Particle Lifting Processes in Dust Devils

Abstract

Particle lifting in dust devils on both Earth and Mars has been studied from many different perspectives, including how dust devils could influence the dust cycles of both planets. Here we review our current understanding of particle entrainment by dust devils by examining results from field observations on Earth and Mars, laboratory experiments (at terrestrial ambient and Mars-analog conditions), and analytical modeling. By combining insights obtained from these three methodologies, we provide a detailed overview on interactions between particle lifting processes due to mechanical, thermal, electrodynamical and pressure effects, and how these processes apply to dust devils on Earth and Mars. Experiments and observations have shown dust devils to be effective lifters of dust given the proper conditions on Earth and Mars. However, dust devil studies have yet to determine the individual roles of each of the component processes acting at any given time in dust devils.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. S.C. Alfaro, L. Gomes, Modeling mineral aerosol production by wind erosion: emission intensities and aerosol size distributions in source areas. J. Geophys. Res. 106(D16), 18,075–18,084 (2001)

    ADS  Article  Google Scholar 

  2. C.J.T. Allen, R. Washington, A. Saci, Dust detection from ground-based observations in the summer global dust maximum: results from Fennec 2011 and 2012 and implications for modeling and field observations. J. Geophys. Res. 120, 897–916 (2015). doi:10.1002/2014JD022655

    Article  Google Scholar 

  3. M.P. Almeida, E.J.R. Parteli, J.S. Andrade, H.J. Herrmann, Giant saltation on Mars. Proc. Natl. Acad. Sci. USA 105, 6222–6226 (2008)

    ADS  Article  Google Scholar 

  4. S.P.S. Arya, A drag partition theory for determining the large-scale roughness parameter and wind stress on the Arctic pack ice. J. Geophys. Res. 80(24), 3447–3454 (1975). doi:10.1029/JC080i024p03447

    ADS  Article  Google Scholar 

  5. J.A. Astrom, Statistical models of brittle fragmentation. Adv. Phys. 55, 247–278 (2006)

    ADS  Article  Google Scholar 

  6. R.A. Bagnold, The Physics of Blown Sand and Desert Dunes (Methuen, London, 1941). 265 p.

    Google Scholar 

  7. M.R. Balme, R. Greeley, Dust devils on Earth and Mars. Rev. Geophys. 44, RG3003 (2006). doi:10.1029/2005RG000188

    ADS  Article  Google Scholar 

  8. M. Balme, A. Hagermann, Particle lifting at the soil-air interface by atmospheric pressure excursions in dust devils. Geophys. Res. Lett. 33, L19S01 (2006). doi:10.1029/2006GL026819

    Article  Google Scholar 

  9. M. Balme, S. Metzger, M. Towner, T. Ringrose, R. Greeley, J. Iversen, Friction wind speeds in dust devils: a field study. Geophys. Res. Lett. 30(16), 1830 (2003). doi:10.1029/2003GL017493

    ADS  Article  Google Scholar 

  10. M.R. Balme, A. Pathare, S.M. Metzger, M.C. Towner, S.R. Lewis, A. Spiga, L.K. Fenton, N.O. Renno, H.M. Elliott, F.A. Saca, T.I. Michaels, P. Russell, J. Verdasca, Field measurements of horizontal forward motion velocities of terrestrial dust devils: towards a proxy for ambient winds on Mars and Earth. Icarus 221(2), 632–645 (2012). doi:10.1016/j.icarus.2012.08.021

    ADS  Article  Google Scholar 

  11. T.E. Barchyn, R.L. Martin, J.F. Kok, C.H. Hugenholtz, Fundamental mismatches between measurements and models in aeolian sediment transport prediction: the role of small-scale variability. Aeolian Res. 15, 245–251 (2014)

    ADS  Article  Google Scholar 

  12. S. Basu, M.I. Richardson, R.J. Wilson, Simulation of the Martian dust cycle with the GFDL Mars GCM. J. Geophys. Res. 109, E11006 (2004)

    ADS  Article  Google Scholar 

  13. M.V. Cameiro, K.R. Rasmussen, H.J. Herrmann, Bursts in discontinuous Aeolian saltation. Sci. Rep. 5, 11109 (2015). doi:10.1038/srep11109

    ADS  Article  Google Scholar 

  14. B.A. Cantor, K.M. Kanak, K.S. Edgett, Mars Orbiter Camera observations of Martian dust devils and their tracks (September 1997 to January 2006) and evaluation of theoretical vortex models. J. Geophys. Res. 111, E12002 (2006). doi:10.1029/2006JE002700

    ADS  Article  Google Scholar 

  15. M.V. Carneiro, K.R. Rasmussen, H.J. Herrmann, Bursts in discontinuous Aeolian saltation. Sci. Rep. 5, 11109 (2015)

    ADS  Article  Google Scholar 

  16. A. Castellanos, The relationship between attractive interparticle forces and bulk behaviour in dry and uncharged fine powders. Adv. Phys. 54, 4 (2005). doi:10.1080/17461390500402657

    Article  Google Scholar 

  17. C. Cavazos, M.C. Todd, K. Schepanski, Numerical model simulation of the Saharan dust event of 6–11 March 2006 using the Regional Climate Model version 3 (RegCM3). J. Geophys. Res. 114, D12109 (2009). doi:10.1029/2008JD011078

    ADS  Article  Google Scholar 

  18. W.S. Chepil, Dynamics of wind erosion. 2. Initiation of soil movement. Soil Sci. 60, 397–411 (1945)

    Article  Google Scholar 

  19. O.G. Chkhetiani, E.B. Gledzer, M.S. Artamonova, M.A. Iordanskii, Dust resuspension under weak wind conditions: direct observations and model. Atmos. Chem. Phys. 12, 5147–5162 (2012). doi:10.5194/acp-12-5147-2012

