Large-Eddy Simulations of Dust Devils and Convective Vortices

Abstract

In this review, we address the use of numerical computations called Large-Eddy Simulations (LES) to study dust devils, and the more general class of atmospheric phenomena they belong to (convective vortices). We describe the main elements of the LES methodology. We review the properties, statistics, and variability of dust devils and convective vortices resolved by LES in both terrestrial and Martian environments. The current challenges faced by modelers using LES for dust devils are also discussed in detail.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. M. Balme, R. Greeley, Dust devils on earth and mars. Rev. Geophys. 44(3) (2006)

  2. E.L. Barth, W.M. Farrell, S.C.R. Rafkin, Electric fields in simulated martian dust devils, in Mars Atmosphere: Modelling and Observation, 5th International Workshop, ed. by F. Forget, M. Millour, 2014, p. 2204

    Google Scholar 

  3. H.B. Bluestein, C.C. Weiss, A.L. Pazmany, Doppler radar observations of dust devils in Texas. Mon. Weather Rev. 132, 209 (2004). doi:10.1175/1520-0493(2004)132<0209:DROODD>2.0.CO;2

    ADS  Article  Google Scholar 

  4. D.S. Choi, C.M. Dundas, Measurements of martian dust devil winds with HiRISE. Geophys. Res. Lett. 38, 24206 (2011). doi:10.1029/2011GL049806

    ADS  Article  Google Scholar 

  5. T. Cortese, S. Balachandar, Vortical nature of thermal plumes in turbulent convection. Phys. Fluids A, Fluid Dyn. (1989–1993) 5(12), 3226–3232 (1993)

    ADS  Article  MATH  Google Scholar 

  6. J.W. Deardorff, Numerical investigation of neutral and unstable planetary boundary layers. J. Atmos. Sci. 29, 91–115 (1972). doi:10.1175/1520-0469(1972)029<0091:NIONAU>2.0.CO;2

    ADS  Article  Google Scholar 

  7. S. Dupont, G. Bergametti, B. Marticorena, S. SimoëNs, Modeling saltation intermittency. J. Geophys. Res., Atmos. 118, 7109–7128 (2013). doi:10.1002/jgrd.50528

    ADS  Article  Google Scholar 

  8. D.R. Durran, Numerical Methods for Fluid Dynamics: With Applications to Geophysics. Texts in Applied Mathematics (Springer, Berlin, 2010)

    Google Scholar 

  9. M.D. Ellehoj, H.P. Gunnlaugsson, P.A. Taylor, H. Kahanpää, K.M. Bean, B.A. Cantor, B.T. Gheynani, L. Drube, D. Fisher, A.-M. Harri, C. Holstein-Rathlou, M.T. Lemmon, M.B. Madsen, M.C. Malin, J. Polkko, P.H. Smith, L.K. Tamppari, W. Weng, J. Whiteway, Convective vortices and dust devils at the Phoenix Mars mission landing site. J. Geophys. Res., Planets 115(E14), 16 (2010). doi:10.1029/2009JE003413

    Google Scholar 

  10. L.K. Fenton, R. Lorenz, Dust devil height and spacing with relation to the martian planetary boundary layer thickness. Icarus 260, 246–262 (2015). doi:10.1016/j.icarus.2015.07.028

    ADS  Article  Google Scholar 

  11. L.K. Fenton, T.I. Michaels, Characterizing the sensitivity of daytime turbulent activity on Mars with the MRAMS LES: early results. Int. J. Mars Sci. Explor. 5, 159–171 (2010). doi:10.1555/mars.2010.0007

    Google Scholar 

  12. L. Fenton, D. Reiss, M. Lemmon, B. Marticorena, S. Lewis, B. Cantor, Orbital observations of dust lofted by daytime convective turbulence. Space Sci. Rev. 1–54 (2016). doi:10.1007/s11214-016-0243-6

  13. B.H. Fiedler, K.M. Kanak, Rayleigh–Bénard convection as a tool for studying dust devils. Atmos. Sci. Lett. 2, 104–113 (2001). doi:10.1006/asle.2001.0043

