Advertisement

Space Science Reviews

, Volume 207, Issue 1–4, pp 111–136 | Cite as

Electrodynamics of Pulsar Magnetospheres

  • Benoît CeruttiEmail author
  • Andrei M. Beloborodov
Article

Abstract

We review electrodynamics of rotating magnetized neutron stars, from the early vacuum model to recent numerical experiments with plasma-filled magnetospheres. Significant progress became possible due to the development of global particle-in-cell simulations which capture particle acceleration, emission of high-energy photons, and electron-positron pair creation. The numerical experiments show from first principles how and where electric gaps form, and promise to explain the observed pulsar activity from radio waves to gamma-rays.

Keywords

Pulsars: general Acceleration of particles Radiation mechanisms: non-thermal Magnetic reconnection Relativistic processes Stars: winds, outflows 

Notes

Acknowledgements

The authors thank the International Space Science Institute in Bern for the invitation and hospitality during the Workshop on Jets and Winds in Pulsar Wind Nebulae and Gamma-ray Bursts in November 2015. BC acknowledges support from CNES and Labex OSUG@2020 (ANR10 LABX56). AMB pulsar research is supported by NASA grants NNX13AI34G and NNX15AU71G.

References

  1. A.A. Abdo, M. Ackermann, M. Ajello, W.B. Atwood, M. Axelsson, L. Baldini, J. Ballet, G. Barbiellini, M.G. Baring, D. Bastieri, et al., The first Fermi Large Area Telescope catalog of gamma-ray pulsars. Astrophys. J. Suppl. Ser. 187, 460–494 (2010). doi: 10.1088/0067-0049/187/2/460 ADSCrossRefGoogle Scholar
  2. A.A. Abdo, M. Ajello, A. Allafort, L. Baldini, J. Ballet, G. Barbiellini, M.G. Baring, D. Bastieri, A. Belfiore, R. Bellazzini, et al., The second Fermi Large Area Telescope catalog of gamma-ray pulsars. Astrophys. J. Suppl. Ser. 208, 17 (2013). doi: 10.1088/0067-0049/208/2/17 ADSCrossRefGoogle Scholar
  3. J. Arons, Some problems of pulsar physics. Space Sci. Rev. 24, 437–510 (1979). doi: 10.1007/BF00172212 ADSCrossRefGoogle Scholar
  4. J. Arons, Pair creation above pulsar polar caps—geometrical structure and energetics of slot gaps. Astrophys. J. 266, 215–241 (1983). doi: 10.1086/160771 ADSCrossRefGoogle Scholar
  5. J. Arons, Pulsar emission: where to go, in Astrophysics and Space Science Library, ed. by W. Becker. Astrophysics and Space Science Library, vol. 357, 2009, p. 373. doi: 10.1007/978-3-540-76965-1_15 Google Scholar
  6. J. Arons, Pulsar wind nebulae as cosmic pevatrons: a current sheet’s tale. Space Sci. Rev. 173, 341–367 (2012). doi: 10.1007/s11214-012-9885-1 ADSCrossRefGoogle Scholar
  7. A.M. Beloborodov, Polar-cap accelerator and radio emission from pulsars. Astrophys. J. Lett. 683, 41 (2008). doi: 10.1086/590079 ADSCrossRefGoogle Scholar
  8. A.M. Beloborodov, C. Thompson, Corona of magnetars. Astrophys. J. 657, 967–993 (2007). doi: 10.1086/508917 ADSCrossRefGoogle Scholar
  9. M.A. Belyaev, Dissipation, energy transfer, and spin-down luminosity in 2.5D PIC simulations of the pulsar magnetosphere. Mon. Not. R. Astron. Soc. 449, 2759–2767 (2015a). doi: 10.1093/mnras/stv468 ADSCrossRefGoogle Scholar