    ADS  Article  Google Scholar 

  20. P. Claudin, B. Andreotti, A scaling law for aeolian dunes on Mars, Venus, Earth, and for subaqueous ripples. Earth Planet. Sci. Lett. 252, 30–44 (2006)

    ADS  Article  Google Scholar 

  21. W.M. Cornelis, D. Gabriels, R. Hartmann, A conceptual model to predict the deflation threshold shear velocity as a affected by near-surface soil water: I. Theory. Soil Sci. Soc. Am. J. 68, 1154–1161 (2004a)

    Article  Google Scholar 

  22. W.M. Cornelis, D. Gabriels, R. Hartmann, A parameterisation for the threshold shear velocity to initiate deflation of dry and wet sediment. Geomorphology 59, 43–51 (2004b). doi:10.1016/j.geomorph.2003.09.004

    ADS  Article  Google Scholar 

  23. M. Creyssels, P. Dupont, A. Ould el Moctar, A. Valance, I. Cantat, J.T. Jenkins, J.M. Pasini, K.R. Rasumssen, Saltating particles in a turbulent boundary layer: experiment and theory. J. Fluid Mech. 625, 47–74 (2009). doi:10.1017/S0022112008005491

    ADS  MATH  Article  Google Scholar 

  24. C. De Beule, T. Kelling, G. Wurm, J. Teiser, T. Jankowski, From planetesimals to dust: low gravity experiments on recycling solids at the inner edge of protoplanetary disks. Astrophys. J. 763(11), 1–8 (2013)

    Google Scholar 

  25. C. De Beule, G. Wurm, T. Kelling, M. Köster, M. Kocifaj, An insolation activated dust layer on Mars. Icarus 260, 23–28 (2015)

    ADS  Article  Google Scholar 

  26. S.J. De Vet, J.P. Merrison, M.C. Mittelmeijer-Hazeleger, E.E. van Loon, L.H. Cammeraat, Effects of rolling on wind-induced detachment thresholds of volcanic glass on Mars. Planet. Space Sci. 103, 205–218 (2014)

    ADS  Article  Google Scholar 

  27. L. Demon, P. Defelice, H. Gondet, Y. Kast, L. Pontier, J. Rech. C.N.R.S. 24, 126 (1953)

    Google Scholar 

  28. N. Duff, D.J. Lacks, Particle dynamics simulations of triboelectric charging in granular insulator systems. J. Electrost. 66, 51 (2008). doi:10.1016/j.elstat.2007.08.005

    Article  Google Scholar 

  29. S. Dupont, G. Bergametti, B. Marticorena, S. Simoëns, Modeling saltation intermittency. J. Geophys. Res., Atmos. 118, 7109{7128 (2013). doi:10.1002/jgrd.50528

    Article  Google Scholar 

  30. O. Duran, P. Claudin, B. Andreotti, On aeolian transport: grain-scale interactions, dynamical mechanisms and scaling laws. Aeolian Res. 3, 243–270 (2011)

    ADS  Article  Google Scholar 

  31. M.D. Ellehoj, H.P. Gunnlaugsson, P.A. Taylor, H. Kahanpää, K.M. Bean, B.A. Cantor, B.T. Gheynani, L. Drube, D. Fisher, A.-M. Harri, C. Holstein-Rathlou, M.T. Lemmon, M.B. Madsen, M.C. Malin, J. Polkko, P.H. Smith, L.K. Tamppari, W. Weng, J. Whiteway, Convective vortices and dust devils at the Phoenix Mars mission landing site. J. Geophys. Res. 115, E00E16 (2010). doi:10.1029/2009JE003413

    Article  Google Scholar 

  32. F. Esposito, R. Molinaro, C.I. Popa, C. Molfese, F. Cozzolino, L. Marty, K. Taj-Eddine, G. Di Achille, G. Franzese, S. Silvestro, G.G. Ori, The role of the atmospheric electric field in the dust-lifting process. Geophys. Res. Lett. 43(10), 5501–5508 (2016). doi:10.1002/2016GL068463

    ADS  Article  Google Scholar 

  33. A.T. Evan, C. Flamant, S. Fiedler, O. Doherty, An analysis of Aeolian dust in climate models. Geophys. Res. Lett. 41, 5996–6001 (2014)

    ADS  Article  Google Scholar 

  34. F. Fécan, B. Marticorena, G. Bergametti, Parameterization of the increase of the aeolian erosion threshold wind friction velocity due to soil moisture for arid and semi-arid areas. Ann. Geophys. 17, 149–157 (1999)

    ADS  Article  Google Scholar 

  35. L.K. Fenton, R. Lorenz, Dust devil height and spacing with relation to the martian planetary boundary layer thickness. Icarus 260, 246–262 (2015). doi:10.1016/j.icarus.2015.07.028

    ADS  Article  Google Scholar 

  36. F. Ferri, P.H. Smith, M. Lemmon, N.O. Rennó, Dust devils as observed by Mars Pathfinder. J. Geophys. Res. 108(E12), 5133 (2003). doi:10.1029/2000JE001421

    Article  Google Scholar 

  37. G.D. Freier, The electric field of a large dust devil. J. Geophys. Res. 65, 3504 (1960). doi:10.1029/JZ065i010p03504

    ADS  Article  Google Scholar 

  38. D.A. Gillete, Fine particulate emissions due to wind erosion. Trans. Amer. Soc. Agric. Eng. 20(5), 0890 (1977). doi:10.13031/2013.35670

    Article  Google Scholar 

  39. D.A. Gillette, On the production of soil wind erosion aerosols having the potential for long range transport. J. Rech. Atmos. 8, 735–744 (1974)

    Google Scholar 

  40. D. Gillette, I.H. Blifford, C.R. Fenster, Measurements of aerosol size distributions and fluxes of aerosols on land subject to wind erosion. J. Appl. Meteorol. 11, 977–987 (1972)