    ADS  Article  Google Scholar 

  14. J.A. Fisher, M.I. Richardson, C.E. Newman, M.A. Szwast, C. Graf, S. Basu, S.P. Ewald, A.D. Toigo, R.J. Wilson, A survey of martian dust devil activity using Mars global surveyor Mars orbiter camera images. J. Geophys. Res., Planets 110(E9), 3004 (2005). doi:10.1029/2003JE002165

    ADS  Google Scholar 

  15. S.D. Fuerstenau, Solar heating of suspended particles and the dynamics of martian dust devils. Geophys. Res. Lett. 33, 19 (2006). doi:10.1029/2006GL026798

    Article  Google Scholar 

  16. B.T. Gheynani, P.A. Taylor, Large-eddy simulations of vertical vortex formation in the terrestrial and martian convective boundary layers. Bound.-Layer Meteorol. 137, 223–235 (2010). doi:10.1007/s10546-010-9530-z

    ADS  Article  Google Scholar 

  17. B.T. Gheynani, P.A. Taylor, Large eddy simulation of typical dust devil-like vortices in highly convective martian boundary layers at the Phoenix lander site. Planet. Space Sci. 59, 43–50 (2011). doi:10.1016/j.pss.2010.10.011

    ADS  Article  Google Scholar 

  18. R. Greeley, P.L. Whelley, R.E. Arvidson, N.A. Cabrol, D.J. Foley, B.J. Franklin, P.G. Geissler, M.P. Golombek, R.O. Kuzmin, G.A. Landis, M.T. Lemmon, L.D.V. Neakrase, S.W. Squyres, S.D. Thompson, Active dust devils in Gusev crater, Mars: observations from the Mars exploration rover spirit. J. Geophys. Res., Planets 111(E10), 12 (2006). doi:10.1029/2006JE002743

    Google Scholar 

  19. Z. Gu, Y. Zhao, Y. Li, Y. Yu, X. Feng, Numerical simulation of dust lifting within dust devils simulation of an intense vortex. J. Atmos. Sci. 63, 2630–2641 (2006). doi:10.1175/JAS3748.1

    ADS  Article  Google Scholar 

  20. R.M. Haberle, H.C. Houben, R. Hertenstein, T. Herdtle, A boundary layer model for Mars: comparison with Viking lander and entry data. J. Atmos. Sci. 50, 1544–1559 (1993)

    ADS  Article  Google Scholar 

  21. R.G. Harrison, E. Barth, F. Esposito, J. Merrison, F. Montmessin, K.L. Aplin, C. Borlina, J.J. Berthelier, G. Déprez, W.M. Farrell, I.M.P. Houghton, N.O. Renno, K.A. Nicoll, S.N. Tripathi, M. Zimmerman, Applications of electrified dust and dust devil electrodynamics to martian atmospheric electricity. Space Sci. Rev. 1–47 (2016). doi:10.1007/s11214-016-0241-8

  22. D.P. Hinson, M. Pätzold, S. Tellmann, B. Häusler, G.L. Tyler, The depth of the convective boundary layer on Mars. Icarus 198, 57–66 (2008). doi:10.1016/j.icarus.2008.07.003

    ADS  Article  Google Scholar 

  23. N. Huang, G. Yue, X. Zheng, Numerical simulations of a dust devil and the electric field in it. J. Geophys. Res., Atmos. 113(D20) (2008)

  24. J. Ito, H. Niino, M. Nakanishi, Large eddy simulation on dust suspension in a convective mixed layer. SOLA 6, 133–136 (2010). doi:10.2151/sola.2010-034

    Article  Google Scholar 

  25. J. Ito, R. Tanaka, H. Niino, M. Nakanishi, Large eddy simulation of dust devils in a diurnally-evolving convective mixed layer. J. Meteorol. Soc. Jpn. 88, 64–77 (2010)

    Article  Google Scholar 

  26. J. Ito, H. Niino, M. Nakanishi, Effects of ambient rotation on dust devils. SOLA 7, 165–168 (2011). doi:10.2151/sola.2011-042

    Article  Google Scholar 

  27. J. Ito, H. Niino, M. Nakanishi, Formation mechanism of dust devil-like vortices in idealized convective mixed layers. J. Atmos. Sci. 70, 1173–1186 (2013). doi:10.1175/JAS-D-12-085.1

