Skip to main content
Log in

The Physics and Diagnostic Potential of Ultraviolet Spectropolarimetry

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

The empirical investigation of the magnetic field in the outer solar atmosphere is a very important challenge in astrophysics. To this end, we need to identify, measure and interpret observable quantities sensitive to the magnetism of the upper chromosphere, transition region and corona. This paper provides an overview of the physics and diagnostic potential of spectropolarimetry in permitted spectral lines of the ultraviolet solar spectrum, such as the Mg ii \(h\) and \(k\) lines around 2800 Å, the hydrogen Lyman-\(\alpha\) line at 1216 Å, and the Lyman-\(\alpha\) line of He ii at 304 Å. The outer solar atmosphere is an optically pumped vapor and the linear polarization of such spectral lines is dominated by the atomic level polarization produced by the absorption and scattering of anisotropic radiation. Its modification by the action of the Hanle and Zeeman effects in the inhomogeneous and dynamic solar atmosphere needs to be carefully understood because it encodes the magnetic field information. The circular polarization induced by the Zeeman effect in some ultraviolet lines (e.g., Mg ii \(h\) & \(k\)) is also of diagnostic interest, especially for probing the outer solar atmosphere in plages and more active regions. The few (pioneering) observational attempts carried out so far to measure the ultraviolet spectral line polarization produced by optically pumped atoms in the upper chromosphere, transition region and corona are also discussed. We emphasize that ultraviolet spectropolarimetry is a key gateway to the outer atmosphere of the Sun and of other stars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Notes

  1. Quantum mechanics is responsible for introducing in this equation an additional factor \(g\), the level’s Landé factor, so that the general equation reads \(\Delta\varPhi\simeq{ {e_{0} B g \, t _{\mathrm{life}}} / {2 m c} }\).

  2. Note that in this reference frame \(\bar{J}^{0}_{0}\) and \(\bar{J}^{2}_{0}\) are not the only non-vanishing components of the radiation field tensor, even if the incident field is characterized by cylindrical symmetry along the local vertical.

  3. The assumption of isotropic collisions is generally well justified.

  4. This is not the case for optically thick media. When modeling solar disk observations, for instance, interference between different FS levels are fundamental for explaining the polarization profiles in the wings of the components of the multiplet, even when the separation between the levels is much larger than their natural width (see Sect. 4).

  5. Note that summing over \(K\) the scattering phase matrix defined in Eq. (49) one recovers the matrix appearing in the right-hand side of Eq. (9) (multiplied by \(3/4\)).

  6. Note that our choice for the reference direction for linear polarization is the parallel to the nearest solar limb.

  7. Recall that we are always choosing the parallel to the nearest solar limb as the reference direction for linear polarization.

References

  • E. Alsina Ballester, L. Belluzzi, J. Trujillo Bueno, The transfer of resonance line polarization with partial frequency redistribution in the general Hanle-Zeeman regime. Astrophys. J. (2016a in press)

  • E. Alsina Ballester, L. Belluzzi, J. Trujillo Bueno, The magnetic sensitivity of the Mg ii \(k\) line to the joint action of Hanle, Zeeman and magneto-optical effects. Astrophys. J. 831, L15 (2016b)

    Article  ADS  Google Scholar 

  • L.H. Auer, D. Rees, J.O. Stenflo, Resonance line polarization. Line wing transfer calculations including excited state interference. Astron. Astrophys. 88, 302 (1980)

    ADS  Google Scholar 

  • E.H. Avrett, Two-component modeling of the solar IR CO lines, in Infrared Tools for Solar Astrophysics. What’s Next? ed. by J.R. Kuhn, M.J. Penn. Singapore (World Scientific, Singapore, 1995), p. 303

    Google Scholar 

  • S. Bashkin, J.O. Stoner Jr., Atomic Energy Levels and Grotrian Diagrams (North-Holland, Amsterdam, 1975)

    Google Scholar 

  • L. Belluzzi, J. Trujillo Bueno, The polarization of the solar Mg II h & k lines. Astrophys. J. 750, L11 (2012)