    ADS  Article  Google Scholar 

  41. D.A. Gillette, I.H. Blifford, D.W. Fryrear, Influence of wind velocity on size distributions of aerosols generated by wind erosion of soils. J. Geophys. Res. 79, 4068–4075 (1974)

    ADS  Article  Google Scholar 

  42. L. Gomes, J.L. Rajot, S.C. Alfaro, A. Gaudichet, Validation of a dust production model from measurements performed in semi-arid agricultural areas of Spain and Niger. Catena 52, 257–271 (2003). doi:10.1016/S0341-8162(03)00017-1. Wind Erosion in Europe

    Article  Google Scholar 

  43. R. Greeley, M.R. Balme, J.D. Iversen, S. Metzger, R. Mickelson, J. Phoreman, B. White, Martian dust devils: laboratory simulations of particle threshold. J. Geophys. Res. 108(E5), 5041 (2003). doi:10.1029/2002JE001987

    Article  Google Scholar 

  44. R. Greeley, J.D. Iversen, Wind as a Geologic Process on Earth, Mars, Venus, and Titan (Cambridge Univ. Press, New York, 1985)

    Google Scholar 

  45. R. Greeley, D.A. Waller, N.A. Cabrol, G.A. Landis, M.T. Lemmon, L.D.V. Neakrase, M. Pendleton Hoffer, S.D. Thompson, P.L. Whelley, G. Crater, Mars: observations of three dust devil seasons. J. Geophys. Res. 115, E00F02 (2010). doi:10.1029/2010JE003608

    ADS  Article  Google Scholar 

  46. R. Greeley, P.L. Whelley, R.E. Arvidson, N.A. Cabrol, D.J. Foley, B.J. Franklin, P.G. Geisler, M.P. Golombek, R.O. Kuzmin, G.A. Landis, M.T. Lemmon, L.D.V. Neakrase, S.W. Squyres, S.D. Thompson, Active dust devils in Gusev crater, Mars: observations from the Mars exploration rover spirit. J. Geophys. Res. 111, E12S09 (2006). doi:10.1029/2006JE002743

    ADS  Google Scholar 

  47. R. Greeley, P.L. Whelley, L.D.V. Neakrase, Martian dust devils: directions of movement inferred from their tracks. Geophys. Res. Lett. 31, L24702 (2004). doi:10.1029/2004GL021599

    ADS  Article  Google Scholar 

  48. H.C. Hamaker, The London—Van Der Waals attraction between spherical particles. Physica 4, 1058–1072 (1937)

    ADS  Article  Google Scholar 

  49. W.R. Harper, Contact and Frictional Dissipation (Clarendon Press, Oxford, 1967)

    Google Scholar 

  50. G.D. Hess, K.T. Spillane, Characteristics of dust devils in Australia. J. Appl. Meteorol. 29, 498–507 (1990). doi:10.1175/1520-0450(1990)029<0498:CODDIA>2.0.CO;2

    ADS  Article  Google Scholar 

  51. T.D. Ho, A. Valance, P. Dupont, A.O. El Moctar, Scaling laws in aeolian sand transport. Phys. Rev. Lett. 106, 094501 (2011)

    ADS  Article  Google Scholar 

  52. C. Holstein-Rathlou, H.P. Gunnlaugsson, J.P. Merrison, K.M. Bean, B.A. Cantor, J.A. Davis, R. Davy, N.B. Drake, M.D. Ellehoj, W. Goetz, S.F. Hviid, C.F. Lange, S.E. Larsen, M.T. Lemmon, M.B. Madsen, M. Malin, J.E. Moores, P. Nørnberg, P. Smith, L.K. Tamppari, P.A. Taylor, Winds at the Phoenix landing site. J. Geophys. Res. 115, E00E18 (2010)

    ADS  Article  Google Scholar 

  53. N. Huneeus, M. Schulz, Y. Balkanski, J. Griesfeller, J. Prospero, S. Kinne, S. Bauer, O. Boucher, M. Chin, F. Dentener, T. Diehl, R. Easter, D. Fillmore, S. Ghan, P. Ginoux, A. Grini, L. Horowitz, D. Koch, M.C. Krol, W. Landing, X. Liu, N. Mahowald, R. Miller, J.J. Morcrette, G. Myhre, J. Penner, J. Perlwitz, P. Stier, T. Takemura, C.S. Zender, Global dust model intercomparison in AeroCom phase I. Atmos. Chem. Phys. 11, 7781–7816 (2011)

    ADS  Article  Google Scholar 

  54. A.H. Ibrahim, P.F. Dunn, M.F. Qazi, Experiments and validation of a model for microparticle detachment from a surface by turbulent air flow. J. Aerosol Sci. 39, 645–656 (2008)

    Article  Google Scholar 

  55. I.I. Inculet, G.S. Peter Castle, G. Aartsen, Generation of bipolar electric fields during industrial handling of powders. Chem. Eng. Sci. 61, 2249–2253 (2006). doi:10.1016/j.ces.2005.05.005

    Article  Google Scholar 

  56. M. Ishizuka, M. Mikami, J. Leys, Y. Yamada, S. Heidenreich, Y. Shao, G.H. McTainsh, Effects of soil moisture and dried raindroplet crust on saltation and dust emission. J. Geophys. Res. 113, D24212 (2008). doi:10.1029/2008JD009955

    ADS  Article  Google Scholar 

  57. J. Iversen, J. Pollack, R. Greeley, B. White, Saltation threshold on Mars: the effect of interparticle force, surface roughness, and low atmospheric density. Icarus 29(3), 381–393 (1976). doi:10.1016/0019-1035(76)90140-8

    ADS  Article  Google Scholar 

  58. J.D. Iversen, B.R. White, Saltation threshold on Earth, Mars and Venus. Sedimentology 29, 111–119 (1982)

    ADS  Article  Google Scholar 

  59. B.C. Jemmett-Smith, J.H. Marsham, P. Knippertz, C.A. Gilkeson, Quantifying global dust devil occurrence from meteorological analyses. Geophys. Res. Lett. 42, 1275–1282 (2015). doi:10.1002/2015GL063078

