Dust Devil Populations and Statistics

Abstract

The highly-skewed diameter and pressure drop distributions of dust devils on Earth and Mars are noted, and challenges of presenting and comparing different types of observations are discussed. The widely-held view that Martian dust devils are larger than Earth’s is critically assessed: the question is confounded somewhat by different observation techniques, but some indication of a \({\sim} 3\mathrm{x}\) larger population on Mars is determined. The largest and most intense (in a relative pressure sense) devils recorded are on Mars, although the largest reported number density is on Earth. The difficulties of concepts used in the literature of ‘average’ diameter, pressure cross section, and area fraction are noted in the context of estimating population-integral effects such as dust lifting.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Notes

  1. 1.

    ‘Complete’ in the sense of detecting all devils present in the survey area. Surveys in small areas may statistically encounter less than one devil for large sizes and so are not ‘complete’ in the sense of fully characterizing the population unless they are conducted for a long enough period – see Lorenz (2011). Note that a true power law has no limit, and so there are an infinite number of infinitely small dust devils, which is clearly not the case. In practice there is a lower limit, suggested to be the Obhukhov scale or \({\sim} 1~\mbox{m}\) for typical conditions on Earth.

  2. 2.

    The Planetary Atmospheres Node of NASA’s Planetary Data System provides support for researchers who wish to archive their dust devil data – http://atmos.nmsu.edu/atmos-home.html.

References

  1. R.E. Arvidson, E.A. Guinness, H.J. Moore, J. Tillman, S.D. Wall, Three Mars years: Viking lander 1 imaging observations. Science 222, 463–468 (1983)

    ADS  Article  Google Scholar 

  2. M. Balme, R. Greeley, Dust devils on Earth and Mars. Rev. Geophys. 44(3) (2006). doi:10.1029/2005RG000188

  3. M.R. Balme, P.L. Whelley, R. Greeley, Mars: Dust devil track survey in Argyre Planitia and Hellas Basin. J. Geophys. Res. 108, 5086 (2003). doi:10.1029/2003JE002096

    Article  Google Scholar 

  4. M.R. Balme, A. Pathare, S.M. Metzger, M.C. Towner, S.R. Lewis, A. Spiga, L.K. Fenton, N.O. Renno, H.M. Elliott, F.A. Saca, T.I. Michaels, Field measurements of horizontal forward motion velocities of terrestrial dust devils: towards a proxy for ambient winds on Mars and Earth. Icarus 221(2), 632–645 (2012)

    ADS  Article  Google Scholar 

  5. T. Broersen, Quantification of soil erosion by dust devil in the Jordan Badia. MSc thesis, University of Utrecht, The Netherlands (2013)

  6. J.J. Carroll, J.A. Ryan, Atmospheric vorticity and dust devil rotation. J. Geophys. Res. 75(27), 5179–5184 (1970)

    ADS  Article  Google Scholar 

  7. M.D. Ellehoj, H.P. Gunnlaugsson, P.A. Taylor, H. Kahanpa, K.M. Bean, B.A. Cantor, B.T. Gheynani, L. Drube, D. Fisher, A.-M. Harri, C. Holstein-Rathlou, M.T. Lemmon, M.B. Madsen, M.C. Malin, J. Polkko, P.H. Smith, L.K. Tamppari, W. Weng, J. Whiteway, Convective vortices and dust devils at the Phoenix Mars mission landing site. J. Geophys. Res. 115, E00E16 (2010)

    ADS  Article  Google Scholar 

  8. L. Fenton, R. Lorenz, Dust devil height and spacing with relation to the Martian planetary boundary layer thickness. Icarus 260, 246–262 (2015)

    ADS  Article  Google Scholar 

  9. R. Greeley, P.L. Whelley, R.E. Arvidson, N.A. Cabrol, D.J. Foley, B.J. Franklin, P.G. Geissler, M.P. Golombek, R.O. Kuzmin, G.A. Landis, M.T. Lemmon, Active dust devils in Gusev crater, Mars: observations from the Mars Exploration Rover Spirit. J. Geophys. Res., Planets 111(E12) (2006). doi:10.1029/2006JE002743