  10. M.A. Belyaev, PICsar: a 2.5D axisymmetric, relativistic, electromagnetic, particle in cell code with a radiation absorbing boundary. New Astron. 36, 37–49 (2015b). doi: 10.1016/j.newast.2014.09.006 ADSCrossRefGoogle Scholar
  11. M.A. Belyaev, K. Parfrey, Spatial distribution of pair production over the pulsar polar cap. ArXiv e-prints (2016) Google Scholar
  12. V.S. Beskin, General relativity effects on electrodynamic processes in radio pulsars. Sov. Astron. Lett. 16, 286 (1990) ADSGoogle Scholar
  13. V.S. Beskin, S.V. Chernov, C.R. Gwinn, A.A. Tchekhovskoy, Radio pulsars. Space Sci. Rev. 191, 207–237 (2015). doi: 10.1007/s11214-015-0173-8 ADSCrossRefGoogle Scholar
  14. C.K. Birdsall, A.B. Langdon, Plasma Physics via Computer Simulation (1991) CrossRefGoogle Scholar
  15. R.D. Blandford, To the lighthouse, in Lighthouses of the Universe: The Most Luminous Celestial Objects and Their Use for Cosmology, ed. by M. Gilfanov, R. Sunyeav, E. Churazov (2002), p. 381. doi: 10.1007/10856495_59 CrossRefGoogle Scholar
  16. G.R. Blumenthal, R.J. Gould, Bremsstrahlung, synchrotron radiation, and Compton scattering of high-energy electrons traversing dilute gases. Rev. Mod. Phys. 42, 237–271 (1970). doi: 10.1103/RevModPhys.42.237 ADSCrossRefGoogle Scholar
  17. S.V. Bogovalov, On the physics of cold MHD winds from oblique rotators. Astron. Astrophys. 349, 1017–1026 (1999) ADSGoogle Scholar
  18. S. Bonazzola, F. Mottez, J. Heyvaerts, General solution for the vacuum electromagnetic field in the surroundings of a rotating star. Astron. Astrophys. 573, 51 (2015). doi: 10.1051/0004-6361/201424659 ADSCrossRefGoogle Scholar
  19. R. Buckley, Pulsar magnetospheres with arbitrary geometry in the force-free approximation. Mon. Not. R. Astron. Soc. 180, 125–140 (1977). doi: 10.1093/mnras/180.2.125 ADSCrossRefGoogle Scholar
  20. R. Bühler, R. Blandford, The surprising Crab pulsar and its nebula: a review. Rep. Prog. Phys. 77(6), 066901 (2014). doi: 10.1088/0034-4885/77/6/066901 ADSCrossRefGoogle Scholar
  21. B. Cerutti, J. Mortier, A.A. Philippov, Polarized synchrotron emission from the equatorial current sheet in gamma-ray pulsars. Mon. Not. R. Astron. Soc. 463, 89–93 (2016a). doi: 10.1093/mnrasl/slw162 ADSCrossRefGoogle Scholar
  22. B. Cerutti, A.A. Philippov, A. Spitkovsky, Modelling high-energy pulsar light curves from first principles. Mon. Not. R. Astron. Soc. 457, 2401–2414 (2016b). doi: 10.1093/mnras/stw124 ADSCrossRefGoogle Scholar
  23. B. Cerutti, G.R. Werner, D.A. Uzdensky, M.C. Begelman, Simulations of particle acceleration beyond the classical synchrotron burnoff limit in magnetic reconnection: an explanation of the Crab flares. Astrophys. J. 770, 147 (2013). doi: 10.1088/0004-637X/770/2/147 ADSCrossRefGoogle Scholar
  24. B. Cerutti, A. Philippov, K. Parfrey, A. Spitkovsky, Particle acceleration in axisymmetric pulsar current sheets. Mon. Not. R. Astron. Soc. 448, 606–619 (2015). doi: 10.1093/mnras/stv042 ADSCrossRefGoogle Scholar
