fractured asteroid surface morphology. Icarus 179, 325–349 (2005) ADSCrossRefGoogle Scholar
  151. A. Rivoldini, T. Van Hoolst, The interior structure of Mercury constrained by the low-degree gravity field and the rotation of Mercury. Earth Planet. Sci. Lett. 377–378, 67–72 (2013). doi: 10.1016/j.epsl.2013.07.021 Google Scholar
  152. A. Rivoldini, T. Van Hoolst, O. Verhoeven, A. Mocquet, V. Dehant, Geodesy constraints on the interior structure and composition of Mars. Icarus 213, 451–472 (2011) ADSCrossRefGoogle Scholar
  153. G.P. Roberts, B. Matthews, C. Bristow, L. Guerrieri, J. Vetterlein, Possible evidence of paleomarsquakes from fallen boulder populations, Cerberus Fossae, Mars. J. Geophys. Res. 117(E003), 816 (2012) Google Scholar
  154. S. Rost, C. Thomas, Improving seismic resolution through array processing techniques. Surv. Geophys. 30, 271–299 (2009) ADSCrossRefGoogle Scholar
  155. M. Sambridge, Geophysical inversion with a neighbourhood algorithm—I. searching a parameter space. Geophys. J. Int. 138, 479–494 (1999). doi: 10.1046/j.1365-246X.19993.00876.x ADSCrossRefGoogle Scholar
  156. F.J. Sánchez-Sesma, C.B. Crouse, Effects of site geology on seismic ground motion: Early history. Earthq. Eng. Struct. Dyn. 44, 1099–1113 (2015). doi: 10.1002/eqe.2503 CrossRefGoogle Scholar
  157. F.J. Sánchez-Sesma, M. Rodríguez, U. Iturrarán-Viveros, F. Luzón, M. Campillo, L. Margerin, A. García-Jerez, M. Suarez, M.A. Santoyo, A. Rodriguez-Castellanos, A theory for microtremor H/V spectral ratio: application for a layered medium. Geophys. J. Int. 186, 221–225 (2011). doi: 10.1111/j.1365-246X.2011.05064.x ADSCrossRefGoogle Scholar
  158. C. Sanloup, A. Jambon, P. Gillet, A simple chondritic model of Mars. Phys. Earth Planet. Inter. 112, 43–54 (1999) ADSCrossRefGoogle Scholar
  159. F. Scherbaum, K.G. Hinzen, M. Ohrnberger, Determination of shallow shear wave velocity profiles in the Cologne, Germany area using ambient vibrations. Geophys. J. Int. 152, 597–612 (2003). doi: 10.1046/j.1365-246X.2003.01856.x ADSCrossRefGoogle Scholar
  160. N.C. Schmerr, B.M. Kelly, M.S. Thorne, Broadband array observations of the 300 km seismic discontinuity. Geophys. Res. Lett. 40(5), 841–846 (2013) ADSCrossRefGoogle Scholar
  161. J. Schweitzer, J. Fyen, S. Mykkeltveit, T. Kværna, Seismic arrays, in IASPEI New Manual of Seismological Observatory Practice, ed. by P. Bormann (2002). GFZ German Research Center for Geosciences, Potsdam Google Scholar
  162. N. Shapiro, M. Ritzwoller, Monte-Carlo inversion for a global shear-velocity model of the crust and upper mantle. Geophys. J. Int. 151, 88–105 (2002) ADSCrossRefGoogle Scholar
  163. P. Shearer, Introduction to Seismology (Cambridge University Press, Cambridge, 2009) CrossRefGoogle Scholar
  164. F. Sohl, T. Spohn, The interior structure of Mars: implications from SNC meteorites. J. Geophys. Res. 102(E1), 1613–1635 (1997) ADSCrossRefGoogle Scholar
