Gamma-Ray Bursts and the Early Star-Formation History

GRBs and \(z>4\) Star-Formation

Abstract

We review the uncertainties in high-z star-formation rate (SFR) measures and the constraints that one obtains from high-z gamma-ray burst (GRB) rates on them. We show that at the present time, the GRB rates per unit star-formation at \(z>3\) are higher than at lower redshift. There could be a multitude of reasons for this: a stellar metallicity bias for GRB production, a top-heavy initial mass function (IMF) and/or missing a significant fraction of star-formation in field galaxy surveys due to incompleteness, surface brightness limitations and cosmic variance. We also compare metallicity predictions made using a hierarchical model of cosmic chemical evolution based on two recently proposed SFRs, one based on the observed galaxy luminosity function at high redshift and one based on the GRB rate and find that within the considerable scatter in metal abundance measures, they both are consistent with the data. Analyzing the ensemble of different measurements together, we conclude that despite metallicity biases, GRBs may be a less biased probe of star-formation at \(z>3\) than at \(z<2\). There is likely to be a common origin to the high GRB rate per unit star-formation and the high observed Lyman-continuum production rate in high redshift galaxies and that this may be due to a relative overabundance of stars with mass \({>}25~\mbox{M}_{\odot }\) which are likely GRB progenitors. We also find that to reconcile these measurements with the Thomson scattering cross section of cosmic microwave background (CMB) photons measured by Planck, the escape fraction of Lyman-continuum photons from galaxies must be low, about ∼15 % or less and that the clumping factor of the IGM is likely to be small, ∼3. Finally, we demonstrate that GRBs are unique probes of metallicity evolution in low-mass galaxy samples and that GRB hosts likely lost a significant fraction of metals to the intergalactic medium (IGM) due to feedback processes such as stellar winds and supernovae.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Notes

  1. 1.

    Throughout this paper, we refer to long-duration GRBs whose gamma-ray emission typically lasts >2 s and has a soft spectrum with hardness ratios of ∼0.5 compared to the short GRBs which last <2 s, have hardness ratios of ∼1.0 and that are thought to arise from merging double-degenerate systems.

  2. 2.

    These exponents are just parametric representations and are currently, not physically motivated.