  25. A.Y. Chen, A.M. Beloborodov, Dead zone in the polar-cap accelerator of pulsars. Astrophys. J. 762, 76 (2013). doi: 10.1088/0004-637X/762/2/76 ADSCrossRefGoogle Scholar
  26. A.Y. Chen, A.M. Beloborodov, Electrodynamics of axisymmetric pulsar magnetosphere with electron-positron discharge: a numerical experiment. Astrophys. J. Lett. 795, 22 (2014). doi: 10.1088/2041-8205/795/1/L22 ADSCrossRefGoogle Scholar
  27. K.S. Cheng, C. Ho, M. Ruderman, Energetic radiation from rapidly spinning pulsars. I—Outer magnetosphere gaps. II—VELA and Crab. Astrophys. J. 300, 500–539 (1986). doi: 10.1086/163829 ADSCrossRefGoogle Scholar
  28. I. Contopoulos, The coughing pulsar magnetosphere. Astron. Astrophys. 442, 579–586 (2005). doi: 10.1051/0004-6361:20053143 ADSCrossRefGoogle Scholar
  29. I. Contopoulos, D. Kazanas, Toward resolving the Crab \(\sigma\)-problem: a linear accelerator? Astrophys. J. 566, 336–342 (2002). doi: 10.1086/324778 ADSCrossRefGoogle Scholar
  30. I. Contopoulos, C. Kalapotharakos, D. Kazanas, A new standard pulsar magnetosphere. Astrophys. J. 781, 46 (2014). doi: 10.1088/0004-637X/781/1/46 ADSCrossRefGoogle Scholar
  31. I. Contopoulos, D. Kazanas, C. Fendt, The axisymmetric pulsar magnetosphere. Astrophys. J. 511, 351–358 (1999). doi: 10.1086/306652 ADSCrossRefGoogle Scholar
  32. F.V. Coroniti, Magnetically striped relativistic magnetohydrodynamic winds—the Crab nebula revisited. Astrophys. J. 349, 538–545 (1990). doi: 10.1086/168340 ADSCrossRefGoogle Scholar
  33. L. Davis, Stellar electromagnetic fields. Phys. Rev. 72, 632–633 (1947). doi: 10.1103/PhysRev.72.632 ADSzbMATHCrossRefGoogle Scholar
  34. J. Dawson, One-dimensional plasma model. Phys. Fluids 5, 445–459 (1962). doi: 10.1063/1.1706638 ADSzbMATHCrossRefGoogle Scholar
  35. A.J. Deutsch, The electromagnetic field of an idealized star in rigid rotation in vacuo. Ann. Astrophys. 18, 1 (1955) ADSGoogle Scholar
  36. T. Erber, High-energy electromagnetic conversion processes in intense magnetic fields. Rev. Mod. Phys. 38, 626–659 (1966). doi: 10.1103/RevModPhys.38.626 ADSMathSciNetCrossRefGoogle Scholar
  37. P. Goldreich, W.H. Julian, Pulsar electrodynamics. Astrophys. J. 157, 869 (1969). doi: 10.1086/150119 ADSCrossRefGoogle Scholar
  38. S.P. Goodwin, J. Mestel, L. Mestel, G.A.E. Wright, An idealized pulsar magnetosphere: the relativistic force-free approximation. Mon. Not. R. Astron. Soc. 349, 213–224 (2004). doi: 10.1111/j.1365-2966.2004.07481.x ADSCrossRefGoogle Scholar
  39. S.E. Gralla, A. Lupsasca, A. Philippov, Pulsar magnetospheres: beyond the flat spacetime dipole. ArXiv e-prints (2016) Google Scholar
  40. I.A. Grenier, A.K. Harding, Gamma-ray pulsars: a gold mine. C. R. Phys. 16, 641–660 (2015). doi: 10.1016/j.crhy.2015.08.013 ADSCrossRefGoogle Scholar
  41. A. Gruzinov, Power of an axisymmetric pulsar. Phys. Rev. Lett. 94(2), 021101 (2005). doi: 10.1103/PhysRevLett.94.021101 ADSCrossRefGoogle Scholar
  42. A.K. Harding, D. Lai, Physics of strongly magnetized neutron stars. Rep. Prog. Phys. 69, 2631–2708 (2006). doi: 10.1088/0034-4885/69/9/R03 ADSCrossRefGoogle Scholar
