Skip to main content
Log in

Dust Devil Populations and Statistics

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

The highly-skewed diameter and pressure drop distributions of dust devils on Earth and Mars are noted, and challenges of presenting and comparing different types of observations are discussed. The widely-held view that Martian dust devils are larger than Earth’s is critically assessed: the question is confounded somewhat by different observation techniques, but some indication of a \({\sim} 3\mathrm{x}\) larger population on Mars is determined. The largest and most intense (in a relative pressure sense) devils recorded are on Mars, although the largest reported number density is on Earth. The difficulties of concepts used in the literature of ‘average’ diameter, pressure cross section, and area fraction are noted in the context of estimating population-integral effects such as dust lifting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. ‘Complete’ in the sense of detecting all devils present in the survey area. Surveys in small areas may statistically encounter less than one devil for large sizes and so are not ‘complete’ in the sense of fully characterizing the population unless they are conducted for a long enough period – see Lorenz (2011). Note that a true power law has no limit, and so there are an infinite number of infinitely small dust devils, which is clearly not the case. In practice there is a lower limit, suggested to be the Obhukhov scale or \({\sim} 1~\mbox{m}\) for typical conditions on Earth.

  2. The Planetary Atmospheres Node of NASA’s Planetary Data System provides support for researchers who wish to archive their dust devil data – http://atmos.nmsu.edu/atmos-home.html.

References

  • R.E. Arvidson, E.A. Guinness, H.J. Moore, J. Tillman, S.D. Wall, Three Mars years: Viking lander 1 imaging observations. Science 222, 463–468 (1983)

    Article  ADS  Google Scholar 

  • M. Balme, R. Greeley, Dust devils on Earth and Mars. Rev. Geophys. 44(3) (2006). doi:10.1029/2005RG000188

  • M.R. Balme, P.L. Whelley, R. Greeley, Mars: Dust devil track survey in Argyre Planitia and Hellas Basin. J. Geophys. Res. 108, 5086 (2003). doi:10.1029/2003JE002096

    Article  Google Scholar 

  • M.R. Balme, A. Pathare, S.M. Metzger, M.C. Towner, S.R. Lewis, A. Spiga, L.K. Fenton, N.O. Renno, H.M. Elliott, F.A. Saca, T.I. Michaels, Field measurements of horizontal forward motion velocities of terrestrial dust devils: towards a proxy for ambient winds on Mars and Earth. Icarus 221(2), 632–645 (2012)

    Article  ADS  Google Scholar 

  • T. Broersen, Quantification of soil erosion by dust devil in the Jordan Badia. MSc thesis, University of Utrecht, The Netherlands (2013)

  • J.J. Carroll, J.A. Ryan, Atmospheric vorticity and dust devil rotation. J. Geophys. Res. 75(27), 5179–5184 (1970)

    Article  ADS  Google Scholar 

  • M.D. Ellehoj, H.P. Gunnlaugsson, P.A. Taylor, H. Kahanpa, K.M. Bean, B.A. Cantor, B.T. Gheynani, L. Drube, D. Fisher, A.-M. Harri, C. Holstein-Rathlou, M.T. Lemmon, M.B. Madsen, M.C. Malin, J. Polkko, P.H. Smith, L.K. Tamppari, W. Weng, J. Whiteway, Convective vortices and dust devils at the Phoenix Mars mission landing site. J. Geophys. Res. 115, E00E16 (2010)

    Article  ADS  Google Scholar 

  • L. Fenton, R. Lorenz, Dust devil height and spacing with relation to the Martian planetary boundary layer thickness. Icarus 260, 246–262 (2015)

    Article  ADS  Google Scholar 

  • R. Greeley, P.L. Whelley, R.E. Arvidson, N.A. Cabrol, D.J. Foley, B.J. Franklin, P.G. Geissler, M.P. Golombek, R.O. Kuzmin, G.A. Landis, M.T. Lemmon, Active dust devils in Gusev crater, Mars: observations from the Mars Exploration Rover Spirit. J. Geophys. Res., Planets 111(E12) (2006). doi:10.1029/2006JE002743

  • B.K. Jackson, R.D. Lorenz, A multi-year dust devil vortex survey using an automated search of pressure time-series. J. Geophys. Res., Planets 120 (2015). doi:10.1002/2014JE004712