  10. B.K. Jackson, R.D. Lorenz, A multi-year dust devil vortex survey using an automated search of pressure time-series. J. Geophys. Res., Planets 120 (2015). doi:10.1002/2014JE004712

  11. K.M. Kinch, J. Sohl-Dickstein, J.F. Bell III., J.R. Johnson, W. Goetz, G.A. Landis, Dust deposition on the Mars Exploration Rover Panoramic Camera (Pancam) calibration targets. J. Geophys. Res. 112, E06S03 (2007). doi:10.1029/2006JE002807

    ADS  Article  Google Scholar 

  12. M. Klose, B.C. Jemmett-Smith, H. Kahanpaa, M. Kahre, P. Knippertz, M.T. Lemmon, S.R. Lewis, R.D. Lorenz, L.D.V. Neakrase, C. Newman, M.R. Patel, D. Reiss, A. Spiga, P.L. Whelley, Dust devil sediment transport: from lab to field to global impact. Space Sci. Rev. (2016). doi:10.1007/s11214-016-0261-4

    Google Scholar 

  13. J. Koch, N.O. Renno, The role of convective plumes and vortices on the global aerosol budget. Geophys. Res. Lett. 32(18), L18806 (2005)

    ADS  Article  Google Scholar 

  14. M.V. Kurgansky, Steady-state properties and statistical distribution of atmospheric dust devils. Geophys. Res. Lett. 33, L19S06 (2006)

    Article  Google Scholar 

  15. M.V. Kurgansky, Statistical distribution of atmospheric dust devils. Icarus 219, 556–560 (2012)

    ADS  Article  Google Scholar 

  16. R.L. Lambeth, On the measurement of dust devil parameters. Bull. Am. Meteorol. Soc. 47, 522–526 (1966)

    Google Scholar 

  17. G.A. Landis, P.J. Jenkins, Measurement of the settling rate of atmospheric dust on Mars by the MAE instrument on Mars Pathfinder. J. Geophys. Res. 105, 1855–1857 (2000)

    ADS  Article  Google Scholar 

  18. R.D. Lorenz, Power law of dust devils on Earth and Mars. Icarus 203, 683–684 (2009)

    ADS  Article  Google Scholar 

  19. R.D. Lorenz, Studies of desert dust devils with a sensor network, timelapse cameras and thermal imaging, in Aerospace Conference, 6 March 2010 (IEEE Press, New York, 2010), pp. 1–7

    Google Scholar 

  20. R.D. Lorenz, On the statistical distribution of dust devil diameters. Icarus 215, 381–390 (2011)

    ADS  Article  Google Scholar 

  21. R.D. Lorenz, Pressure drops in dust devils: Earth and Mars. Planet. Space Sci. 60, 370–375 (2012)

    ADS  Article  Google Scholar 

  22. R.D. Lorenz, The longevity and aspect ratio of dust devils: effects on detection efficiencies and comparison of landed and orbital imaging at Mars. Icarus 226, 964–970 (2013)

    ADS  Article  Google Scholar 

  23. R.D. Lorenz, Vortex encounter rates with fixed barometer stations: comparison with visual dust devil counts and large eddy simulations. J. Atmos. Sci. 71, 4461–4472 (2014)

    ADS  Article  Google Scholar 

  24. R.D. Lorenz, D. Christie, Dust devil signatures in infrasound records of the international monitoring system. Geophys. Res. Lett. 42, 2009–2014 (2015). doi:10.1002/2015GL063237

    ADS  Article  Google Scholar 

  25. R.D. Lorenz, B.K. Jackson, Dust devils and dustless vortices on a desert playa observed with surface pressure and solar flux logging. J. Geophys. Res. 5, 1 (2015)