    Article  ADS  Google Scholar 

  • L. Belluzzi, J. Trujillo Bueno, The transfer of resonance line polarization. Astron. Astrophys. 564, A16 (2014)

    Article  ADS  Google Scholar 

  • L. Belluzzi, J. Trujillo Bueno, J. Štěpán, The scattering polarization of the Ly\(\alpha\) lines of H I and He II taking into account PRD and \(J\)-state interference effects. Astrophys. J. 755, L2 (2012)

    Article  ADS  Google Scholar 

  • L. Belluzzi, E. Landi Degl’Innocenti, J. Trujillo Bueno, Isotropic inelastic and superelastic collisional rates in a multiterm atom. Astron. Astrophys. 551, A84 (2013)

    Article  Google Scholar 

  • V. Bommier, Master equation theory applied to the redistribution of polarized radiation in the weak radiation field limit. III. Theory for the multilevel atom. Astron. Astrophys. 591, 59 (2016)

    Article  ADS  Google Scholar 

  • V. Bommier, S. Sahal-Bréchot, The Hanle effect of the coronal L-alpha line of hydrogen—theoretical investigation. Sol. Phys. 78, 157 (1982)

    Article  ADS  Google Scholar 

  • V. Bommier, J.L. Leroy, S. Sahal-Bréchot, Determination of the complete vector magnetic field in solar prominences, using the Hanle effect. Astron. Astrophys. 100, 231 (1981)

    ADS  Google Scholar 

  • V. Bommier, E. Landi Degl’Innocenti, J.L. Leroy, S. Sahal-Bréchot, Complete determination of the magnetic field vector and of the electron density in 14 prominences from linear polarization measurements in the HeI D3 and H-alpha lines. Sol. Phys. 154, 231 (1994)

    Article  ADS  Google Scholar 

  • E.S. Carlin, R. Manso Sainz, A. Asensio Ramos, J. Trujillo Bueno, Scattering polarization in the Ca II infrared triplet with velocity gradients. Astrophys. J. 751, 5 (2012)

    Article  ADS  Google Scholar 

  • M. Carlsson, B. Stein, Formation of solar calcium H and K bright grains. Astrophys. J. 481, 500 (1997)

    Article  ADS  Google Scholar 

  • M. Carlsson, V. Hansteen, B. Gudiksen, J. Leenaarts, B. De Pontieu, A publicly available simulation of an enhanced network region of the Sun. Astron. Astrophys. 585, A4 (2016)

    Article  ADS  Google Scholar 

  • R. Casini, R. Manso Sainz, Line formation theory for the multiterm atom with hyperfine structure in a magnetic field. Astrophys. J. 624, 1025 (2005)

    Article  ADS  Google Scholar 

  • R. Casini, R. Manso Sainz, Frequency redistribution of polarized light in the \(\varLambda \)-type multi-term polarized atom. Astrophys. J. 824, 135 (2016)

    Article  ADS  Google Scholar 

  • R. Casini, S.M. White, P. Judge, Magnetic diagnostics of the solar corona: Unifying optical and radio techniques. Space Sci. Rev. (2017 this issue)

  • W. Curdt, H. Tian, L. Teriaca, U. Schühle, P. Lemaire, The Lyman-\(\alpha\) profile and center-to-limb variation of the quiet Sun. Astron. Astrophys. 492, L9 (2008)

    Article  ADS  Google Scholar 

  • B. De Pontieu, A. Title, J.R. Lemen et al., The Interface Region Imaging Spectrograph (IRIS). Sol. Phys. 289, 2733 (2014)

    Article  ADS  Google Scholar 

  • T. del Pino Alemán, R. Manso Sainz, J. Trujillo Bueno, Non-coherent continuum scattering as a line polarization mechanism. Astrophys. J. 784, 46 (2014)

    Article  ADS  Google Scholar 

  • T. del Pino Alemán, R. Casini, R. Manso Sainz, Magnetic diagnostics of the solar chromosphere with the Mg ii \(h\)\(k\) lines. Astrophys. J. 830, L24 (2016)