    ADS  Article  Google Scholar 

  28. K.M. Kanak, Numerical simulation of dust devil-scale vortices. Q. J. R. Meteorol. Soc. 131(607), 1271–1292 (2005)

    ADS  Article  Google Scholar 

  29. K.M. Kanak, On the numerical simulation of dust devil-like vortices in terrestrial and martian convective boundary layers. Geophys. Res. Lett. 33(19) (2006)

  30. K.M. Kanak, D.K. Lilly, J.T. Snow, The formation of vertical vortices in the convective boundary layer. Q. J. R. Meteorol. Soc. 126(569), 2789–2810 (2000)

    ADS  Article  Google Scholar 

  31. M. Klose, Y. Shao, Stochastic parameterization of dust emission and application to convective atmospheric conditions. Atmos. Chem. Phys. 12(12), 7309–7320 (2012). doi:10.5194/acp-12-7309-2012

    ADS  Article  Google Scholar 

  32. M. Klose, Y. Shao, Large-eddy simulation of turbulent dust emission. Aeolian Res. 8, 49–58 (2013). doi:10.1016/j.aeolia.2012.10.010

    ADS  Article  Google Scholar 

  33. M. Klose, Y. Shao, A numerical study on dust devils with implications to global dust budget estimates. Aeolian Res. 22, 47–58 (2016). doi:10.1016/j.aeolia.2016.05.003

    ADS  Article  Google Scholar 

  34. M. Klose, Y. Shao, X.L. Li, H.S. Zhang, M. Ishizuka, M. Mikami, J.F. Leys, Further development of a parameterization for convective turbulent dust emission and evaluation based on field observations. J. Geophys. Res., Atmos. 119, 10441–10457 (2014). doi:10.1002/2014JD021688

    ADS  Article  Google Scholar 

  35. M. Klose, B.C. Jemmett-Smith, H. Kahanpää, M. Kahre, P. Knippertz, M.T. Lemmon, S.R. Lewis, R.D. Lorenz, L.D.V. Neakrase, C. Newman, M.R. Patel, D. Reiss, A. Spiga, P.L. Whelley, Dust devil sediment transport: from lab to field to global impact. Space Sci. Rev. 1–50 (2016). doi:10.1007/s11214-016-0261-4

  36. P. Knippertz, J.-B.W. Stuut, Mineral Dust: A Key Player in the Earth System (Springer, Netherlands, 2014)

    Google Scholar 

  37. M.V. Kurgansky, R.D. Lorenz, N.O. Renno, T. Takemi, Z. Gu, W. Wei, Dust devil steady-state structure from a fluid dynamics perspective. Space Sci. Rev. [“Dust devils” special issue] (2016, submitted). doi:10.1007/s11214-016-0281-0

  38. C.B. Leovy, Martian meteorological variability. Adv. Space Res. 2, 19–44 (1982)

    ADS  Article  Google Scholar 

  39. D.K. Lilly, On the numerical simulation of buoyant convection. Tellus 14(2), 148–172 (1962)

    ADS  Article  Google Scholar 

  40. G.A. Loosmore, J.R. Hunt, Dust resuspension without saltation. J. Geophys. Res. 105(D16), 20663–20671 (2000). doi:10.1029/2000JD900271

    ADS  Article  Google Scholar 

  41. R. Lorenz, On the statistical distribution of dust devil diameters. Icarus 215, 381–390 (2011). doi:10.1016/j.icarus.2011.06.005

    ADS  Article  Google Scholar 

  42. R.D. Lorenz, Vortex encounter rates with fixed barometer stations: comparison with visual dust devil counts and large-eddy simulations. J. Atmos. Sci. 71(12), 4461–4472 (2014)

    ADS  MathSciNet  Article  Google Scholar 

  43. R.D. Lorenz, B.K. Jackson, Dust devil populations and statistics. Space Sci. Rev. 1–21 (2016). doi:10.1007/s11214-016-0277-9

  44. R.D. Lorenz, D. Reiss, Solar panel clearing events, dust devil tracks, and in-situ vortex detections on Mars. Icarus 248, 162–164 (2015). doi:10.1016/j.icarus.2014.10.034