    ADS  Article  Google Scholar 

  60. K.L. Johnson, K. Kendall, A.D. Roberts, Surface energy and contact of elastic solids. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 324, 301–313 (1971)

    ADS  Article  Google Scholar 

  61. R.A. Kahn, T.Z. Martin, R.W. Zurek, S.W. Lee, The Martian dust cycle, in Mars, ed. by H. Kieffer et al.(Univ. of Ariz. Press, Tucson, 1992), pp. 1017–1053. Ch. 29

    Google Scholar 

  62. M.A. Kahre, J.R. Murphy, R.M. Haberle, Modeling the Martian dust cycle and surface dust reservoirs with the NASA Ames general circulation model. J. Geophys. Res. 111, E06008 (2006). doi:10.1029/2005JE002588

    ADS  Article  Google Scholar 

  63. J.C. Kaimal, J.A. Businger, Case studies of a convective plume and a dust devil. J. Appl. Meteorol. 9, 612–620 (1970)

    ADS  Article  Google Scholar 

  64. J.C. Kaimal, J.J. Finnigan, Atmospheric Boundary Layer Flows: Their Structure and Measurement (Oxford Univ. Press, New York, 1994)

    Google Scholar 

  65. A.K. Kamra, Measurements of the electrical properties of dust storms. J. Geophys. Res. 77(30), 5856 (1972)

    ADS  Article  Google Scholar 

  66. R. Kawamura, Study on sand movement by wind (relationship between sand flow and wind friction, and vertical density distribution of sand). Tokyo Daigaku Rikogaku Kenkyusho Hokoku, Tokyo 5(3), 95–112 (1951)

    Google Scholar 

  67. R. Kawamura, Study of sand movement by wind, Hydraulic Eng. Lab. Tech. Rep., University of California, Berkeley, CA, HEL-2-8, pp. 99–108 (1964)

  68. T. Kelling, G. Wurm, M. Kocifaj, J. Klačka, D. Reiss, Dust ejection from planetary bodies by temperature gradients: laboratory experiments. Icarus 212, 935–940 (2011)

    ADS  Article  Google Scholar 

  69. M.R. Klose, Convective Turbulent Dust Emission: Process, parameterization, and relevance in the Earth system, Dissertation, University of Cologne (2014). urn:nbn:de:hbz:38-58264

  70. M. Klose, Y. Shao, Stochastic parameterization of dust emission and application to convective atmospheric conditions. Atmos. Chem. Phys. 12(12), 7309–7320 (2012). doi:10.5194/acp-12-7309-2012

    ADS  Article  Google Scholar 

  71. M. Klose, Y. Shao, Large-eddy simulation of turbulent dust emission. Aeolian Res. 8, 49–58 (2013). doi:10.1016/j.aeolia.2012.10.010

    ADS  Article  Google Scholar 

  72. M. Klose, Y. Shao, A numerical study on dust devils with implications to global dust budget estimates. Aeolian Res. 22, 47–58 (2016)

    ADS  Article  Google Scholar 

  73. M. Klose, Y. Shao, X.L. Li, H.S. Zhang, M. Ishizuka, M. Mikami, J.F. Leys, Further development of a parameterization for convective turbulent dust emission and evaluation based on field observations. J. Geophys. Res., Atmos. 119, 10,441–10,457 (2014). doi:10.1002/2014JD021688

    Article  Google Scholar 

  74. M. Kocifaj, J. Klačka, G. Wurm, T. Kelling, I. Kohút, Dust ejection from (pre-)planetary bodies by temperature gradients: radiative and heat transfer. Mon. Not. R. Astron. Soc. 404, 1512–1518 (2010)

    ADS  Google Scholar 

  75. J.F. Kok, An improved parameterization of wind-blown sand flux on Mars that includes the effect of hysteresis. Geophys. Res. Lett. 37, L12202 (2010a)

    ADS  Article  Google Scholar 

  76. J.F. Kok, Difference in the wind speeds required for initiation versus continuation of sand transport on Mars: implications for dunes and dust storms. Phys. Rev. Lett. 104, 074502 (2010b)

    ADS  Article  Google Scholar 

  77. J.F. Kok, A scaling theory for the size distribution of emitted dust aerosols suggests climate models underestimate the size of the global dust cycle. Proc. Natl. Acad. Sci. USA 108(3), 1016–1021 (2011b)

    ADS  MathSciNet  Article  Google Scholar 

  78. J. Kok, Planetary science: Martian sand blowing in the wind. Nature 485, 312–313 (2012). doi:10.1038/nature11193

    ADS  Article  Google Scholar 

  79. J.F. Kok, S. Albani, N.M. Mahowald, D.S. Ward, An improved dust emission model—part 2: evaluation in the community Earth system model, with implications for the use of dust source functions. Atmos. Chem. Phys. 14, 13043–13061 (2014a)

    ADS  Article  Google Scholar 

  80. J.F. Kok, N.M. Mahowald, G. Fratini, J.A. Gillies, M. Ishizuka, J.F. Leys, M. Mikami, M.S. Park, S.U. Park, R.S. Van Pelt, T.M. Zobeck, An improved dust emission model—part 1: model description and comparison against measurements. Atmos. Chem. Phys. 14, 13023–13041 (2014b)

    ADS  Article  Google Scholar 

  81. J.F. Kok, E.J.R. Parteli, T.I. Michaels, D. Bou Karam, The physics of wind-blown sand and dust. Rep. Prog. Phys. 75, 106901 (2012)

    ADS  Article  Google Scholar 

  82. J.F. Kok, N.O. Renno, Enhancement of the emission of mineral dust aerosols by electric forces. Geophys. Res. Lett. 33, L19S10 (2006)