    Article  ADS  Google Scholar 

  • M. Derouich, F. Auchière, J.C. Vial, M. Zhang, Hanle signatures of the coronal magnetic field in the linear polarization of the hydrogen Ly-\(\alpha\) line. Astron. Astrophys. 511, 7 (2010)

    Article  ADS  Google Scholar 

  • S. Fineschi, Space-based instrumentation for magnetic field studies of solar and stellar atmospheres, in Magnetic Fields Across the Hertzsprung-Russell Diagram, ed. by G. Mathys, S.K. Solanki, D.T. Wickramasinghe. ASP Conf. Ser., vol. 248 (2001), p. 597

    Google Scholar 

  • S. Fineschi, R.B. Hoover, A.B.C. Walker Jr., Hydrogen Lyman-alpha coronagraph/polarimeter. Proc. SPIE 1546, 402 (1992)

    Article  ADS  Google Scholar 

  • S. Fineschi, R.B. Hoover, M. Zukic, K. Jongmin, A.B.C. Walker Jr., P.C. Baker, Polarimetry of the H I Lyman-\(\alpha\) for coronal magnetic field diagnostics. Proc. SPIE 1742, 423 (1993)

    Article  ADS  Google Scholar 

  • S. Fineschi, A. van Ballegoijen, J.L. Kohl, Coronal magnetic field diagnostics with UV spectropolarimetry. ESA SP 446, 317 (1999)

    ADS  Google Scholar 

  • J.M. Fontenla, E.H. Avrett, R. Loeser, Energy balance in the solar transition region. III. Helium emission in hydrostatic, constant-abundance models with diffusion. Astrophys. J. 406, 319 (1993)

    Article  ADS  Google Scholar 

  • A.H. Gabriel, Measurements on the Lyman-\(\alpha\) corona. Sol. Phys. 21, 392 (1971)

    Article  ADS  Google Scholar 

  • A.H. Gabriel, et al., Rocket observations of the ultraviolet solar spectrum during the total eclipse of 1970 March 7. Astrophys. J. 169, 595 (1971)

    Article  ADS  Google Scholar 

  • G.E. Hale, On the probable existence of a magnetic field in sunspots. Astrophys. J. 28, 315 (1908)

    Article  ADS  Google Scholar 

  • W. Hanle, Über magnetische Beeinflussung der Polarisation der Resonanzfluoreszenz. Z. Phys. 30, 93 (1924)

    Article  ADS  Google Scholar 

  • W. Henze, J.O. Stenflo, Polarimetry in the Mg II \(h\) and \(k\) lines. Sol. Phys. 111, 243 (1987)

    Article  ADS  Google Scholar 

  • W. Henze et al., Observations of the longitudinal magnetic field in the transition region and photosphere of a sunspot. Sol. Phys. 81, 231 (1982)

    Article  ADS  Google Scholar 

  • I. Hubeny, D. Mihalas, Theory of Stellar Atmospheres (Princeton University Press, Princeton/Oxford, 2015)

    MATH  Google Scholar 

  • D.G. Hummer, Non-coherent scattering: I. The redistribution function with Doppler redistribution. Mon. Not. R. Astron. Soc. 125, 21 (1962)

    Article  ADS  MATH  Google Scholar 

  • R. Kano, J. Trujillo Bueno, A. Winebarger et al., Discovery of scattering polarization in the hydrogen Lyman-\(\alpha\) line of the solar disk radiation. Astrophys. J. (2017, in press)

  • A. Khan, E. Landi Degl’Innocenti, Solar coronal magnetic field diagnostics through polarimetric forward modelling of the Hanle effect. Astron. Astrophys. 532, 70 (2011)

    Article  Google Scholar 

  • A. Khan, E. Landi Degl’Innocenti, Spectropolarimetric signatures of anisotropic velocity distributions of optically thin coronal UV lines. Astron. Astrophys. 543, 158 (2012)

