Skip to main content

Scientific Objectives of Small Carry-on Impactor (SCI) and Deployable Camera 3 Digital (DCAM3-D): Observation of an Ejecta Curtain and a Crater Formed on the Surface of Ryugu by an Artificial High-Velocity Impact

Abstract

The Small Carry-on Impactor (SCI) equipped on Hayabusa2 was developed to produce an artificial impact crater on the primitive Near-Earth Asteroid (NEA) 162173 Ryugu (Ryugu) in order to explore the asteroid subsurface material unaffected by space weathering and thermal alteration by solar radiation. An exposed fresh surface by the impactor and/or the ejecta deposit excavated from the crater will be observed by remote sensing instruments, and a subsurface fresh sample of the asteroid will be collected there. The SCI impact experiment will be observed by a Deployable CAMera 3-D (DCAM3-D) at a distance of ∼1 km from the impact point, and the time evolution of the ejecta curtain will be observed by this camera to confirm the impact point on the asteroid surface. As a result of the observation of the ejecta curtain by DCAM3-D and the crater morphology by onboard cameras, the subsurface structure and the physical properties of the constituting materials will be derived from crater scaling laws. Moreover, the SCI experiment on Ryugu gives us a precious opportunity to clarify effects of microgravity on the cratering process and to validate numerical simulations and models of the cratering process.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. M.F. A’Hearn et al., Deep impact: excavating comet Tempel 1. Science 310, 258 (2005)

    ADS  Article  Google Scholar 

  2. W.F. Bottke, D.D. Durda, D. Nesvorný, R. Jedicke, A. Morbidelli, D. Vokrouhlický, H. Levison, The fossilized size distribution of the main asteroid belt. Icarus 175, 111 (2005)

    ADS  Article  Google Scholar 

  3. D.T. Britt, D. Yeomans, K. Housen, G. Consolmagno, Asteroid density, porosity, and structure, in Asteroids III (2002), p. 485

    Google Scholar 

  4. A. Colaprete et al., Detection of water in the LCROSS ejecta plume. Science 330, 463 (2010)

    ADS  Article  Google Scholar 

  5. S.K. Croft, Cratering flow fields - implications for the excavation and transient expansion stages of crater formation, in Lunar and Planetary Science Conference Proceedings, vol. 11 (1980), p. 2347

    Google Scholar 

  6. A. Fujiwara et al., The rubble-pile asteroid Itokawa as observed by Hayabusa. Science 312, 1330 (2006)

    ADS  Article  Google Scholar 

  7. D.E. Gault, J.A. Wedekind, Experimental studies of oblique impact, in Lunar and Planetary Science Conference Proceedings, vol. 9 (1978), p. 3843

    Google Scholar 

  8. B. Hapke, Theory of Reflectance and Emittance Spectroscopy, 2nd edn. (Cambridge University Press, Cambridge, 2012)

    Google Scholar 

  9. C.E. Helfrich, A.S. Konopliv, J.V. McAdams, J.K. Miller, W.M. Owen Jr., D.J. Scheeres, S.P. Synnott, B.G. Williams, Estimating the mass of asteroid 253 Mathilde from tracking data during the NEAR flyby. Science 278, 2106 (1997)

    ADS  Article  Google Scholar 

  10. B. Hermalyn, P.H. Schultz, Time-resolved studies of hypervelocity vertical impacts into porous particulate targets: effects of projectile density on early-time coupling and crater growth. Icarus 216, 269 (2011)

    ADS  Article  Google Scholar 

  11. K.A. Holsapple, K.R. Housen, A crater and its ejecta: an interpretation of Deep Impact. Icarus 187, 345 (2007)

    ADS  Article  Google Scholar 

  12. K.A. Holsapple, I. Giblin, K.R. Housen, A. Nakamura, E. Ryan, Asteroid impacts: laboratory experiments and scaling laws, in Asteroids III, vol. 443 (2002)

    Google Scholar 

  13. K.R. Housen, K.A. Holsapple, Ejecta from impact craters. Icarus 211, 856 (2011)

    ADS  Article  Google Scholar 

  14. K.R. Housen, K.A. Holsapple, M.E. Voss, Compaction as the origin of the unusual craters on the asteroid Mathilde. Nature 402, 155 (1999)