    Article  Google Scholar 

  83. J.F. Kok, N.O. Renno, Electrostatics in wind-blown sand. Phys. Rev. Lett. 100, 014501 (2008)

    ADS  Article  Google Scholar 

  84. M. Küpper, G. Wurm, Thermal creep assisted dust lifting on Mars: wind tunnel experiments for the entrainment threshold velocity. J. Geophys. Res. 120, 1346–1356 (2015)

    Article  Google Scholar 

  85. M.V. Kurgansky, A. Montecinos, V. Villagran, S.M. Metzger, Micrometeorological conditions for dust-devil occurrence in the Atacama Desert. Bound.-Layer Meteorol. 138(2), 285–298 (2011). doi:10.1007/s10546-010-9549-1

    ADS  Article  Google Scholar 

  86. K. Lettau, H. Lettau, Experimental and micrometeorological field studies of dune migration, in Exploring the World’s Driest Climate, ed. by H.H. Lettau, K. Lettau (Center for Climatic Research, Univ. Wisconsin, Madison, 1978)

    Google Scholar 

  87. G.A. Loosmore, J.R. Hunt, Dust resuspension without saltation. J. Geophys. Res. 105(D16), 20,663–20,671 (2000). doi:10.1029/2000JD900271

    ADS  Article  Google Scholar 

  88. R.D. Lorenz, L.D. Neakrase, J.D. Anderson, In-situ measurement of dust devil activity at La Jornada experimental range, New Mexico, USA. Aeolian Res. (2015). doi:10.1016/j.aeolia.2015.01.012

    Google Scholar 

  89. R.D. Lorenz, D. Reiss, Solar panel clearing events, dust devil tracks and in-situ vortex detections on Mars. Icarus 248, 162–164 (2015). doi:10.1016/j.icarus.2014.10.034

    ADS  Article  Google Scholar 

  90. H. Lu, Y. Shao, A new model for dust emission by saltation bombardment. J. Geophys. Res. 104, 16,827–16,842 (1999)

    ADS  Article  Google Scholar 

  91. T. Macpherson, W.G. Nickling, J.A. Gillies, V. Etyemezian, Dust emissions from undisturbed and disturbed supply-limited desert surfaces. J. Geophys. Res., Earth Surf. 113, F02S04 (2008). doi:10.1029/2007JF000800

    ADS  Article  Google Scholar 

  92. N. Mahowald, S. Albani, J.F. Kok, S. Engelstaeder, R. Scanza, D.S. Ward, M.G. Flanner, The size distribution of desert dust aerosols and its impact on the Earth system. Aeolian Res. 15, 53–71 (2014)

    ADS  Article  Google Scholar 

  93. B. Marticorena, G. Bergametti, Modeling the atmospheric dust cycle: 1. Design of a soil-derived dust emission scheme. J. Geophys. Res. 100(D8), 16,415–16,430 (1995)

    ADS  Article  Google Scholar 

  94. B. Marticorena, G. Bergametti, D.A. Gillette, J. Belnap, Factors controlling threshold friction velocity in semi-arid and arid areas of the United States. J. Geophys. Res. 102, 23277–23287 (1997)

    ADS  Article  Google Scholar 

  95. R.L. Martin, T.E. Barchyn, C.H. Hugenholtz, D.J. Jerolmack, Timescale dependence of aeolian sand flux observations under atmospheric turbulence. J. Geophys. Res., Atmos. 118, 9078–9092 (2013). doi:10.1002/jgrd.50687

    ADS  Article  Google Scholar 

  96. R.L. Martin, J.F. Kok, Linear scaling of wind-driven sand flux with shear stress. (2016), in review

  97. C. McKenna Neuman, Effects of temperature and humidity upon the entrainment of sedimentary particles by wind. Bound.-Layer Meteorol. 108, 61–89 (2003)

    ADS  Article  Google Scholar 

  98. C. McKenna Neuman, W.G. Nickling, A theoretical and wind tunnel investigation of the effect of capillary water on the entrainment of sediment by wind. Can. J. Soil Sci. 69, 79–96 (1989)

    Article  Google Scholar 

  99. R.J. McKim, The dust storms of Mars. J. Br. Astron. Assoc. 106, 185–200 (1996)

    ADS  Google Scholar 

  100. J.P. Merrison, Sand transport, erosion and granular electrification. Aeolian Res. 4, 1–16 (2012)

    ADS  Article  Google Scholar 

  101. J.P. Merrison, H.P. Gunnlaugsson, P. Nørnberg, A.E. Jensen, K.R. Rasmussen, Determination of the wind induced detachment threshold for granular material on Mars using wind tunnel simulations. Icarus 191, 568–580 (2007)

    ADS  Article  Google Scholar 

  102. S.M. Metzger, M.R. Balme, M.C. Towner, B.J. Bos, T.J. Ringrose, M.R. Patel, In situ measurements of particle load and transport in dust devils. Icarus 214, 766–772 (2011). doi:10.1016/j.icarus.2011.03.013

    ADS  Article  Google Scholar 

  103. S.M. Metzger, J.R. Carr, J.R. Johnson, T.J. Parker, M.T. Lemmon, Dust devil vortices seen by the Mars Pathfinder camera. Geophys. Res. Lett. 26(18), 2781–2784 (1999). doi:10.1029/1999GL008341

    ADS  Article  Google Scholar 

  104. L. Montabone, F. Forget, E. Millour, R.J. Wilson, S.R. Lewis, B. Cantor, D. Kass, A. Kleinböhl, M.T. Lemmon, M.D. Smith, M.J. Wolff, Eight-year climatology of dust optical depth on Mars. Icarus 251, 65–95 (2015). doi:10.1016/j.icarus.2014.12.034

    ADS  Article  Google Scholar 

  105. D.P. Mulholland, A. Spiga, C. Listowski, P.L. Read, An assessment of the impact of local processes on dust lifting in martian climate models. Icarus 252, 212–227 (2015). doi:10.1016/j.icarus.2015.01.017