  43. A. Hewish, S.J. Bell, J.D.H. Pilkington, P.F. Scott, R.A. Collins, Observation of a rapidly pulsating radio source. Nature 217, 709–713 (1968). doi: 10.1038/217709a0 ADSCrossRefGoogle Scholar
  44. E.W. Hones Jr., J.E. Bergeson, Electric field generated by a rotating magnetized sphere. J. Geophys. Res. 70, 4951–4958 (1965). doi: 10.1029/JZ070i019p04951 ADSCrossRefGoogle Scholar
  45. F. Hoyle, J.V. Narlikar, J.A. Wheeler, Electromagnetic waves from very dense stars. Nature 203, 914–916 (1964). doi: 10.1038/203914a0 ADSzbMATHCrossRefGoogle Scholar
  46. E.A. Jackson, Minimum energy state of the constrained pulsar atmosphere. Astrophys. J. 227, 266–274 (1979). doi: 10.1086/156725 ADSCrossRefGoogle Scholar
  47. P.B. Jones, Properties of condensed matter in very strong magnetic fields. Mon. Not. R. Astron. Soc. 218, 477–485 (1986). doi: 10.1093/mnras/218.3.477 ADSCrossRefGoogle Scholar
  48. C. Kalapotharakos, I. Contopoulos, Three-dimensional numerical simulations of the pulsar magnetosphere: preliminary results. Astron. Astrophys. 496, 495–502 (2009). doi: 10.1051/0004-6361:200810281 ADSzbMATHCrossRefGoogle Scholar
  49. C. Kalapotharakos, D. Kazanas, A. Harding, I. Contopoulos, Toward a realistic pulsar magnetosphere. Astrophys. J. 749, 2 (2012). doi: 10.1088/0004-637X/749/1/2 ADSCrossRefGoogle Scholar
  50. J.G. Kirk, Particle acceleration in relativistic current sheets. Phys. Rev. Lett. 92(18), 181101 (2004). doi: 10.1103/PhysRevLett.92.181101 ADSCrossRefGoogle Scholar
  51. J.G. Kirk, Y. Lyubarsky, J. Petri, The theory of pulsar winds and nebulae, in Astrophysics and Space Science Library, ed. by W. Becker. Astrophysics and Space Science Library, vol. 357 (2009), p. 421. doi: 10.1007/978-3-540-76965-1_16 Google Scholar
  52. S.S. Komissarov, Simulations of the axisymmetric magnetospheres of neutron stars. Mon. Not. R. Astron. Soc. 367, 19–31 (2006). doi: 10.1111/j.1365-2966.2005.09932.x ADSCrossRefGoogle Scholar
  53. J. Krause-Polstorff, F.C. Michel, Electrosphere of an aligned magnetized neutron star. Mon. Not. R. Astron. Soc. 213, 43–49 (1985a). doi: 10.1093/mnras/213.1.43P ADSCrossRefGoogle Scholar
  54. J. Krause-Polstorff, F.C. Michel, Pulsar space charging. Astron. Astrophys. 144, 72–80 (1985b) ADSGoogle Scholar
  55. J. Li, A. Spitkovsky, A. Tchekhovskoy, Resistive solutions for pulsar magnetospheres. Astrophys. J. 746, 60 (2012). doi: 10.1088/0004-637X/746/1/60 ADSCrossRefGoogle Scholar
  56. Y.E. Lyubarskii, Equilibrium of the return current sheet and the structure of the pulsar magnetosphere. Sov. Astron. Lett. 16, 16 (1990) ADSGoogle Scholar
  57. Y.E. Lyubarskii, A model for the energetic emission from pulsars. Astron. Astrophys. 311, 172–178 (1996) ADSGoogle Scholar
  58. J. McDonald, A. Shearer, Investigations of the magnetospheric plasma distribution in the vicinity of a pulsar. I. Basic formulation. Astrophys. J. 690, 13–19 (2009). doi: 10.1088/0004-637X/690/1/13 ADSCrossRefGoogle Scholar