    Article  Google Scholar 

  • A. Khan, L. Belluzzi, E. Landi Degl’Innocenti, S. Fineschi, M. Romoli, Spectropolarimetric forward modelling of the lines of the Lyman-series using a self-consistent, global, solar coronal model. Astron. Astrophys. 529, 12 (2011)

    Article  Google Scholar 

  • K. Kobayashi, R. Kano, J. Trujillo Bueno et al., The Chromospheric Lyman-Alpha SpectroPolarimeter: CLASP, in The Fifth Hinode Science Meeting, ed. by L. Golub, I. De Moortel, T. Shimizu. Astronomical Society of the Pacific Conference Series, vol. 456 (2012), p. 233

    Google Scholar 

  • J.L. Kohl et al., First results from the SOHO ultraviolet coronagraph spectrometer. Sol. Phys. 175, 613 (1997)

    Article  ADS  Google Scholar 

  • E. Landi Degl’Innocenti, The determination of vector magnetic fields in prominences from the observations of the Stokes profiles in the D3 line of helium. Sol. Phys. 79, 291 (1982)

    Article  ADS  Google Scholar 

  • E. Landi Degl’Innocenti, Polarization in spectral lines. III. Resonance polarization in the non-magnetic, collisionless regime. Sol. Phys. 91, 1 (1984)

    ADS  Google Scholar 

  • E. Landi Degl’Innocenti, Atomic Spectroscopy and Radiative Processes (Springer, Milan, 2014)

    Book  Google Scholar 

  • E. Landi Degl’Innocenti, V. Bommier, A spectroscopic method for the solution of the \(180^{\circ}\) azimuth ambiguity in magnetograms. Astrophys. J. 411, L49 (1993)

    Article  ADS  Google Scholar 

  • M. Landi Degl’Innocenti, E. Landi Degl’Innocenti, An analytical expression for the Hanle-effect scattering phase matrix. Astron. Astrophys. 192, 374 (1988)

    ADS  MATH  Google Scholar 

  • E. Landi Degl’Innocenti, M. Landolfi, Polarization in Spectral Lines (Kluwer, Dordrecht, 2004)

    Book  Google Scholar 

  • H. Lin, J.R. Kuhn, R. Coulter, Coronal magnetic field measurements. Astrophys. J. 613, 177 (2004)

    Article  ADS  Google Scholar 

  • R. Manso Sainz, J. Trujillo Bueno, A possible polarization mechanism of EUV coronal lines, in Solar Polarization 5, ed. by S.V. Berdyugina, K.N. Nagendra, R. Ramelli. Astronomical Society of the Pacific Conference Series, vol. 405 (2009), p. 423

    Google Scholar 

  • R. Manso Sainz, J. Trujillo Bueno, Scattering polarization and Hanle effect in stellar atmospheres with horizontal inhomogeneities. Astrophys. J. 743, 12 (2011)

    Article  ADS  Google Scholar 

  • J.S. Morrill, C.M. Korendyke, High-resolution center-to-limb variation of the quiet solar spectrum near Mg II. Astrophys. J. 687, 646 (2008)

    Article  ADS  Google Scholar 

  • T. Pereira, B. De Pontieu, M. Carlsson et al., An Interface Region Imaging Spectrograph first view on spicules. Astrophys. J. 792, L15 (2014)

    Article  ADS  Google Scholar 

  • H. Peter, Magnetic field diagnostics and spatio-temporal variability of the solar transition region. Sol. Phys. 288, 531 (2013)

    Article  ADS  Google Scholar 

  • H. Peter et al., Solar magnetism eXplorer (SolmeX). Exploring the magnetic field in the upper atmosphere of our closest star. Exp. Astron. 33, 271 (2012)

    Article  ADS  Google Scholar 

  • D.J. Pinfield, F.P. Keenan, M. Mathioudakis, K.J.H. Phillips, W. Curdt, K. Wilhelm, Evidence for non-Maxwellian electron energy distributions in the solar transition region: Si III line ratios from SUMER. Astrophys. J. 527, 1000 (1999)