    ADS  Article  Google Scholar 

  106. E.P. Muntz, Y. Sone, K. Aoki, S. Vargo, M. Young, J. Vac. Sci. Technol. A 20, 214 (2002)

    ADS  Article  Google Scholar 

  107. J.R. Murphy, S. Nelli, Mars Pathfinder convective vortices: frequency of occurrence. Geophys. Res. Lett. 29(23), 2103 (2002). doi:10.1029/2002GL015214

    ADS  Article  Google Scholar 

  108. S.L. Namikas, B.O. Bauer, D.J. Sherman, Influence of averaging interval on shear velocity estimates for aeolian transport modeling. Geomorphology 53, 235–246 (2003). doi:10.1016/S0169-555X(02)00314-8

    ADS  Article  Google Scholar 

  109. L.D.V. Neakrase, A Laboratory Study of Sediment Flux Within Dust Devils on Earth and Mars (Doctoral Dissertation) (Arizona State University, Tempe, Arizona, USA, 2009)

    Google Scholar 

  110. L.D.V. Neakrase, R. Greeley, Dust devil sediment flux on Earth and Mars: laboratory simulations. Icarus 206, 306–318 (2010a). doi:10.1016/j.icarus.2009.08.028

    ADS  Article  Google Scholar 

  111. L.D.V. Neakrase, R. Greeley, Dust devils in the laboratory: effects of surface roughness on vortex dynamics. J. Geophys. Res. 115, E05003 (2010b). doi:10.1029/2009JE003465

    ADS  Article  Google Scholar 

  112. L.D.V. Neakrase, R. Greeley, J.D. Iversen, M.R. Balme, E.E. Eddlemon, Dust flux within dust devils: preliminary laboratory simulations. Geophys. Res. Lett. 33, L19S09 (2006). doi:10.1029/2006GL026810

    Article  Google Scholar 

  113. L.D.V. Neakrase, J. McHone, P.L. Whelley, R. Greeley, Terrestrial analogs to Mars: East-central Saharan dust devil tracks (Abstract), in Proceedings of the 43rd Lunar and Planetary Science Conference, The Woodlands, Texas (2012)

    Google Scholar 

  114. C.E. Newman, S.R. Lewis, P.L. Read, F. Forget, Modeling the Martian dust cycle 1. Representations of dust transport processes. J. Geophys. Res. 107(E12), 5123 (2002). doi:10.1029/2002JE001910

    Google Scholar 

  115. C.E. Newman, M.I. Richardson, The impact of surface dust source exhaustion on the martian dust cycle, dust storms and interannual variability, as simulated by the MarsWRF General Circulation Model. Icarus 257, 47–87 (2015). doi:10.1016/j.icarus.2015.03.030

    ADS  Article  Google Scholar 

  116. W.G. Nickling, Grain-size characteristics of sediment transported during dust storms. J. Sediment. Petrol. 53(3), 1011–1024 (1983)

    Google Scholar 

  117. W.G. Nickling, J.A. Gillies, Dust emission and transport in Mali, West Africa. Sedimentology 40, 859–868 (1993)

    ADS  Article  Google Scholar 

  118. W.G. Nickling, G.H. McTainsh, J.F. Leys, Dust emissions from the Channel Country of western Queensland, Australia. Z. Geomorphol., Suppl.bd 116, 1–17 (1999)

    Google Scholar 

  119. A.M.C. Oke, N.J. Tapper, D. Dunkerley, Willy-willies in the Australian landscape: the role of key meteorological variables and surface conditions in defining frequency and spatial characteristics. J. Arid Environ. 71, 201–215 (2007). doi:10.1016/j.jaridenv.2007.03.008

    Article  Google Scholar 

  120. R.P. Owen, Saltation of uniform grains in air. J. Fluid Mech. 20, 225–242 (1964)

    ADS  MATH  Article  Google Scholar 

  121. T. Pähtz, J.F. Kok, H.J. Herrmann, The apparent roughness of a sand surface blown by wind from an analytical model of saltation. New J. Phys. 14, 043035 (2012)

    Article  Google Scholar 

  122. J.L. Rajot, S.C. Alfaro, L. Gomes, A. Gaudichet, Soil crusting on sandy soils and its influence on wind erosion. Catena 53, 1–16 (2003). doi:10.1016/S0341-8162(02)00201-1

    Article  Google Scholar 

  123. K.R. Rasmussen, M. Sørensen, Vertical variation of particle speed and flux density in aeolian saltation: measurement and modeling. J. Geophys. Res. 113(F2), 2156–2202 (2008). doi:10.1029/2007JF000774

    Article  Google Scholar 

  124. K.R. Rasmussen, A. Valance, J. Merrison, Laboratory studies of aeolian sediment transport processes on planetary surfaces. Geomorphology 244, 74–94 (2015). doi:10.1016/j.geomorph.2015.03.041

    ADS  Article  Google Scholar 

  125. M. Raupach, Drag and drag partition on rough surfaces. Bound.-Layer Meteorol. 60(4), 375–395 (1992). doi:10.1007/BF00155203

    ADS  Article  Google Scholar 

  126. M. Raupach, J. Finnigan, Y. Brunei, Coherent eddies and turbulence in vegetation canopies: the mixing-layer analogy. Bound.-Layer Meteorol. 78(3–4), 351–382 (1996). doi:10.1007/BF00120941

    ADS  Article  Google Scholar 

  127. M.R. Raupach, D.A. Gilette, J.F. Leys, The effect of roughness elements on wind erosion threshold. J. Geophys. Res. 98(D2), 3023–3029 (1993). doi:10.1029/92JD01922

    ADS  Article  Google Scholar 

  128. M.R. Raupach, H. Lu, Representation of land-surface processes in aeolian transport models. Environ. Model. Softw. 19(2), 93–112 (2004). Modelling of Wind Erosion and Aeolian Processes. doi:10.1016/S1364-8152(03)00113-0