References

  1. A.J. Battisti, D. Calzetti, R. Chary, Astrophys. J. 818, 13 (2016). 10.3847/0004-637X/818/1/13

    ADS  Article  Google Scholar 

  2. P.S. Behroozi, J. Silk, Preprint arXiv:1404.5299 (2014)

  3. P.S. Behroozi, R.H. Wechsler, C. Conroy, Astrophys. J. 770, 57 (2013)

    ADS  Article  Google Scholar 

  4. A.W. Blain, P. Natarajan, Mon. Not. R. Astron. Soc. 312, L35 (2000)

    ADS  Article  Google Scholar 

  5. J.S. Bloom, S.R. Kulkarni, S.G. Djorgovski, Astron. J. 123, 1111 (2002)

    ADS  Article  Google Scholar 

  6. R.J. Bouwens, G.D. Illingworth, J.P. Blakeslee, M. Franx, Astrophys. J. 653, 53 (2006)

    ADS  Article  Google Scholar 

  7. R.J. Bouwens, G.D. Illingworth, P.A. Oesch et al., Astrophys. J. 803, 34 (2015)

    ADS  Article  Google Scholar 

  8. V. Bromm, A. Loeb, Astrophys. J. 575, 111 (2002)

    ADS  Article  Google Scholar 

  9. M.A. Campisi, L.-X. Li, P. Jakobsson, Mon. Not. R. Astron. Soc. 407, 1972 (2010)

    ADS  Article  Google Scholar 

  10. R.-R. Chary, Astrophys. J. 680, 32 (2008)

    ADS  Article  Google Scholar 

  11. R. Chary, E.E. Becklin, L. Armus, Astrophys. J. 566, 229 (2002)

    ADS  Article  Google Scholar 

  12. R. Chary, E. Berger, L. Cowie, Astrophys. J. 671, 272 (2007)

    ADS  Article  Google Scholar 

  13. F. Daigne, E.M. Rossi, R. Mochkovitch, Mon. Not. R. Astron. Soc. 372, 1024 (2006)

    ADS  Article  Google Scholar 

  14. J.S. Dunlop, R.J. McLure, A.D. Biggs et al., arXiv:1606.00227 (2016)

  15. F. Elsner, G. Feulner, U. Hopp, Astron. Astrophys. 477, 503 (2008)

    ADS  Article  Google Scholar 

  16. J.F. Graham, A.S. Fruchter, Astrophys. J. 774, 119 (2013)

    ADS  Article  Google Scholar 

  17. A. Grazian, E. Giallongo, R. Gerbasi et al., Astron. Astrophys. 585, A48 (2016)

    ADS  Article  Google Scholar 

  18. A. Heger, C.L. Fryer, S.E. Woosley, N. Langer, D.H. Hartmann, Astrophys. J. 591, 288 (2003)

    ADS  Article  Google Scholar 

  19. E.E.O. Ishida, R.S. de Souza, A. Ferrara, Mon. Not. R. Astron. Soc. 418, 500 (2011)

    ADS  Article  Google Scholar 

  20. M.D. Kistler, H. Yüksel, J.F. Beacom, K.Z. Stanek, Astrophys. J. 673, L119 (2008)

    ADS  Article  Google Scholar 

  21. M.D. Kistler, H. Yuksel, A.M. Hopkins, arXiv:1305.1630 (2013)

  22. T. Krühler, D. Malesani, J.P.U. Fynbo et al., Astron. Astrophys. 581, A125 (2015)

    ADS  Article  Google Scholar 

  23. T. Laskar, E. Berger, R.-R. Chary, Astrophys. J. 739, 1 (2011)

    ADS  Article  Google Scholar 

  24. E. Le Floc’h, P.-A. Duc, I.F. Mirabel et al., Astron. Astrophys. 400, 499 (2003)

    ADS  Article  Google Scholar 

  25. E.M. Levesque, L.J. Kewley, E. Berger, H.J. Zahid, Astron. J. 140, 1557 (2010)

    ADS  Article  Google Scholar 

  26. L.-X. Li, Mon. Not. R. Astron. Soc. 388, 1487 (2008)

    ADS  Article  Google Scholar 

  27. A. Lien, T. Sakamoto, N. Gehrels et al., Astrophys. J. 806, 276 (2015)

    ADS  Article  Google Scholar 

  28. S. Marassi, R. Schneider, M. Limongi et al., Mon. Not. R. Astron. Soc. 454, 4250 (2015)

    ADS  Article  Google Scholar 

  29. D. Marchesini et al., Astrophys. J. 2009, 1765 (2011)

    Google Scholar 

  30. M. Matsuura, E. Dwek, M. Meixner et al., Science 333, 1258 (2011)

    ADS  Article  Google Scholar 

  31. J.T.W. McGuire et al., arXiv:1512.07808 (2016)

  32. M. Modjaz, L. Kewley, R.P. Kirshner et al., Astron. J. 135, 1136 (2008)

    ADS  Article  Google Scholar 

  33. E.J. Murphy, R.-R. Chary, M. Dickinson et al., Astrophys. J. 732, 126 (2011)

    ADS  Article  Google Scholar 

  34. P.A. Oesch, R.J. Bouwens, C.M. Carollo et al., Astrophys. J. 709, L21 (2010)

    ADS  Article  Google Scholar 

  35. P.A. Oesch, R.J. Bouwens, G.D. Illingworth et al., arXiv:1409.1228 (2014b)

  36. Planck Collaboration, P.A.R. Ade, N. Aghanim et al., arXiv:1502.01589 (2015)

  37. D.A. Perley et al., Astrophys. J. 817, 8 (2016)

    ADS  Article  Google Scholar 

  38. P.A. Price et al., Astrophys. J. 645, 851 (2006)

    ADS  Article  Google Scholar 

  39. S.-F. Qin, E.-W. Liang, R.-J. Lu, J.-Y. Wei, S.-N. Zhang, Mon. Not. R. Astron. Soc. 406, 558 (2010)

    ADS  Article  Google Scholar 

  40. M. Rafelski, A.M. Wolfe, J.X. Prochaska, M. Neeleman, A.J. Mendez, Astrophys. J. 755, 89 (2012)

    ADS  Article  Google Scholar 

  41. N.A. Reddy, C.C. Steidel, Astrophys. J. 692, 778 (2009)

    ADS  Article  Google Scholar 

  42. N.A. Reddy, M. Kriek, A.E. Shapley et al., Astrophys. J. 806, 259 (2015)

    ADS  Article  Google Scholar 

  43. B.E. Robertson, Astrophys. J. 716, L229 (2010)

    ADS  Article  Google Scholar 

  44. B.E. Robertson, R.S. Ellis, Astrophys. J. 744, 95 (2012)

    ADS  Article  Google Scholar 

  45. B.E. Robertson, S.R. Furlanetto, E. Schneider et al., Astrophys. J. 768, 71 (2013)

    ADS  Article  Google Scholar 

  46. B.E. Robertson, R.S. Ellis, S.R. Furlanetto, J.S. Dunlop, Astrophys. J. 802, L19 (2015)

    ADS  Article  Google Scholar 

  47. E. Rollinde, E. Vangioni, D. Maurin, K.A. Olive, F. Daigne, J. Silk, F.H. Vincent, Mon. Not. R. Astron. Soc. 398, 1782 (2009)