  59. J.C. McKinney, Relativistic force-free electrodynamic simulations of neutron star magnetospheres. Mon. Not. R. Astron. Soc. 368, 30–34 (2006). doi: 10.1111/j.1745-3933.2006.00150.x ADSCrossRefGoogle Scholar
  60. Z. Medin, D. Lai, Condensed surfaces of magnetic neutron stars, thermal surface emission, and particle acceleration above pulsar polar caps. Mon. Not. R. Astron. Soc. 382, 1833–1852 (2007). doi: 10.1111/j.1365-2966.2007.12492.x ADSCrossRefGoogle Scholar
  61. L. Mestel, S. Shibata, The axisymmetric pulsar magnetosphere—a new model. Mon. Not. R. Astron. Soc. 271, 621 (1994). doi: 10.1093/mnras/271.3.621 ADSCrossRefGoogle Scholar
  62. L. Mestel, J.A. Robertson, Y.-M. Wang, K.C. Westfold, The axisymmetric pulsar magnetosphere. Mon. Not. R. Astron. Soc. 217, 443–484 (1985). doi: 10.1093/mnras/217.3.443 ADSzbMATHCrossRefGoogle Scholar
  63. F.C. Michel, Rotating magnetosphere: a simple relativistic model. Astrophys. J. 180, 207–226 (1973a). doi: 10.1086/151956 ADSCrossRefGoogle Scholar
  64. F.C. Michel, Rotating magnetospheres: an exact 3-D solution. Astrophys. J. Lett. 180, 133 (1973b). doi: 10.1086/181169 ADSCrossRefGoogle Scholar
  65. F.C. Michel, Rotating magnetosphere: acceleration of plasma from the surface. Astrophys. J. 192, 713–718 (1974). doi: 10.1086/153109 ADSCrossRefGoogle Scholar
  66. F.C. Michel, Magnetic structure of pulsar winds. Astrophys. J. 431, 397–401 (1994). doi: 10.1086/174493 ADSCrossRefGoogle Scholar
  67. F.C. Michel, The state of pulsar theory. Adv. Space Res. 33, 542–551 (2004). doi: 10.1016/j.asr.2003.06.019 ADSCrossRefGoogle Scholar
  68. F.C. Michel, H. Li, Electrodynamics of neutron stars. Phys. Rep. 318, 227–297 (1999). doi: 10.1016/S0370-1573(99)00002-2 ADSCrossRefGoogle Scholar
  69. A.G. Muslimov, A.K. Harding, High-altitude particle acceleration and radiation in pulsar slot gaps. Astrophys. J. 606, 1143–1153 (2004). doi: 10.1086/383079 ADSCrossRefGoogle Scholar
  70. A.G. Muslimov, A.I. Tsygan, General relativistic electric potential drops above pulsar polar caps. Mon. Not. R. Astron. Soc. 255, 61–70 (1992). doi: 10.1093/mnras/255.1.61 ADSMathSciNetCrossRefGoogle Scholar
  71. T. Neukirch, Equilibria of charge-separated rigidly rotating relativistic magnetospheres. Astron. Astrophys. 274, 319 (1993) ADSGoogle Scholar
  72. C.-Y. Ng, R.W. Romani, Fitting pulsar wind tori. Astrophys. J. 601, 479–484 (2004). doi: 10.1086/380486 ADSCrossRefGoogle Scholar
  73. J.P. Ostriker, J.E. Gunn, On the nature of pulsars. I. Theory. Astrophys. J. 157, 1395 (1969). doi: 10.1086/150160 ADSCrossRefGoogle Scholar
  74. F. Pacini, Energy emission from a neutron star. Nature 216, 567–568 (1967). doi: 10.1038/216567a0 ADSCrossRefGoogle Scholar
  75. F. Pacini, Rotating neutron stars, pulsars and supernova remnants. Nature 219, 145–146 (1968). doi: 10.1038/219145a0 ADSCrossRefGoogle Scholar
  76. K. Parfrey, A.M. Beloborodov, L. Hui, Introducing PHAEDRA: a new spectral code for simulations of relativistic magnetospheres. Mon. Not. R. Astron. Soc. 423, 1416–1436 (2012). doi: 10.1111/j.1365-2966.2012.20969.x ADSCrossRefGoogle Scholar