    ADS  Article  Google Scholar 

  45. R.D. Lorenz, M.R. Balme, Z. Gu, H. Kahanpää, M. Klose, M.V. Kurgansky, M.R. Patel, D. Reiss, A.P. Rossi, A. Spiga, T. Takemi, W. Wei, History and applications of dust devil studies. Space Sci. Rev. 1–33 (2016). doi:10.1007/s11214-016-0239-2

  46. M.C. Malin, K.S. Edgett, Mars global surveyor Mars orbiter camera: interplanetary cruise through primary mission. J. Geophys. Res. 106, 23429–23570 (2001). doi:10.1029/2000JE001455

    ADS  Article  Google Scholar 

  47. P. Mason, Large-eddy simulation of the convective atmospheric boundary layer. J. Atmos. Sci. 46(11), 1492–1516 (1989)

    ADS  Article  Google Scholar 

  48. S.M. Metzger, M.R. Balme, M.C. Towner, B.J. Bos, T.J. Ringrose, M.R. Patel, In situ measurements of particle load and transport in dust devils. Icarus 214(2), 766–772 (2011). doi:10.1016/j.icarus.2011.03.013

    ADS  Article  Google Scholar 

  49. T.I. Michaels, Numerical modeling of Mars dust devils: albedo track generation. Geophys. Res. Lett. 33(19) (2006). doi:10.1029/2006GL026268

  50. T.I. Michaels, S.C.R. Rafkin, Large eddy simulation of atmospheric convection on Mars. Q. J. R. Meteorol. Soc. 130, 1251–1274 (2004). doi:10.1256/qj.02.169

    ADS  Article  Google Scholar 

  51. J.D. Mirocha, J.K. Lundquist, B. Kosovic, Implementation of a nonlinear subfilter turbulence stress model for large-eddy simulation in the advanced research WRF model. Mon. Weather Rev. 138, 4212–4228 (2010)

    ADS  Article  Google Scholar 

  52. C. Moeng, J. Dudhia, J. Klemp, P. Sullivan, Examining two-way grid nesting for large eddy simulation of the PBL using the WRF model. Mon. Weather Rev. 135(6), 2295–2311 (2007)

    ADS  Article  Google Scholar 

  53. J.E. Moores, M.T. Lemmon, H. Kahanpää, S.C.R. Rafkin, R. Francis, J. Pla-Garcia, K. Bean, R. Haberle, C. Newman, M. Mischna, A.R. Vasavada, M. de la Torre Juárez, N. Rennó, J. Bell, F. Calef, B. Cantor, T.H. Mcconnochie, A.-M. Harri, M. Genzer, M.H. Wong, M.D. Smith, F.J. Martín-Torres, M.-P. Zorzano, O. Kemppinen, E. McCullough, Observational evidence of a suppressed planetary boundary layer in northern Gale crater, Mars as seen by the Navcam instrument onboard the Mars Science Laboratory rover. Icarus 249, 129–142 (2015). doi:10.1016/j.icarus.2014.09.020

    ADS  Article  Google Scholar 

  54. D.P. Mulholland, A. Spiga, C. Listowski, P.L. Read, An assessment of the impact of local processes on dust lifting in martian climate models. Icarus 252, 212–227 (2015). doi:10.1016/j.icarus.2015.01.017

    ADS  Article  Google Scholar 

  55. J. Murphy, K. Steakley, M.B. Balme, G. Deprez, F. Esposito, H. Kahanpää, M. Lemmon, R.D. Lorenz, N. Murdoch, L.D.V. Neakrase, M. Patel, P. Whelley, Field measurements of terrestrial and martian dust devils. Space Sci. Rev. [“Dust devils” special issue] (2016, submitted). doi:10.1007/s11214-016-0283-y

  56. L.D.V. Neakrase, M.B. Balme, F. Esposito, T. Kelling, M. Klose, J.F. Kok, B. Marticonera, J. Merrison, M.R. Patel, G. Wurm, Particle lifting processes in dust devils. Space Sci. Rev. [“Dust devils” special issue] (2016, submitted)