  165. T. Spohn, M. Grott, S. Smrekar, C. Krause, T.L. Hudson (the \(\mathrm{HP}^{3}\) instrument team), Measuring the martian heat flow using the heat flow and physical properties package (\(\mathrm{HP}^{3}\)), in 45th Lunar and Planetary Science Conference, Lunar and Planetary Inst., Houston, TX (2014). http://www.hou.usra.edu/meetings/lpsc2014/pdf/1916.pdf Google Scholar
  166. B. Steinberger, D. Zhao, S.C. Werner, Interior structure of the Moon: constraints from seismic tomography, gravity and topography. Phys. Earth Planet. Inter. 245, 26–39 (2015). doi: 10.1016/j.pepi.2015.05.005 ADSCrossRefGoogle Scholar
  167. L. Stixrude, C. Lithgow-Bertelloni, Thermodynamics of mantle minerals—II. phase equilibria. Geophys. J. Int. 184(3), 1180–1213 (2011). doi: 10.1111/j.1365-246X.2010.04890.x ADSCrossRefGoogle Scholar
  168. R. Takashi, K. Hirano, Seismic vibrations of soft ground (in Japanese). Bull. Earthq. Res. Inst. Univ. Tokyo 19, 534–543 (1941) Google Scholar
  169. T. Tanimoto, L. Rivera, The zh ratio method for long-period seismic data: sensitivity kernels and observational techniques. Geophys. J. Int. 172(1), 214–219 (2008) CrossRefGoogle Scholar
  170. T. Tanimoto, M. Eitzel, T. Yano, The noise cross-correlation approach for Apollo 17 LPSE data: Diurnal change in seismic parameters in the shallow lunar crust. J. Geophys. Res. 113(E08), 011 (2008). doi: 10.1029/2007JE003016 Google Scholar
  171. G.J. Taylor, The bulk composition of Mars. Chemie der Erde. Geochem. J. 73(4), 401–420 (2013). doi: 10.1016/j.chemer.2013.09.006 Google Scholar
  172. J. Taylor, N.A. Teanby, J. Wookey, Estimates of seismic activity in the Cerberus Fossae region of Mars. J. Geophys. Res. E118, 2570–2581 (2013) ADSCrossRefGoogle Scholar
  173. N.A. Teanby, Predicted detection rates of regional-scale meteorite impacts on Mars with the InSight short-period seismometer. Icarus 256, 49–62 (2015) ADSCrossRefGoogle Scholar
  174. N.A. Teanby, J. Wookey, Seismic detection of meteorite impacts on Mars. Phys. Earth Planet. Inter. 186, 70–80 (2011) ADSCrossRefGoogle Scholar
  175. N.A. Teanby, J. Stevanović, J. Wookey, N. Murdoch, J. Hurley, R. Myhill, N.E. Bowles, S.B. Calcutt, W.T. Pike, Seismic coupling of short-period wind noise through Mars’ regolith for NASA’s InSight lander. Space Sci. Rev. (2016, this issue) Google Scholar
  176. W. Thomson, On the rigidity of the Earth. Philos. Trans. R. Soc. Lond. 153, 573–582 (1863). doi: 10.1098/rstl.1863.0027 CrossRefGoogle Scholar
  177. T. Van Hoolst, V. Dehant, F. Roosbeek, P. Lognonné, Tidally induced surface displacements, external potential variations, and gravity variations on Mars. Icarus 161(2), 281–296 (2003). doi: 10.1016/S0019-1035(02)00045-3 ADSCrossRefGoogle Scholar
  178. J.D. Vaucher, D. Baratoux, N. Mangold, P. Pinet, K. Kurita, M. Grégoire, The volcanic history of central Elysium Planitia: implications for martian magmatism. Icarus 204, 418–442 (2009) ADSCrossRefGoogle Scholar
  179. O. Verhoeven, A. Rivoldini, P. Vacher, A. Mocquet, G. Choblet, M. Menvielle, V. Dehant, T. Van Hoolst, J. Sleewaegen, J.P. Barriot, P. Lognonné, Interior structure of terrestrial planets: modeling Mars’ mantle and its electromagnetic, geodetic, and seismic properties. J. Geophys. Res. 110(E04), 009 (2005). doi: 10.1029/2004JE002271 Google Scholar