    Google Scholar 

  26. R.D. Lorenz, P.D. Lanagan, A barometric survey of dust devil vortices on a Desert Playa. Bound.-Layer Meteorol. 53, 555–568 (2014). doi:10.1007/s10546-014-9954-y

    ADS  Article  Google Scholar 

  27. R. Lorenz, J. Radebaugh, Dust devils in thin air: vortex observations at a high elevation Mars analog site in the Argentinian Puna. Geophys. Res. Lett. (2016). doi:10.1002/2015GL067412

    Google Scholar 

  28. R.D. Lorenz, D. Reiss, Solar panel clearing events, dust devil tracks, and in-situ vortex detections on Mars. Icarus 248, 162–164 (2015)

    ADS  Article  Google Scholar 

  29. R.D. Lorenz, J. Zimbelman, Dune Worlds: How Wind-Blown Sand Shapes Planetary Landscapes (Springer, Berlin, 2014)

    Google Scholar 

  30. R.D. Lorenz, M.R. Balme, Z. Gu, H. Kahanpää, M. Klose, M. Kurgansky, M.R. Patel, D. Reiss, A.P. Rossi, A. Spiga, T. Takemi, W. Wei, History and applications of dust devil studies. Space Sci. Rev. (2016). doi:10.1007/s11214-016-0239-2

    Google Scholar 

  31. J.P. Mason, M.R. Patel, S.R. Lewis, Radiative transfer modelling of dust devils. Icarus 223(1), 1 (2013)

    ADS  Article  Google Scholar 

  32. J.O. Mattsson, T. Nihlén, W. Yue, Observations of dust devils in a semi-arid district of southern Tunisia. Weather 48(11), 359–363 (1993)

    ADS  Article  Google Scholar 

  33. H.J. Melosh, Impact Cratering: A Geologic Process (Oxford Univ. Press, London, 1990)

    Google Scholar 

  34. S. Metzger, M. Balme, A. Pathare, Meteorologic conditions and the formation of terrestrial dust devils, in 40th Lunar and Planetary Science Conference, Houston, TX (2009)

    Google Scholar 

  35. J.E. Moores, M.T. Lemmon, H. Kahanpää, S.C. Rafkin, R. Francis, J. Pla-Garcia, K. Bean, R. Haberle, C. Newman, M. Mischna, A.R. Vasavada, Observational evidence of a suppressed planetary boundary layer in northern Gale Crater, Mars as seen by the Navcam instrument onboard the Mars Science Laboratory rover. Icarus 249, 129–142 (2015)

    ADS  Article  Google Scholar 

  36. J.R. Murphy, S. Nelli, Mars pathfinder convective vortices: frequency of occurrence. Geophys. Res. Lett. 29(23) (2002). doi:10.1029/2002GL015214

  37. L.D.V. Neakrase, R. Greeley, J.D. Iversen, M.R. Balme, E.E. Eddlemon, Dust flux within dust devils: preliminary laboratory simulations. Geophys. Res. Lett. 33, L19S09 (2006). doi:10.1029/2006GL026810

    Article  Google Scholar 

  38. H. Ohno, T. Takemi, Mechanisms for intensification and maintenance of numerically simulated dust devils. Atmos. Sci. Lett. 11, 27–32 (2010). doi:10.1002/asl.249

    Google Scholar 

  39. A.M.C. Oke, N.J. Tapper, D. Dunkerley, Willy-willies in the Australian landscape: the role of key meteorological variables and surface conditions in defining frequency and spatial characteristics. J. Arid Environ. 71, 201–215 (2007)

    Article  Google Scholar 

  40. A.V. Pathare, M.R. Balme, S.M. Metzger, A. Spiga, M.C. Towner, N.O. Renno, F. Saca, Assessing the power law hypothesis for the size-frequency distribution of terrestrial and martian dust devils. Icarus 209, 851–852 (2010)

    ADS  Article  Google Scholar 

  41. S. Raasch, T. Franke, Structure and formation of dust devil-like vortices in the atmospheric boundary layer: a high-resolution numerical study. J. Geophys. Res., Atmos. 116(D16) (2011). doi:10.1029/2011JD016010