    ADS  Article  Google Scholar 

  15. K. Ishibashi, K. Shirai, K. Wada, K. Ogawa, R. Honda, M. Arakawa, N. Sakatani, Y. Ikeda, Optical Performance of Hayabusa2 DCAM3-D camera for short-range imaging of SCI and ejecta. curtain generated from the artificial impact crater formed on Ryugu (2016, accepted)

  16. M. Ishiguro et al., Optical properties of (162173) Ryugu: in preparation for the JAXA Hayabusa2 sample return mission. Astrophys. J. 792, 74 (2014)

    ADS  Article  Google Scholar 

  17. M. Jutzi, P. Michel, W. Benz, D.C. Richardson, Fragment properties at the catastrophic disruption threshold: the effect of the parent body’s internal structure. Icarus 207, 54 (2010)

    ADS  Article  Google Scholar 

  18. M. Kiuchi, A.M. Nakamura, Relationship between regolith particle size and porosity on small bodies. Icarus 239, 291 (2014)

    ADS  Article  Google Scholar 

  19. J.-Y. Li, M.F. A’Hearn, T.L. Farnham, L.A. McFadden, Photometric analysis of the nucleus of Comet 81P/Wild 2 from Stardust images. Icarus 204, 209 (2009)

    ADS  Article  Google Scholar 

  20. D.E. Maxwell, Simple Z model for cratering, ejection, and the overturned flap, in Impact and Explosion Cratering (Planetary and Terrestrial Implications) (1977), pp. 1003–1008

    Google Scholar 

  21. A. McGarr, G.V. Latham, D.E. Gault, Meteoroid impacts as sources of seismicity on the Moon. J. Geophys. Res. 74, 5981 (1969)

    ADS  Article  Google Scholar 

  22. P. Michel, M. Delbo, Orbital and thermal evolutions of four potential targets for a sample return space mission to a primitive near-Earth asteroid. Icarus 209, 520 (2010)

    ADS  Article  Google Scholar 

  23. P. Michel, W. Benz, P. Tanga, D.C. Richardson, Collision and gravitational reaccumulation: forming asteroid families and satellites. Science 294, 1696 (2001)

    ADS  Article  Google Scholar 

  24. P. Michel, D.P. O’Brien, S. Abe, N. Hirata, Itokawa’s cratering record as observed by Hayabusa: implications for its age and collisional history. Icarus 200, 503 (2009)

    ADS  Article  Google Scholar 

  25. J.K. Miller, A.S. Konopliv, P.G. Antreasian, J.J. Bordi, S. Chesley, C.E. Helfrich, W.M. Owen, T.C. Wang, B.G. Williams, D.K. Yeomans, D.J. Scheeres, Determination of shape, gravity, and rotational state of asteroid 433 Eros. Icarus 155, 3 (2002)

    ADS  Article  Google Scholar 

  26. K. Ogawa, K. Shirai, H. Sawada, M. Arakawa, K. Wada, R. Honda, K. Ishibashi, N. Sakatani, S. Nakazawa, H. Hayakawa, System configuration and operation plan of Hayabusa2. DCAM3-D for scientific observation in SCI impact experiment. Space Sci. Rev. (2016, accepted)

  27. J.E. Richardson, H.J. Melosh, An examination of the Deep Impact collision site on Comet Tempel 1 via Stardust-NExT: placing further constraints on cometary surface properties. Icarus 222, 492 (2013)

    ADS  Article  Google Scholar 

  28. J.E. Richardson Jr., H.J. Melosh, R.J. Greenberg, D.P. O’Brien, The global effects of impact-induced seismic activity on fractured asteroid morphology. Icarus 179, 325 (2005)

    ADS  Article  Google Scholar 

  29. J.E. Richardson, H.J. Melosh, C.M. Lisse, B. Carcich, A ballistics analysis of the Deep Impact ejecta plume: determining Comet Tempel 1’s gravity, mass, and density. Icarus 191, 176 (2007)

    ADS  Article  Google Scholar 

  30. M.S. Robinson, P.C. Thomas, J. Veverka, S.L. Murchie, B.B. Wilcox, The geology of 433 Eros. Meteorit. Planet. Sci. 37, 1651 (2002)