    ADS  Article  Google Scholar 

  48. R. Salvaterra, S. Campana, S.D. Vergani et al., Astrophys. J. 749, 68 (2012)

    ADS  Article  Google Scholar 

  49. C.C. Steidel et al., Astrophys. J. 519, 1 (1999)

    ADS  Article  Google Scholar 

  50. A.E. Shapley, N.A. Reddy, M. Kriek et al., Astrophys. J. 801, 88 (2015)

    ADS  Article  Google Scholar 

  51. H. Shim, R.-R. Chary, M. Dickinson et al., Astrophys. J. 738, 69 (2011)

    ADS  Article  Google Scholar 

  52. S. Schulze et al., Astrophys. J. 808, 73 (2015)

    ADS  Article  Google Scholar 

  53. T. Su, T.A. Marriage, V. Asboth et al., arXiv:1511.06770 (2015)

  54. H. Sun, B. Zhang, Z. Li, Astrophys. J. 812, 33 (2015)

    ADS  Article  Google Scholar 

  55. N.R. Tanvir, A.J. Levan, A.S. Fruchter et al., Astrophys. J. 754, 46 (2012)

    ADS  Article  Google Scholar 

  56. H. Trac, R. Cen, Astrophys. J. 671, 1 (2007)

    ADS  Article  Google Scholar 

  57. C.A. Tremonti, T.M. Heckman, G. Kauffmann et al., Astrophys. J. 613, 898 (2004)

    ADS  Article  Google Scholar 

  58. M. Trenti, M. Stiavelli, Astrophys. J. 676, 767 (2008)

    ADS  Article  Google Scholar 

  59. M. Trenti, R. Perna, E.M. Levesque, J.M. Shull, J.T. Stocke, Astrophys. J. 749, L38 (2012)

    ADS  Article  Google Scholar 

  60. M. Trenti, R. Perna, S. Tacchella, Astrophys. J. 773, L22 (2013)

    ADS  Article  Google Scholar 

  61. M. Trenti, R. Perna, R. Jimenez, Astrophys. J. 802, 103 (2015)

    ADS  Article  Google Scholar 

  62. E. Vangioni, K.A. Olive, T. Prestegard, J. Silk, P. Petitjean, V. Mandic, Mon. Not. R. Astron. Soc. 447, 2575 (2015)

    ADS  Article  Google Scholar 

  63. S.D. Vergani, R. Salvaterra, J. Japelj et al., Astron. Astrophys. 581, A102 (2015)

    ADS  Article  Google Scholar 

  64. F.J. Virgili, B. Zhang, K. Nagamine, J.-H. Choi, Mon. Not. R. Astron. Soc. 417, 3025 (2011)

    ADS  Article  Google Scholar 

  65. F.Y. Wang, Astron. Astrophys. 556, 90 (2013)

    ADS  Article  Google Scholar 

  66. A. Weiß, C. De Breuck, D.P. Marrone et al., Astrophys. J. 767, 88 (2013)

    ADS  Article  Google Scholar 

  67. R.A.M.J. Wijers, J.S. Bloom, J.S. Bagla, P. Natarajan, Mon. Not. R. Astron. Soc. 294, L13 (1998)

    ADS  Article  Google Scholar 

  68. S.E. Woosley, J.S. Bloom, Annu. Rev. Astron. Astrophys. 44, 507 (2006)

    ADS  Article  Google Scholar 

  69. S.E. Woosley, A. Heger, Astrophys. J. 637, 914 (2006)

    ADS  Article  Google Scholar 

  70. S.C. Yoon, N. Langer, C. Norman, Astron. Astrophys. 460, 199 (2006)

    ADS  Article  Google Scholar 

  71. H. Yüksel, M.D. Kistler, J.F. Beacom, A.M. Hopkins, Astrophys. J. 683, L5 (2008)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The work of EV and PPJ has been carried out at the ILP LABEX (under reference ANR-10-LABX-63) supported by French state funds managed by the ANR within the Investissements d’Avenir programme under reference ANR-11-IDEX-0004-02. It was also sponsored by the French Agence Nationale pour la Recherche (A.N.R.) via the grant VACOUL (ANR-2010-Blan-0510-01). We thank the referees for their feedback and clarifying remarks.

Author information

Affiliations

Authors

Corresponding author

Correspondence to R. Chary.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chary, R., Petitjean, P., Robertson, B. et al. Gamma-Ray Bursts and the Early Star-Formation History. Space Sci Rev 202, 181–194 (2016). https://doi.org/10.1007/s11214-016-0288-6

Download citation

Keywords

  • Gamma ray bursts
  • Star formation history
  • Reionization
  • Chemical abundances