    Article  Google Scholar 

  129. M.W. Reeks, D. Hall, Kinetic models for particle resuspension in turbulent flows: theory and measurement. J. Aerosol Sci. 32, 1–31 (2001)

    Article  Google Scholar 

  130. D. Reiss, J. Raack, A.P. Rossi, G. Di Achille, H. Hiesinger, First in-situ analysis of dust devil tracks on Earth and their comparison with tracks on Mars. Geophys. Res. Lett. 37, L14203 (2010). doi:10.1029/2010GL044016

    ADS  Google Scholar 

  131. N.O. Renno, V.J. Abreu, J. Koch, P.H. Smith, o.K. Hartogensis, H.A.R. De Bruin, D. Burose, G.T. Delory, W.M. Farrell, C.J. Watts, J. Garatuza, M. Parker, A. Carswell, MATADOR 2002: a pilot field experiment on convective plumes and dust devils. J. Geophys. Res. 109, E07001 (2004). doi:10.1029/2003JE002219

    ADS  Article  Google Scholar 

  132. D.A. Ridley, C.L. Heald, J.R. Pierce, M.J. Evans, Toward resolution-independent dust emissions in global models: impacts on the seasonal and spatial distribution of dust. Geophys. Res. Lett. 40, 2873–2877 (2013). doi:10.1002/grl.50409

    ADS  Article  Google Scholar 

  133. T.J. Ringrose, M.C. Towner, J.C. Zarnecki, Vortices on Mars: a reanalysis of Viking Lander 2 meterological data, sols 1–60. Icarus 163, 78–87 (2003). doi:10.1016/S0019-1035(03)00073-3

    ADS  Article  Google Scholar 

  134. A. Rondeau, J. Merrison, J.J. Iversen, S. Peillona, J.-C. Sabroux, P. Lemaitre, F. Gensdarmes, E. Chassefièrec, First experimental results of particle re-suspension in a low pressurewind tunnel applied to the issue of dust in fusion reactors. Fusion Eng. Des. (2015). doi:10.1016/j.fusengdes.2014.12.038

    Google Scholar 

  135. J.A. Roney, B.R. White, Definition and measurement of dust aeolian thresholds. J. Geophys. Res., Earth Surf. 109, F01013 (2004). doi:10.1029/2003JF000061

    ADS  Article  Google Scholar 

  136. W.A.D. Rudge, Atmospheric electrification during South African dust storms. Nature 91, 31 (1913)

    ADS  Article  Google Scholar 

  137. J.A. Ryan, R.D. Lucich, Possible dust devils, vortices on Mars. J. Geophys. Res. 88, 11,005–11,011 (1983)

    ADS  Article  Google Scholar 

  138. H. Schlichting, Dusty ice clouds over Alaska. Ing.-Arch. 7, 1–34 (1936). English translation, NACA Technical Memorandum, No. 823-1936

    Article  Google Scholar 

  139. D.S. Schmidt, R.A. Schmidt, J.D. Dent, Electrostatic force on saltating sand. J. Geophys. Res. 103(D8), 8997–9001 (1998)

    ADS  Article  Google Scholar 

  140. Y. Shao, A model for mineral dust emission. J. Geophys. Res. 106(D17), 20,239–20,254 (2001)

    ADS  Article  Google Scholar 

  141. Y. Shao, Simplification of a dust emission scheme and comparison with data. J. Geophys. Res. 109, D10202 (2004). doi:10.1029/2003JD004372

    ADS  Article  Google Scholar 

  142. Y. Shao, Physics and Modelling of Wind Erosion, 2nd edn. (Springer, Berlin, 2008). 452 p.

    Google Scholar 

  143. Y. Shao, A.H. Fink, M. Klose, Numerical simulation of a continental-scale Saharan dust event. J. Geophys. Res. 115, D13205 (2010). doi:10.1029/2009JD012678

    ADS  Article  Google Scholar 

  144. Y. Shao, M. Ishizuka, M. Mikami, J.F. Leys, Parameterization of size-resolved dust emission and validation with measurements. J. Geophys. Res. 116, D08203 (2011). doi:10.1029/2010JD014527

    ADS  Google Scholar 

  145. Y. Shao, M. Klose, A note on the stochastic nature of particle cohesive force and implications to threshold friction velocity for aerodynamic dust entrainment. Aeolian Res. 22, 123–125 (2016). doi:10.1016/j.aeolia.2016.08.004

    ADS  Article  Google Scholar 

  146. Y. Shao, H. Lu, A simple expression for wind erosion threshold friction velocity. J. Geophys. Res. 105, 22,437–22,443 (2000)

    ADS  Article  Google Scholar 

  147. Y. Shao, M.R. Raupach, P.A. Findlater, The effect of saltation bombardment on the entrainment of dust by wind. J. Geophys. Res. 98, 12,719–12,726 (1993)

    ADS  Article  Google Scholar 

  148. Y. Shao, M.R. Raupach, J.F. Leys, A model for predicting aeolian sand drift and dust entrainment on scales from paddock to region. Aust. J. Soil Res. 34, 309–342 (1996)

    Article  Google Scholar 

  149. Y. Shao, Y. Yang, A theory for drag partition over rough surfaces. J. Geophys. Res. 113, F02S05 (2008). doi:10.1029/2007JF000791

    ADS  Article  Google Scholar 

  150. P.C. Sinclair, General characteristics of dust devils. J. Appl. Meteorol. 8, 32–45 (1969). doi:10.1175/1520-0450(1969)008<0032:GCODD>2.0.CO;2

    ADS  Article  Google Scholar 

  151. A.J. Smits, B.J. McKeon, I. Marusic, High-Reynolds number wall turbulence. Annu. Rev. Fluid Mech. 43, 353–375 (2011)