    ADS  Article  Google Scholar 

  31. T. Saiki, H. Imamura, M. Arakawa, K. Wada, Y. Takagi, M. Hayakawa, K. Shirai, H. Yano, C. Okamoto. Small Carry-on Impactor (SCI) for Hayabusa2 Impact Experiment. Space Sci. Rev. (2016, accepted). 10.1007/s11214-016-0297-5

    Google Scholar 

  32. D.J. Scheeres, C.M. Hartzell, P. Sánchez, M. Swift, Scaling forces to asteroid surfaces: The role of cohesion. Icarus 210, 968 (2010)

    ADS  Article  Google Scholar 

  33. P.H. Schultz, D.E. Gault, Seismically induced modification of lunar surface features, in Lunar and Planetary Science Conference Proceedings, vol. 6 (1975), p. 2845

    Google Scholar 

  34. P.H. Schultz, D.E. Gault, Clustered impacts: experiments and implications. J. Geophys. Res., Solid Earth 90, 3701 (1985)

    Article  Google Scholar 

  35. P.H. Schultz, C.M. Ernst, J.L. Anderson, Expectations for crater size and photometric evolution from the Deep Impact collision, in Deep Impact Mission: Looking Beneath the Surface of a Cometary Nucleus (2005), p. 207

    Chapter  Google Scholar 

  36. P.H. Schultz, C.A. Eberhardy, C.M. Ernst, M.F. A’Hearn, J.M. Sunshine, C.M. Lisse, The Deep Impact oblique impact cratering experiment. Icarus 191, 84 (2007)

    ADS  Article  Google Scholar 

  37. P.H. Schultz, B. Hermalyn, A. Colaprete, K. Ennico, M. Shirley, W.S. Marshall, The LCROSS cratering experiment. Science 330, 468 (2010)

    ADS  Article  Google Scholar 

  38. P.H. Schultz, B. Hermalyn, J. Veverka, The Deep Impact crater on 9P/Tempel-1 from Stardust-NExT. Icarus 222, 502 (2012)

    ADS  Article  Google Scholar 

  39. P. Shalima, K. Wada, H. Kimura, Ejecta curtain radiative transfer modeling for probing its geometry and dust optical properties. Planet. Space Sci. 116, 39–47 (2015)

    ADS  Article  Google Scholar 

  40. S. Tachibana et al., Hayabusa2: Scientific importance of samples returned from C-type near-Earth asteroid (162173) Ryugu. Geochem. J. 48, 571 (2014)

    Article  Google Scholar 

  41. Y. Takagi, S. Hasegawa, H. Yano, S. Syamamoto, S. Sugita, K. Teramoto, C. Honda, K. Kurosawa, T. Nakada, M. Abe, A. Fujiwara, Impact cratering experiments in microgravity environment, in Proc. Lunar Planet. Sci. XXXVIII (2007), p. 1634

    Google Scholar 

  42. Y. Tsuda, M. Yoshikawa, M. Abe, H. Minamino, S. Nakazawa, System design of the Hayabusa2—asteroid sample return mission to Ryugu. Acta Astronaut. 91, 356 (2013)

    ADS  Article  Google Scholar 

  43. S. Tsujido, M. Arakawa, K. Wada, A.I. Suzuki, Experimental study on the ejecta velocity distribution during the crater formation and implication for Wada’s method, in 2013 Fall Meeting of Japanese Planetary Science Society. Proceedings of the Conference (2013) (in Japanese)

    Google Scholar 

  44. S. Tsujido, M. Arakawa, A.I. Suzuki, M. Yasui, Ejecta velocity distribution of impact craters formed on quartz sand: effect of projectile density on crater scaling law. Icarus 262, 79 (2015)

    ADS  Article  Google Scholar 

  45. J. Veverka et al., Imaging of small-scale features on 433 Eros from NEAR: evidence for a complex regolith. Science 292, 484 (2001a)

    ADS  Article  Google Scholar 

  46. J. Veverka et al., The landing of the NEAR-shoemaker spacecraft on asteroid 433 Eros. Nature 413, 390 (2001b)

    ADS  Article  Google Scholar 

  47. K. Wada et al., Large scale impact experiments simulating Small Carry-on Impactor (SCI) equipped on Hayabusa2, in Lunar and Planetary Science Conference, vol. 45 (2014), p. 1768