  57. C.E. Newman, S.R. Lewis, P.L. Read, F. Forget, Modeling the martian dust cycle, 1. Representations of dust transport processes. J. Geophys. Res., Planets 107, 5123 (2002). doi:10.1029/2002JE001910

    ADS  Google Scholar 

  58. S. Nishizawa, H. Yashiro, Y. Sato, Y. Miyamoto, H. Tomita, Influence of grid aspect ratio on planetary boundary layer turbulence in large-eddy simulations. Geosci. Model Dev. 8(10), 3393–3419 (2015). doi:10.5194/gmd-8-3393-2015. http://www.geosci-model-dev.net/8/3393/2015/

    ADS  Article  Google Scholar 

  59. S. Nishizawa, M. Odaka, Y.O. Takahashi, K. Sugiyama, K. Nakajima, M. Ishiwatari, S. Takehiro, H. Yashiro, Y. Sato, H. Tomita, Y.-Y. Hayashi, Martian dust devil statistics from high-resolution large-eddy simulations. Geophys. Res. Lett. 43(9), 4180–4188 (2016). doi:10.1002/2016GL068896

    ADS  Article  Google Scholar 

  60. M. Odaka, K. Nakajima, S. Takehiro, M. Ishiwatari, Y. Hayashi, A numerical study of the martian atmospheric convection with a two-dimensional anelastic model. Earth Planets Space 50, 431–437 (1998)

    ADS  Article  Google Scholar 

  61. H. Ohno, T. Takemi, Mechanisms for intensification and maintenance of numerically simulated dust devils. Atmos. Sci. Lett. 11(1), 27–32 (2010a)

    Google Scholar 

  62. H. Ohno, T. Takemi, Numerical study for the effects of mean wind on the intensity and evolution of dust devils. SOLA 6(1), 5–8 (2010b). doi:10.2151/sola.6A-002

    Article  Google Scholar 

  63. A. Petrosyan, B. Galperin, S.E. Larsen, S.R. Lewis, A. Määttänen, P.L. Read, N. Renno, L.P.H.T. Rogberg, H. Savijärvi, T. Siili, A. Spiga, A. Toigo, L. Vázquez, The martian atmospheric boundary layer. Rev. Geophys. 49, 3005 (2011). doi:10.1029/2010RG000351

    ADS  Article  Google Scholar 

  64. R. Pielke, W. Cotton, R. Walko, C. Trembaek, W. Lyons, L. Grasso, M. Nieholls, M. Moran, D. Wesley, T. Lee, et al., A comprehensive meteorological modeling system-RAMS. Meteorol. Atmos. Phys. 49, 69–91 (1992)

    ADS  Article  Google Scholar 

  65. S. Raasch, T. Franke, Structure and formation of dust devil-like vortices in the atmospheric boundary layer: a high-resolution numerical study. J. Geophys. Res., Atmos. (1984–2012) 116(D16) (2011)

  66. S.C.R. Rafkin, R.M. Haberle, T.I. Michaels, The Mars regional atmospheric modeling system: model description and selected simulations. Icarus 151, 228–256 (2001)

    ADS  Article  Google Scholar 

  67. S. Rafkin, L. Fenton, R. Lorenz, B. Jemmett-Smith, N. Renno, T. Takemi, P. Knippertz, J. Ito, D. Tyler, Dust devil formation conditions and process. Space Sci. Rev. [“Dust devils” special issue] (2016, submitted)

  68. D. Reiss, D. Lüsebrink, H. Hiesinger, T. Kelling, G. Wurm, J. Teiser, High altitude dust devils on Arsia Mons, Mars: testing the greenhouse and thermophoresis hypothesis of dust lifting, in Lunar and Planetary Institute Science Conference Abstracts. Lunar and Planetary Inst. Technical Report, vol. 40, 2009, p. 1961

    Google Scholar 

  69. D. Reiss, P. Whelley, L.D.V. Neakrase, M. Zimmerman, L. Fenton, M. Balme, A.P. Rossi, T. Statella, Dust devil tracks and surface albedo changes. Space Sci. Rev. [“Dust devils” special issue] (2016, submitted)