  42. D. Reiss, First observations of terrestrial dust devils in orbital image data: comparison with dust devils in Amazonis Planitia, Mars, in Lunar and Planetary Science Conference, Houston, TX, 21–25 March (2016)

    Google Scholar 

  43. D. Reiss, A. Spiga, G. Erkeling, The horizontal motion of dust devils on Mars derived from CRISM and CTX/HiRISE observations. Icarus 227, 8–20 (2014)

    ADS  Article  Google Scholar 

  44. D. Reiss, L. Fenton, L. Neakrase, M. Zimmerman, T. Statella, P. Whelley, A.P. Rossi, M. Balme, Dust devil tracks. Space Sci. Rev. (2016 this issue)

  45. T.J. Ringrose, M.C. Towner, J.C. Zarnecki, Convective vortices on Mars: a reanalysis of Viking Lander 2 meteorological data, sols 1–60. Icarus 163, 78–87 (2003)

    ADS  Article  Google Scholar 

  46. T.J. Ringrose, M.R. Patel, M.C. Towner, M. Balme, S.M. Metzger, J.C. Zarnecki, The meteorological signatures of dust devils on Mars. Planet. Space Sci. 55 (14), 2151–2163 (2007)

    ADS  Article  Google Scholar 

  47. J.A. Ryan, J.J. Carroll, Dust devil wind velocities: mature state. J. Geophys. Res. 75, 531–541 (1970)

    ADS  Article  Google Scholar 

  48. J.A. Ryan, R.D. Lucich, Possible dust devils, vortices on Mars. J. Geophys. Res. 88, 11005–11011 (1983)

    ADS  Article  Google Scholar 

  49. J. Scargle, J. Norris, B. Jackson, J. Chiang, Studies in astronomical time series analysis, VI: Bayesian block representations. Astrophys. J. 764(2), 167 (2013). doi:10.1088/0004-637X/764/2/167

    ADS  Article  Google Scholar 

  50. P.C. Sinclair, General characteristics of dust devils. J. Appl. Meteorol. 8(1), 32–45 (1969)

    ADS  Article  Google Scholar 

  51. P.C. Sinclair, The lower structure of dust devils. J. Atmos. Sci. 30(8), 1599–1619 (1973)

    ADS  MathSciNet  Article  Google Scholar 

  52. J.T. Snow, T. McClelland, Dust devils at White Sands Missile Range, New Mexico, 1: temporal and spatial distributions. J. Geophys. Res. 95, 13,707–13,721 (1990)

    ADS  Article  Google Scholar 

  53. C. Stanzel, M. Pätzold, D.A. Williams, P.L. Whelley, R. Greeley, G. Neukum (HRSC Co-Investigator Team), Dust devil speeds, directions of motion and general characteristics observed by the Mars Express High Resolution Stereo Camera. Icarus 197(1), 39–51 (2008)

    ADS  Article  Google Scholar 

  54. D.M. Tratt, M.H. Hecht, D.C. Catling, E.C. Samulon, P.H. Smith, In situ measurements of dust devil dynamics: toward a strategy for Mars. J. Geophys. Res. 108(E11), 5116 (2003). doi:10.1029/2003JE002161

    Article  Google Scholar 

  55. C.A. Verba, P. Geissler, T. Titus, D. Waller, Observations from the High Resolution Imaging Science Experiment (HiRISE): martian dust devils in Gusev and Russell craters. J. Geophys. Res. 115, E09002 (2012). doi:10.1029/2009JE003498

    ADS  Google Scholar 

  56. R.E. Wyett, Pressure drop in a dust devil. Mon. Weather Rev. 82, 7 (1954)

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ralph D. Lorenz.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lorenz, R.D., Jackson, B.K. Dust Devil Populations and Statistics. Space Sci Rev 203, 277–297 (2016). https://doi.org/10.1007/s11214-016-0277-9

Download citation

Keywords

  • Dust devils
  • Statistics
  • Power law