  180. J. Vetterlein, G.P. Roberts, Structural evolution of the Northern Cerberus Fossae graben system, Elysium Planitia, Mars. J. Struct. Geol. 32, 394–406 (2010). doi: 10.1016/j.jsg.2009.11.004 ADSCrossRefGoogle Scholar
  181. S. Vinciguerra, C. Trovato, P.G. Meredith, P.M. Benson, Relating seismic velocities, thermal cracking and permeability in Mt. Etna and Iceland basalts. Int. J. Rock Mech. Min. Sci. 42, 900–910 (2005). doi: 10.1016/j.ijrmms.2005.05.022 CrossRefGoogle Scholar
  182. L. Vinnik, H. Chenet, J. Gagnepain-Beyneix, P. Lognonné, First seismic receiver functions on the Moon. Geophys. Res. Lett. 28, 3031–3034 (2001) ADSCrossRefGoogle Scholar
  183. E. Von Rebeur-Paschwitz, The earthquake of Tokio 18 April 1889. Nature 40, 294–295 (1889). doi: 10.1038/040294e0 ADSCrossRefGoogle Scholar
  184. N. Warner, M.P. Golombek, J. Sweeney, R. Fergason, R. Kirk, C. Schwartz, Near surface stratigraphy and regolith production in southwestern Elysium Planitia, Mars: Implications of Hesperian-Amazonian terrains and the InSight lander mission. Space Sci. Rev. (2016, this issue) Google Scholar
  185. M. Wathelet, An improved neighborhood algorithm: parameter conditions and dynamic scaling. Geophys. Res. Lett. 35(L09), 301 (2008). doi: 10.1046/j.1365-246X.19993.00876.x Google Scholar
  186. M. Wathelet, D. Jongmans, M. Ohrnberger, Surface-wave inversion using a direct search algorithm and its application to ambient vibration measurements. Near Surf. Geophys. 2, 211–221 (2004) CrossRefGoogle Scholar
  187. R. Weber, P.Y. Lin, E. Garnero, Q. Williams, P. Lognonné, Seismic detection of the lunar core. Science 331(6015), 309–312 (2011) ADSCrossRefGoogle Scholar
  188. S.G. Wells, J.C. Dohrenwend, L.D. McFadden, B.D. Turrin, K.D. Mahrer, Late Cenozoic landscape evolution on lava flow surfaces of the Cima volcanic field, Mojave Desert, California. Geol. Soc. Am. Bull. 96, 1518–1529 (1985) ADSCrossRefGoogle Scholar
  189. M. Wieczorek, M. Zuber, Thickness of the Martian crust: Improved constraints from geoid-to-topography ratios. J. Geophys. Res. 109(E01), 009 (2004). doi: 10.1029/2003JE002153 Google Scholar
  190. J.P. Williams, A.V. Pathare, O. Aharonson, The production of small primary craters on Mars and the Moon. Icarus 235, 23–36 (2014) ADSCrossRefGoogle Scholar
  191. J. Woodhouse, The calculation of eigenfrequencies and eigenfunctions of the free oscillations of the Earth and the Sun, in Seismological Algorithms, ed. by D. Doornbos (Academic Press, London, 1988), pp. 321–370 Google Scholar
  192. D. Zhao, T. Arai, L. Liu, E. Ohtani, Seismic tomography and geochemical evidence for lunar mantle heterogeneity: comparing with Earth. Glob. Planet. Change 90, 29–36 (2012). doi: 10.1016/j.gloplacha.2012.01.004 ADSCrossRefGoogle Scholar
  193. V.N. Zharkov, T.V. Gudkova, On the dissipative factor of the martian interiors. Planet. Space Sci. 45, 401–407 (1997) ADSCrossRefGoogle Scholar