    Article  ADS  Google Scholar 

  • N.E. Raouafi, S.K. Solanki, Effect of anisotropic velocity distribution on the linear polarization of coronal lines. Does the ion cyclotron exist in the inner corona? Astron. Astrophys. 412, 271 (2003)

    Article  ADS  Google Scholar 

  • N.E. Raouafi, P. Lemaire, S. Sahal-Bréchot, Detection of the O VI 103.2 nm line polarization by the SUMER spectrometer on the SOHO spacecraft. Astron. Astrophys. 345, 999 (1999)

    ADS  Google Scholar 

  • N.E. Raouafi, S.K. Solanki, T. Wiegelmann, Hanle effect diagnostics of the coronal magnetic field: A test using realistic magnetic field configurations, in Solar Polarization 5, ed. by S.V. Berdyugina, K.N. Nagendra, R. Ramelli. ASP Conf. Ser., vol. 405 (2009), p. 429

    Google Scholar 

  • J.C. Raymond et al., Composition of coronal streamers from the SOHO ultraviolet coronagraph spectrometer. Sol. Phys. 175, 645 (1997)

    Article  ADS  Google Scholar 

  • D. Roussel-Dupré, Skylab observations of H I Lyman-\(\alpha\). Astrophys. J. 256, 284 (1982)

    Article  ADS  Google Scholar 

  • S. Sahal-Bréchot, M. Malinovski, V. Bommier, The polarization of the O VI 1032 Å line as a probe for measuring the coronal vector magnetic field via the Hanle effect. Astron. Astrophys. 168, 284 (1986)

    ADS  Google Scholar 

  • S. Sahal-Bréchot, V. Bommier, N. Feautrier, Doppler redistribution of anisotropic radiation and resonance polarization in moving scattering media. I. Theory revisited in the density matrix formalism. Astron. Astrophys. 340, 579 (1998)

    ADS  Google Scholar 

  • J.O. Stenflo, Applications of the Hanle effect in solar physics, in The Hanle Effect and Level-Crossing Spectroscopy, ed. by G. Moruzzi, F. Strumia (Plenum, New York, 1991), p. 237

    Chapter  Google Scholar 

  • J.O. Stenflo, L. Stenholm, Resonance line polarization. II Calculations of linear polarization in solar UV emission lines. Astron. Astrophys. 46, 69 (1976)

    ADS  Google Scholar 

  • J.O. Stenflo, H. Biverot, L. Stenmark, Ultraviolet polarimeter to record resonance-line polarization in the solar spectrum around 130—150 nm. Appl. Opt. 15, 1188 (1976)

    Article  ADS  Google Scholar 

  • J.O. Stenflo, D. Dravins, N. Wihlborg et al., Search for spectral line polarization in the solar vacuum ultraviolet. Sol. Phys. 66, 13 (1980)

    Article  ADS  Google Scholar 

  • J. Štěpán, J. Trujillo Bueno, PORTA: a three-dimensional multilevel radiative transfer code for modeling the intensity and polarization of spectral lines with massively parallel computers. Astron. Astrophys. 557, A143 (2013)

    Article  Google Scholar 

  • J. Štěpán, J. Trujillo Bueno, The Hanle and Zeeman polarization signals of the solar Ca ii 8542 Å line. Astrophys. J. 826, L10 (2016)

    Article  ADS  Google Scholar 

  • J. Štěpán, J. Trujillo Bueno, J. Leenaarts, M. Carlsson, Three-dimensional radiative transfer simulations of the scattering polarization of the hydrogen Ly-\(\alpha\) line in a magnetohydrodynamic model of the chromosphere-corona transition region. Astrophys. J. 803, 65 (2015)

    Article  ADS  Google Scholar 

  • J. Trujillo Bueno, Atomic polarization and the Hanle effect, in Advanced Solar Polarimetry. Theory, Observation and Instrumentation, ed. by M. Sigwarth. Astronomical Society of the Pacific Conference Series, vol. 236 (2001), p. 161