  70. N.O. Renno, M.L. Burkett, M.P. Larkin, A simple thermodynamical theory for dust devils. J. Atmos. Sci. 55, 3244–3252 (1998)

    ADS  MathSciNet  Article  Google Scholar 

  71. N.O. Renno, A.-S. Wong, S.K. Atreya, I. de Pater, M. Roos-Serote, Electrical discharges and broadband radio emission by martian dust devils and dust storms. Geophys. Res. Lett. 30(22), 220000-1 (2003)

    Article  Google Scholar 

  72. N.O. Renno, V.J. Abreu, J. Koch, P.H. Smith, O.K. Hartogensis, H.A.R. De Bruin, D. Burose, G.T. Delory, W.M. Farrell, C.J. Watts, J. Garatuza, M. Parker, A. Carswell, MATADOR 2002: a pilot field experiment on convective plumes and dust devils. J. Geophys. Res. 109(E18), 7001 (2004). doi:10.1029/2003JE002219

    Article  Google Scholar 

  73. M.I. Richardson, A.D. Toigo, C.E. Newman, PlanetWRF: a general purpose, local to global numerical model for planetary atmospheric and climate dynamics. J. Geophys. Res. 112(E09001) (2007). doi:10.1029/2005JE002636

  74. R. Rotunno, The fluid dynamics of tornadoes. Annu. Rev. Fluid Mech. 45, 59–84 (2013). doi:10.1146/annurev-fluid-011212-140639

    ADS  MathSciNet  Article  MATH  Google Scholar 

  75. P. Sagaut, Large Eddy Simulation for Incompressible Flows: An Introduction (Springer, Berlin, 2006)

    Google Scholar 

  76. H. Sävijarvi, A model study of the atmospheric boundary layer in the Mars Pathfinder lander conditions. Q. J. R. Meteorol. Soc. 125(554), 483–493 (1999)

    ADS  Article  Google Scholar 

  77. J.T. Schofield, D. Crisp, J.R. Barnes, R.M. Haberle, J.A. Magalhaães, J.R. Murphy, A. Seiff, S. Larsen, G. Wilson, The Mars Pathfinder atmospheric structure investigation/meteorology (ASI/MET) experiment. Science 278, 1752–1757 (1997)

    ADS  Article  Google Scholar 

  78. Y. Shao, S. Liu, J. Schween, S. Crewell, Large-eddy atmosphere—land-surface modelling over heterogeneous surfaces: model development and comparison with measurements. Bound.-Layer Meteorol. 148(2), 333–356 (2013). doi:10.1007/s10546-013-9823-0

    ADS  Article  Google Scholar 

  79. Y. Shao, W. Nickling, G. Bergametti, H. Butler, A. Chappell, P. Findlater, J. Gillies, M. Ishizuka, M. Klose, J. Kok, J. Leys, H. Lu, B. Marticorena, G. McTainsh, C. McKenna-Neuman, G. Okin, C. Strong, N. Webb, A tribute to M.R. Raupach for contributions to aeolian fluid dynamics. Aeolian Res. 19 Part A, 37–54 (2015). doi:10.1016/j.aeolia.2015.09.004

    ADS  Article  Google Scholar 

  80. P.C. Sinclair, The lower structure of dust devils. J. Atmos. Sci. 30(8), 1599–1619 (1973)

    ADS  MathSciNet  Article  Google Scholar 

  81. W.C. Skamarock, J.B. Klemp, A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys. 227, 3465–3485 (2008). doi:10.1016/j.jcp.2007.01.037

    ADS  MathSciNet  Article  MATH  Google Scholar 

  82. J. Smagorinsky, General circulation experiments with the primitive equations. I. The basic experiment. Mon. Weather Rev. 91, 99–164 (1963)

    ADS  Article  Google Scholar 

  83. Z. Sorbjan, Statistics of shallow convection on Mars based on large-eddy simulations. Part 1: shearless conditions. Bound.-Layer Meteorol. 123, 121–142 (2007). doi:10.1007/s10546-006-9128-7

    ADS  Article  Google Scholar 

  84. A. Spiga, Elements of comparison between martian and terrestrial mesoscale meteorological phenomena: katabatic winds and boundary layer convection. Planet. Space Sci. 59, 915–922 (2011). doi:10.1016/j.pss.2010.04.025