  77. J. Pétri, Relativistic stabilisation of the diocotron instability in a pulsar “cylindrical” electrosphere. Astron. Astrophys. 469, 843–855 (2007). doi: 10.1051/0004-6361:20066985 ADSzbMATHCrossRefGoogle Scholar
  78. J. Pétri, The pulsar force-free magnetosphere linked to its striped wind: time-dependent pseudo-spectral simulations. Mon. Not. R. Astron. Soc. 424, 605–619 (2012). doi: 10.1111/j.1365-2966.2012.21238.x ADSCrossRefGoogle Scholar
  79. J. Pétri, Multipolar electromagnetic fields around neutron stars: exact vacuum solutions and related properties. Mon. Not. R. Astron. Soc. 450, 714–742 (2015). doi: 10.1093/mnras/stv598 ADSCrossRefGoogle Scholar
  80. J. Pétri, Theory of pulsar magnetosphere and wind. ArXiv e-prints (2016) Google Scholar
  81. J. Pétri, J. Heyvaerts, S. Bonazzola, Diocotron instability in pulsar electrospheres. I. Linear analysis. Astron. Astrophys. 387, 520–530 (2002a). doi: 10.1051/0004-6361:20020442 ADSCrossRefGoogle Scholar
  82. J. Pétri, J. Heyvaerts, S. Bonazzola, Global static electrospheres of charged pulsars. Astron. Astrophys. 384, 414–432 (2002b). doi: 10.1051/0004-6361:20020044 ADSCrossRefGoogle Scholar
  83. A.A. Philippov, A. Spitkovsky, Ab initio pulsar magnetosphere: three-dimensional particle-in-cell simulations of axisymmetric pulsars. Astrophys. J. Lett. 785, 33 (2014). doi: 10.1088/2041-8205/785/2/L33 ADSCrossRefGoogle Scholar
  84. A.A. Philippov, A. Spitkovsky, B. Cerutti, Ab initio pulsar magnetosphere: three-dimensional particle-in-cell simulations of oblique pulsars. Astrophys. J. Lett. 801, 19 (2015a). doi: 10.1088/2041-8205/801/1/L19 ADSCrossRefGoogle Scholar
  85. A.A. Philippov, B. Cerutti, A. Tchekhovskoy, A. Spitkovsky, Ab initio pulsar magnetosphere: the role of general relativity. Astrophys. J. Lett. 815, 19 (2015b). doi: 10.1088/2041-8205/815/2/L19 ADSCrossRefGoogle Scholar
  86. M. Ruderman, Matter in superstrong magnetic fields, in Physics of Dense Matter, ed. by C.J. Hansen. IAU Symposium, vol. 53 (1974), p. 117 CrossRefGoogle Scholar
  87. M.A. Ruderman, P.G. Sutherland, Theory of pulsars—polar caps, sparks, and coherent microwave radiation. Astrophys. J. 196, 51–72 (1975). doi: 10.1086/153393 ADSCrossRefGoogle Scholar
  88. N. Sakai, S. Shibata, General relativistic electromagnetism and particle acceleration in a pulsar polar cap. Astrophys. J. 584, 427–432 (2003). doi: 10.1086/345616 ADSCrossRefGoogle Scholar
  89. E.T. Scharlemann, R.V. Wagoner, Aligned rotating magnetospheres. General analysis. Astrophys. J. 182, 951–960 (1973). doi: 10.1086/152195 ADSCrossRefGoogle Scholar
  90. S. Shibata, Confirmation of quiet pulsar model by the boundary element method. Astrophys. Space Sci. 161, 187–194 (1989). doi: 10.1007/BF00653564 ADSMathSciNetCrossRefGoogle Scholar
  91. I.A. Smith, F.C. Michel, P.D. Thacker, Numerical simulations of aligned neutron star magnetospheres. Mon. Not. R. Astron. Soc. 322, 209–217 (2001). doi: 10.1046/j.1365-8711.2001.04045.x ADSCrossRefGoogle Scholar