    Google Scholar 

  • J. Trujillo Bueno, The generation and transfer of polarized radiation in stellar atmospheres, in Stellar Atmosphere Modeling, ed. by I. Hubeny, D. Mihalas, K. Werner. Astronomical Society of the Pacific Conference Series, vol. 288 (2003), p. 551

    Google Scholar 

  • J. Trujillo Bueno, Polarized radiation observables for probing the magnetism of the outer solar atmosphere, in Solar Polarization 7, ed. by K.N. Nagendra, J.O. Stenflo, Z.Q. Qu, M. Sampoorna. Astronomical Society of the Pacific Conference Series, vol. 489 (2014), p. 137

    Google Scholar 

  • J. Trujillo Bueno, E. Landi Degl’Innocenti, Linear polarization due to lower-level depopulation pumping in stellar atmospheres. Astrophys. J. 482, L183 (1997)

    Article  ADS  Google Scholar 

  • J. Trujillo Bueno, E. Landi Degl’Innocenti, M. Collados, L. Merenda, R. Manso Sainz, Selective absorption processes as the origin of puzzling spectral line polarization from the Sun. Nature 415, 403 (2002)

    Article  ADS  Google Scholar 

  • J. Trujillo Bueno, E. Landi Degl’Innocenti, R. Casini, V. Martí nez Pillet, The scientific case for spectropolarimetry from space: A novel diagnostic window on cosmic magnetic fields, in 39th ESLAB Symposium on Trends in Space Science and Cosmic Vision 2020, ed. by F. Favata, J. Sanz-Forcada, A. Giménez, B. Battrick. ESA Publications Division (ESA SP-588) (2005), p. 203

    Google Scholar 

  • J. Trujillo Bueno, J. Štěpán, R. Casini, The Hanle effect of the hydrogen Ly-\(\alpha\) line for probing the magnetism of the solar transition region. Astrophys. J. 738, L11 (2011)

    Article  ADS  Google Scholar 

  • J. Trujillo Bueno, J. Štěpán, L. Belluzzi, The Ly-\(\alpha\) lines of H i and He ii: a differential Hanle effect for exploring the magnetism of the solar transition region. Astrophys. J. 746, L9 (2012)

    Article  ADS  Google Scholar 

  • J.C. Vial, P. Lemaire, G. Artzner, P. Gouttebroze, O vi (\(\lambda=1032~{\mathring{\mathrm{A}}}\)) profiles in and above an active region prominence, compared to quiet Sun center and limb profiles. Sol. Phys. 68, 187 (1980)

    Article  ADS  Google Scholar 

  • T.N. Woods, G.J. Rottman, Solar ultraviolet variability over time periods of aeronomic interest, in Comparative Aeronomy in the Solar System, ed. by M. Mendillo, A. Nagy, J. Hunter Waite Jr. Geophys. Monograph Series, vol. 130 (American Geophysical, Union, Washington DC, 2002), p. 221

    Chapter  Google Scholar 

Download references

Acknowledgements

This is the last paper that our friend Egidio Landi Degl’Innocenti wrote with us before he unexpectedly passed away on 12 February 2017. We are deeply grateful to Egidio for the extraordinary scientific legacy that he has left to us and to future generations of scientists. Financial support by the Spanish Ministry of Economy and Competitiveness through projects AYA2014-60476-P and AYA2014-55078-P is gratefully acknowledged, as well as the computing grants provided by the Barcelona Supercomputing Center (National Supercomputing Center, Barcelona, Spain). L.B. gratefully acknowledges the Swiss National Science Foundation through grant 200021-163405.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Trujillo Bueno.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trujillo Bueno, J., Landi Degl’Innocenti, E. & Belluzzi, L. The Physics and Diagnostic Potential of Ultraviolet Spectropolarimetry. Space Sci Rev 210, 183–226 (2017). https://doi.org/10.1007/s11214-016-0306-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-016-0306-8

Keywords

Navigation