  194. V.N. Zharkov, T.V. Gudkova, S.M. Molodensky, On models of Mars’ interior and amplitudes of forced nutations: 1. the effects of deviation of Mars from its equilibrium state on the flattening of the core–mantle boundary. Phys. Earth Planet. Inter. 172, 324–334 (2009). doi: 10.1016/j.pepi.2008.10.009 ADSCrossRefGoogle Scholar
  195. Y. Zheng, F. Nimmo, T. Lay, Seismological implications of a lithospheric low seismic velocity zone in Mars. Phys. Earth Planet. Inter. 240, 132–141 (2015). doi: 10.1016/j.pepi.2014.10.004 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Mark P. Panning
    • 1
  • Philippe Lognonné
    • 2
  • W. Bruce Banerdt
    • 3
  • Raphaël Garcia
    • 4
  • Matthew Golombek
    • 3
  • Sharon Kedar
    • 3
  • Brigitte Knapmeyer-Endrun
    • 5
  • Antoine Mocquet
    • 6
  • Nick A. Teanby
    • 7
  • Jeroen Tromp
    • 8
  • Renee Weber
    • 9
  • Eric Beucler
    • 6
  • Jean-Francois Blanchette-Guertin
    • 2
  • Ebru Bozdağ
    • 10
  • Mélanie Drilleau
    • 2
  • Tamara Gudkova
    • 11
    • 12
  • Stefanie Hempel
    • 4
  • Amir Khan
    • 13
  • Vedran Lekić
    • 14
  • Naomi Murdoch
    • 4
  • Ana-Catalina Plesa
    • 15
  • Atillio Rivoldini
    • 16
  • Nicholas Schmerr
    • 14
  • Youyi Ruan
    • 8
  • Olivier Verhoeven
    • 6
  • Chao Gao
    • 14
  • Ulrich Christensen
    • 5
  • John Clinton
    • 17
  • Veronique Dehant
    • 16
  • Domenico Giardini
    • 13
  • David Mimoun
    • 4
  • W. Thomas Pike
    • 18
  • Sue Smrekar
    • 3
  • Mark Wieczorek
    • 2
  • Martin Knapmeyer
    • 15
  • James Wookey
    • 7
  1. 1.Department of Geological SciencesUniversity of FloridaGainesvilleUnited States
  2. 2.Institut de Physique du Globe de ParisUniv Paris Diderot-Sorbonne Paris CitéParis Cedex 13France
  3. 3.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUnited States
  4. 4.Institut Superieur de l’Aeronautique et de l’EspaceToulouseFrance
  5. 5.Max Planck Institute for Solar System ResearchGöttingenGermany
  6. 6.Faculté des Sciences et Techniques, Laboratoire de Planétologie et Géodynamique, UMR-CNRS 6112Université de NantesNantes Cedex 3France
  7. 7.School of Earth SciencesUniversity of BristolBristolUnited Kingdom
  8. 8.Department of GeosciencesPrinceton UniversityPrincetonUnited States
  9. 9.NASA Marshall Space Flight CenterHuntsvilleUnited States
  10. 10.GéoazurUniversity of Nice Sophia AntipolisValbonneFrance
  11. 11.Schmidt Institute of Physics of the EarthRussian Academy of SciencesMoscowRussia
  12. 12.Moscow Institute of Physics and Technology (MIPT)Moscow regionRussia
  13. 13.ETH ZürichInstitut für GeophysikZürichSwitzerland
  14. 14.Department of GeologyUniversity of MarylandCollege ParkUnited States
  15. 15.German Aerospace Center (DLR)BerlinGermany
  16. 16.Royal Observatory BelgiumBrusselsBelgium
  17. 17.Swiss Seismological ServiceETH ZürichZürichSwitzerland
  18. 18.Department of Electrical and Electronic EngineeringImperial CollegeLondonUnited Kingdom

Personalised recommendations