    ADS  MATH  Article  Google Scholar 

  152. J.T. Snow, T.M. McClelland, Dust devils at white sands missile range, New Mexico: 1. Temporal and spatial distributions. J. Geophys. Res., Atmos. 95(D9), 13,707–13,721 (1990). doi:10.1029/JD095iD09p13707

    ADS  Article  Google Scholar 

  153. M. Sow, S.C. Alfaro, J.L. Rajot, B. Marticorena, Size resolved dust emission fluxes measured in Niger during 3 dust storms of the AMMA experiment. Atmos. Chem. Phys. 9(12), 3881–3891 (2009)

    ADS  Article  Google Scholar 

  154. J.E. Stout, T.M. Zobeck, Intermittent saltation. Sedimentology 44, 959–970 (1997)

    ADS  Article  Google Scholar 

  155. C.D. Stow, Dust and sand storm electrification. Weather 24, 134–137 (1969)

    ADS  Article  Google Scholar 

  156. R.B. Stull, An Introduction to Boundary Layer Meteorology (Kluwer Academic Publishers, Norwell, 1988). 666 p.

    Google Scholar 

  157. R. Sullivan, R. Arvidson, J.F. Bell III., R. Gellert, M. Golombek, R. Greeley, K. Herkenhoff, J. Johnson, S. Thompson, P. Whelley, J. Wray, Wind-driven particle mobility on Mars: insights from Mars exploration rover observations at ‘El Dorado’ and surroundings at Gusev Crater. J. Geophys. Res. 113, E06S07 (2008). doi:10.1029/2008JE003101

    ADS  Google Scholar 

  158. R. Sullivan, D. Banfield, J.F. Bell III., W. Calvin, D. Fike, M. Golombek, R. Greeley, J. Grotzinger, K. Herkenhoff, D. Jerolmack, M. Malin, D. Ming, L.A. Soderblom, S.W. Squyres, S. Thompson, W.A. Watters, C.M. Weitz, A. Yen, Aeolian processes at the Mars exploration rover Meridiani Planum landing site. Nature 436, 58–61 (2005)

    ADS  Article  Google Scholar 

  159. M.C. Towner, M.R. Patel, T.J. Ringrose, J.C. Zarnecki, D. Pullan, M.R. Sims, S. Haapanala, A.-M. Harri, J. Polkko, C.F. Wilson, R.C. Quinn, F.J. Grunthaner, M.H. Hecht, J.R.C. Garry, The Beagle 2 environmental sensors: science goals and instrument description. Planet. Space Sci. 52(13), 1141–1156 (2004). doi:10.1016/j.pss.2004.07.015

    ADS  Article  Google Scholar 

  160. J.E. Ungar, P.K. Haff, Steady-state saltation in air. Sedimentology 34, 289–299 (1987)

    ADS  Article  Google Scholar 

  161. S. Wagner, An Assessment of Dust Effects on Planetary Surface Systems to Support Exploration Requirements, NASA Technical Report, CTSD-AIM-0029, JSC-62198, 20080047665, p. 23 (2004)

  162. Z.-T. Wang, A theoretical note on aerodynamic lifting in dust devils. Icarus 265, 79–83 (2016). doi:10.1016/j.icarus.2015.10.016

    ADS  Article  Google Scholar 

  163. B.R. White, Soil transport by winds on Mars. J. Geophys. Res. 84(B9), 4643–4651 (1979). doi:10.1029/JB084iB09p04643

    ADS  Article  Google Scholar 

  164. J. Wieringa, Representative roughness parameters for homogeneous terrains. Bound.-Layer Meteorol. 63, 323–363 (1993)

    ADS  Article  Google Scholar 

  165. E. Williams, N. Nathou, E. Hicks, C. Pontikis, B. Russel, M. Miller, M.J. Bartholomew, The electrification of dust-lofting gust fronts (‘haboobs’) in the Sahel. Atmos. Res. 91, 292–298 (2009)

    Article  Google Scholar 

  166. G. Wurm, O. Krauss, Dust eruptions by photophoresis and solid state greenhouse effects. Phys. Rev. Lett. 96, 134301 (2006)

    ADS  Article  Google Scholar 

  167. G. Wurm, J. Teiser, D. Reiss, Greenhouse and thermophoretic effects in dust layers: the missing link for lifting dust on Mars. Geophys. Res. Lett. 35, L10201 (2008)

    ADS  Article  Google Scholar 

  168. H. Yizhaq, J.F. Kok, I. Katra, Basaltic sand ripples at Eagle crater as indirect evidence for the hysteresis effect in martian saltation. Icarus 230, 143–150 (2014)

    ADS  Article  Google Scholar 

  169. X.J. Zheng, N. Huang, Y.H. Zhou, Laboratory measurement of electrification of wind-blown sands and simulation of its effect on sand saltation movement. J. Geophys. Res. 108, 4322 (2003)

    Article  Google Scholar 

  170. A.D. Zimon, Adhesion of Dust and Powder (Consultants Bureau, New York, 1982). 438 p.

    Google Scholar 

  171. G. Ziskind, M. Fichman, C. Gutfinger, Resuspension of particulates from surfaces to turbulent flows—review and analysis. J. Aerosol Sci. 26, 613–644 (1995)

    Article  Google Scholar 

  172. R.W. Zurek, L.J. Martin, Interannual variability of planet-encircling dust activity on Mars. J. Geophys. Res. 98, 3247–3259 (1993)

    ADS  Article  Google Scholar 

Download references

Acknowledgement

This work was supported by grant National Science Foundation grant AGS-1358621 to J. K.

Author information

Affiliations

Authors

Corresponding author

Correspondence to L. D. V. Neakrase.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Neakrase, L.D.V., Balme, M.R., Esposito, F. et al. Particle Lifting Processes in Dust Devils. Space Sci Rev 203, 347–376 (2016). https://doi.org/10.1007/s11214-016-0296-6

Download citation

Keywords

  • Dust devils
  • Mars
  • Earth
  • Particle lifting
  • Aeolian processes