    Google Scholar 

  48. M. Yasui, M. Arakawa, Compaction experiments on ice-silica particle mixtures: implication for residual porosity of small icy bodies. J. Geophys. Res., Planets 114, E09004 (2009)

    ADS  Article  Google Scholar 

  49. M. Yasui et al., In situ flash X-ray observation of projectile penetration processes and crater cavity growth in porous gypsum target analogous to low-density asteroids. Icarus 221, 646 (2012)

    ADS  Article  Google Scholar 

  50. M. Yasui, E. Matsumoto, M. Arakawa, Experimental study on impact-induced seismic wave propagation through granular materials. Icarus 260, 320–331 (2015)

    ADS  Article  Google Scholar 

  51. D.K. Yeomans et al., Estimating the mass of asteroid 253 Mathilde from tracking data during the NEAR flyby. Science 278, 2106 (1997)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We are grateful to anonymous referees for many useful suggestions and corrections that helped us to improve this paper. We thank Mr. S. Nakatsubo of the Contribution Division of the Institute of Low Temperature Science, Hokkaido University, and Mr. K. Sangen of Kobe University for their technical help, and we also thank Dr. A.M. Nakamura and Dr. S. Watanabe for their fruitful discussions. We appreciate the help with experiments provided by Dr. Sunao Hasegawa of the Institute of Space and Astronautical Science, JAXA. This work was supported in part by a Grant for a Joint Research Program from the Space Plasma Laboratory, ISAS, JAXA, and was also supported in part by Grants-in-Aid for Scientific Research (23103004, 25610135 and 15K05273) from the Japan Ministry of Education, Culture, Sports, Science and Technology P.M. acknowledges support from the French space agency CNES.

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Arakawa.

Appendices

Appendix A: Derivation of Eq. (6)

As shown in Fig. 15, which shows a snapshot of the cross section of an ejecta curtain and the ballistic trajectories of ejecta particles composing the curtain, we consider that an ejecta particle \(P_{i}\) (\(i =1, 2,\ldots\)) originally located on the target surface at a distance \(x_{i}\) from the impact point (here we define \(x_{i} < x_{i+1}\)) is ejected at an angle \(\theta_{i}\) measured from horizon and a speed \(V_{i}\). Given that the ejection time of the ejecta particles is 0 and that ejecta particles land at a distance \(X_{i}\) at time \(t_{i}\) under the gravity \(g\), the equations of ballistic motion give

$$\begin{aligned} &X_{i} = x_{i} + V_{i} \cos \theta_{i} t_{i}, \end{aligned}$$
(7)
$$\begin{aligned} &{-} \frac{1}{2} g t_{i}^{2} + V_{i} \sin \theta_{i} t_{i} =0. \end{aligned}$$
(8)

In impact cratering, it is natural to assume \(X_{i} > X_{i+1}\) and \(t_{i} > t_{i+1}\) for \(x_{i} < x_{i+1}\). At time \(t_{i+1}\), the particle \(P_{i+1}\) has just landed while the particle \(P_{i}\) has not yet landed (let its position be (\(X_{ip}, Y_{ip}\)) in \(xy\)-plane) and the base of the ejecta curtain is located at \(X_{i+1}\). At this moment, the angle \(\beta_{i+1}\) of the ejecta curtain is given by the angle between the segment \(P_{i} P_{i+1}\) and \(x\)-axis and thus

$$ \tan \beta_{i+1} = \frac{Y_{ip}}{X_{ip} - X_{i+1}}. $$
(9)

From Eqs. (7) and (8), \(X_{ip}\) and \(Y_{ip}\) are given by

$$\begin{aligned} X_{ip} &= X_{i} - \frac{g t_{i}}{2 \tan \theta_{i}} ( t_{i} - t _{i+1} ) , \end{aligned}$$
(10)
$$\begin{aligned} Y_{ip} &= \frac{g t_{i+1}}{2} ( t_{i} - t_{i+1} ) . \end{aligned}$$
(11)