  92. A. Spitkovsky, Time-dependent force-free pulsar magnetospheres: axisymmetric and oblique rotators. Astrophys. J. Lett. 648, 51–54 (2006). doi: 10.1086/507518 ADSCrossRefGoogle Scholar
  93. A. Spitkovsky, Current Models of Pulsar Magnetospheres. Astrophysics and Space Science Proceedings, vol. 21 (2011), p. 139. doi: 10.1007/978-3-642-17251-9_11 Google Scholar
  94. A. Spitkovsky, J. Arons, Simulations of pulsar wind formation, in Neutron Stars in Supernova Remnants, ed. by P.O. Slane, B.M. Gaensler. Astronomical Society of the Pacific Conference Series, vol. 271 (2002), p. 81 Google Scholar
  95. P.A. Sturrock, A model of pulsars. Astrophys. J. 164, 529 (1971). doi: 10.1086/150865 ADSCrossRefGoogle Scholar
  96. M. Tamburini, F. Pegoraro, A. Di Piazza, C.H. Keitel, A. Macchi, Radiation reaction effects on radiation pressure acceleration. New J. Phys. 12(12), 123005 (2010). doi: 10.1088/1367-2630/12/12/123005 ADSCrossRefGoogle Scholar
  97. A. Tchekhovskoy, A. Philippov, A. Spitkovsky, Three-dimensional analytical description of magnetized winds from oblique pulsars. Mon. Not. R. Astron. Soc. 457, 3384–3395 (2016). doi: 10.1093/mnras/stv2869 ADSCrossRefGoogle Scholar
  98. A. Tchekhovskoy, A. Spitkovsky, J.G. Li, Time-dependent 3D magnetohydrodynamic pulsar magnetospheres: oblique rotators. Mon. Not. R. Astron. Soc. 435, 1–5 (2013). doi: 10.1093/mnrasl/slt076 ADSCrossRefGoogle Scholar
  99. K.O. Thielheim, H. Wolfsteller, Stable space charge configurations near the force-free surface of rotating magnets. Astrophys. J. 431, 718–723 (1994). doi: 10.1086/174522 ADSCrossRefGoogle Scholar
  100. A.N. Timokhin, On the force-free magnetosphere of an aligned rotator. Mon. Not. R. Astron. Soc. 368, 1055–1072 (2006). doi: 10.1111/j.1365-2966.2006.10192.x ADSCrossRefGoogle Scholar
  101. A.N. Timokhin, J. Arons, Current flow and pair creation at low altitude in rotation-powered pulsars’ force-free magnetospheres: space charge limited flow. Mon. Not. R. Astron. Soc. 429, 20–54 (2013). doi: 10.1093/mnras/sts298 ADSCrossRefGoogle Scholar
  102. D.A. Uzdensky, B. Cerutti, M.C. Begelman, Reconnection-powered linear accelerator and gamma-ray flares in the Crab nebula. Astrophys. J. Lett. 737, 40 (2011). doi: 10.1088/2041-8205/737/2/L40 ADSCrossRefGoogle Scholar
  103. T. Wada, S. Shibata, A particle simulation for the global pulsar magnetosphere—II. The case of dipole field. Mon. Not. R. Astron. Soc. 418, 612–624 (2011). doi: 10.1111/j.1365-2966.2011.19510.x ADSCrossRefGoogle Scholar
  104. M.C. Weisskopf, R.F. Elsner, J.J. Kolodziejczak, S.L. O’Dell, A.F. Tennant, Unraveling the geometry of the Crab nebula’s “inner ring”. Astrophys. J. 746, 41 (2012). doi: 10.1088/0004-637X/746/1/41 ADSCrossRefGoogle Scholar
  105. K. Yee, Numerical solution of inital boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 14, 302–307 (1966). doi: 10.1109/TAP.1966.1138693 ADSzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Univ. Grenoble Alpes, CNRS, IPAGGrenobleFrance
  2. 2.Physics Department and Columbia Astrophysics LaboratoryColumbia UniversityNew YorkUSA

Personalised recommendations