    ADS  Article  Google Scholar 

  85. A. Spiga, F. Forget, A new model to simulate the martian mesoscale and microscale atmospheric circulation: validation and first results. J. Geophys. Res., Planets 114, 02009 (2009). doi:10.1029/2008JE003242

    ADS  Article  Google Scholar 

  86. A. Spiga, S.R. Lewis, Martian mesoscale and microscale wind variability of relevance for dust lifting. Int. J. Mars Sci. Explor. 5, 146–158 (2010). doi:10.1555/mars.2010.0006

    Google Scholar 

  87. A. Spiga, F. Forget, S.R. Lewis, D.P. Hinson, Structure and dynamics of the convective boundary layer on mars as inferred from large-eddy simulations and remote-sensing measurements. Q. J. R. Meteorol. Soc. 136, 414–428 (2010). doi:10.1002/qj.563

    ADS  Article  Google Scholar 

  88. P.P. Sullivan, E.G. Patton, The effect of mesh resolution on convective boundary layer statistics and structures generated by large-eddy simulation. J. Atmos. Sci. 68, 2395–2415 (2011). doi:10.1175/JAS-D-10-05010.1

    ADS  Article  Google Scholar 

  89. T. Takemi, An eddy-resolving simulation of the diurnal variation of fair-weather convection and tracer transport. Atmos. Res. 89, 270–282 (2008). doi:10.1016/j.atmosres.2008.02.012

    Article  Google Scholar 

  90. P.C. Thomas, P.J. Gierasch, Dust devils on Mars. Science 230, 175–177 (1985)

    ADS  Article  Google Scholar 

  91. A.D. Toigo, M.I. Richardson, Meteorology of proposed Mars exploration rover landing sites. J. Geophys. Res., Planets 108(E12), 8092 (2003). doi:10.1029/2003JE002064

    ADS  Article  Google Scholar 

  92. A.D. Toigo, M.I. Richardson, S.P. Ewald, P.J. Gierasch, Numerical simulation of martian dust devils. J. Geophys. Res., Planets 108, 5047 (2003). doi:10.1029/2002JE002002

    ADS  Article  Google Scholar 

  93. D. Tyler, J.R. Barnes, Mesoscale modeling of the circulation in the Gale crater region: an investigation into the complex forcing of convective boundary layer depths. Mars 8, 58–77 (2013). doi:10.1555/mars.2013.0003

    ADS  Google Scholar 

  94. D. Tyler, J.R. Barnes, Convergent crater circulations on mars: influence on the surface pressure cycle and the depth of the convective boundary layer. Geophys. Res. Lett. 42 (2015). doi:10.1002/2015GL064957

  95. D. Tyler, J.R. Barnes, E.D. Skyllingstad, Mesoscale and large-eddy simulation model studies of the martian atmosphere in support of Phoenix. J. Geophys. Res., Planets 113(E12) (2008). doi:10.1029/2007JE003012

  96. M. Weißmüller, F. Hoffmann, , S. Raasch, Towards large-eddy simulations of dust devils with observed intensity: effects of numerics and surface heterogeneities. J. Geophys. Res. (2016, submitted)

  97. Y.Z. Zhao, Z.L. Gu, Y.Z. Yu, Y. Ge, Y. Li, X. Feng, Mechanism and large eddy simulation of dust devils. Atmos.-Ocean 42(1), 61–84 (2004). doi:10.3137/ao.420105

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the logistic and financial help of the International Space Science Institute (ISSI, Bern, Switzerland) for the organization of a “dust devils” international workshop that led to the writing of this review chapter. We are indebted to two anonymous reviewers and associate editor Ralph Lorenz for constructive comments which helped to improve this review.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Aymeric Spiga.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Spiga, A., Barth, E., Gu, Z. et al. Large-Eddy Simulations of Dust Devils and Convective Vortices. Space Sci Rev 203, 245–275 (2016). https://doi.org/10.1007/s11214-016-0284-x

Download citation

Keywords

  • Dust devils
  • Large-Eddy Simulations
  • Convective vortices
  • Convective boundary layer