Substituting (10) and (11) into (9), we have

$$ \frac{t_{i}}{\tan \theta_{i}} + \frac{t_{i+1}}{\tan \beta_{i+1}} = \frac{2 \Delta X_{i}}{g\Delta t_{i}}, $$
(12)

where \(\Delta X_{i} = X_{i} - X_{i+1}\) and \(\Delta t_{i} = t_{i} - t _{i+1}\). Here let \(\Delta t_{i} \rightarrow 0\), then \(t_{i} \rightarrow t_{i+1} =t\), \(\beta_{i} \rightarrow \beta_{i+1} =\beta \), \(\theta_{i} \rightarrow \theta_{i+1} =\theta \), \({\Delta X_{i}} / {\Delta t_{i}} \rightarrow {dX} / {dt= \dot{X}}\), and (12) becomes

$$ \frac{1}{\tan \theta } + \frac{1}{\tan \beta } = \frac{2 \dot{X}}{gt}. $$
(13)

This is Eq. (6) in the text, relating the ejection angle \(\theta \) and the ejecta curtain angle \(\beta \) using observable parameters: the horizontal proceeding speed \(\dot{X}\) of the ejecta curtain, the time \(t\) from the moment of impact, and the gravity \(g\).

Fig. 15
figure15

Cross section of ejecta curtain in the \(xy\)-plane, showing parameters related to the ejecta curtain

In the above derivation of Eq. (13), we implicitly assume that the parameters related to the ejecta curtain are observed at the target surface. We can also consider a more general case in which the parameters are given by the observation at a horizon level of height \(h\). In that case, Eq. (13) is extended as

$$ \biggl( 1+ \frac{2 h}{g t^{2}} \biggr) \frac{1}{\tan \theta } + \biggl( 1- \frac{2 h}{g t^{2}} \biggr) \frac{1}{\tan \beta } = \frac{2 \dot{X}}{gt}, $$
(14)

where the angle \(\beta \) and the proceeding speed \(\dot{X}\) of the ejecta curtain are measured at the observation level of height \(h\).

Appendix B: Estimation of S/N of SCI in DCAM3-D Image

We suppose SCI is approximated by a cylinder of \(\phi 30~\mbox{cm} \times \mbox{height} 15~\mbox{cm}\), wrapped with Beta-cloth with a diffusive reflectance of ∼80 %, independent of the light wavelength. We consider that the lateral surface of SCI is a uniform diffuse reflector. The specifications of the optics and the imager of DCAM3-D used in this calculation are as follows (see Ishibashi et al. 2016, in this issue, for detail). The spatial resolution is 1 m/pixel, the exposure time is 0.5 msec, the range of the wavelength transmitted through the optics is 450–700 nm, and the read-out noise of the imager is 7 electron/pixel. The parameters fixed in this calculation are the solar distance of 1.25 AU and the phase angle of the Earth-SCI-Sun of 20 degrees. Then, the free parameters we consider are the transmittance of optics that varies with the angle from the center of FOV, i.e., the position of SCI in an image, and the ensquared energy within 4 pixels. The calculated S/N of SCI image is shown in Fig. 16, in which 4-pixels binning is adopted. Note that the reflectance of SCI surface is assumed to be 50 %, not 80 %, taking into account that the full surface of SCI is not covered by Beta-cloth. Figure 16 shows that \(\mbox{S/N} >5\) is realized even if the ensquared energy is only 50 % and the transmittance of optics is 22 % which corresponds to the angle from the FOV center of 50 degrees, i.e., near the corner of a DCAM3-D image.

Fig. 16
figure16

S/N of SCI image in 4-pixels binning as a function of the total transmittance of DCAM3-D optics. Each line shows S/N for each ensquared energy (EE). The angle from FOV center corresponding to the optical transmittance is also shown in the upper horizontal axis

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Arakawa, M., Wada, K., Saiki, T. et al. Scientific Objectives of Small Carry-on Impactor (SCI) and Deployable Camera 3 Digital (DCAM3-D): Observation of an Ejecta Curtain and a Crater Formed on the Surface of Ryugu by an Artificial High-Velocity Impact. Space Sci Rev 208, 187–212 (2017). https://doi.org/10.1007/s11214-016-0290-z

Download citation

Keywords

  • Impact crater
  • Ejecta curtain
  • Crater scaling laws
  • Asteroid
  • Microgravity