  • K.M. Kinch, J. Sohl-Dickstein, J.F. Bell III., J.R. Johnson, W. Goetz, G.A. Landis, Dust deposition on the Mars Exploration Rover Panoramic Camera (Pancam) calibration targets. J. Geophys. Res. 112, E06S03 (2007). doi:10.1029/2006JE002807

    Article  ADS  Google Scholar 

  • M. Klose, B.C. Jemmett-Smith, H. Kahanpaa, M. Kahre, P. Knippertz, M.T. Lemmon, S.R. Lewis, R.D. Lorenz, L.D.V. Neakrase, C. Newman, M.R. Patel, D. Reiss, A. Spiga, P.L. Whelley, Dust devil sediment transport: from lab to field to global impact. Space Sci. Rev. (2016). doi:10.1007/s11214-016-0261-4

    Google Scholar 

  • J. Koch, N.O. Renno, The role of convective plumes and vortices on the global aerosol budget. Geophys. Res. Lett. 32(18), L18806 (2005)

    Article  ADS  Google Scholar 

  • M.V. Kurgansky, Steady-state properties and statistical distribution of atmospheric dust devils. Geophys. Res. Lett. 33, L19S06 (2006)

    Article  Google Scholar 

  • M.V. Kurgansky, Statistical distribution of atmospheric dust devils. Icarus 219, 556–560 (2012)

    Article  ADS  Google Scholar 

  • R.L. Lambeth, On the measurement of dust devil parameters. Bull. Am. Meteorol. Soc. 47, 522–526 (1966)

    Google Scholar 

  • G.A. Landis, P.J. Jenkins, Measurement of the settling rate of atmospheric dust on Mars by the MAE instrument on Mars Pathfinder. J. Geophys. Res. 105, 1855–1857 (2000)

    Article  ADS  Google Scholar 

  • R.D. Lorenz, Power law of dust devils on Earth and Mars. Icarus 203, 683–684 (2009)

    Article  ADS  Google Scholar 

  • R.D. Lorenz, Studies of desert dust devils with a sensor network, timelapse cameras and thermal imaging, in Aerospace Conference, 6 March 2010 (IEEE Press, New York, 2010), pp. 1–7

    Google Scholar 

  • R.D. Lorenz, On the statistical distribution of dust devil diameters. Icarus 215, 381–390 (2011)

    Article  ADS  Google Scholar 

  • R.D. Lorenz, Pressure drops in dust devils: Earth and Mars. Planet. Space Sci. 60, 370–375 (2012)

    Article  ADS  Google Scholar 

  • R.D. Lorenz, The longevity and aspect ratio of dust devils: effects on detection efficiencies and comparison of landed and orbital imaging at Mars. Icarus 226, 964–970 (2013)

    Article  ADS  Google Scholar 

  • R.D. Lorenz, Vortex encounter rates with fixed barometer stations: comparison with visual dust devil counts and large eddy simulations. J. Atmos. Sci. 71, 4461–4472 (2014)

    Article  ADS  Google Scholar 

  • R.D. Lorenz, D. Christie, Dust devil signatures in infrasound records of the international monitoring system. Geophys. Res. Lett. 42, 2009–2014 (2015). doi:10.1002/2015GL063237

    Article  ADS  Google Scholar 

  • R.D. Lorenz, B.K. Jackson, Dust devils and dustless vortices on a desert playa observed with surface pressure and solar flux logging. J. Geophys. Res. 5, 1 (2015)

    Google Scholar 

  • R.D. Lorenz, P.D. Lanagan, A barometric survey of dust devil vortices on a Desert Playa. Bound.-Layer Meteorol. 53, 555–568 (2014). doi:10.1007/s10546-014-9954-y

    Article  ADS  Google Scholar 

  • R. Lorenz, J. Radebaugh, Dust devils in thin air: vortex observations at a high elevation Mars analog site in the Argentinian Puna. Geophys. Res. Lett. (2016). doi:10.1002/2015GL067412

    Google Scholar 

  • R.D. Lorenz, D. Reiss, Solar panel clearing events, dust devil tracks, and in-situ vortex detections on Mars. Icarus 248, 162–164 (2015)

    Article  ADS  Google Scholar 

  • R.D. Lorenz, J. Zimbelman, Dune Worlds: How Wind-Blown Sand Shapes Planetary Landscapes (Springer, Berlin, 2014)

    Book  Google Scholar 

  • R.D. Lorenz, M.R. Balme, Z. Gu, H. Kahanpää, M. Klose, M. Kurgansky, M.R. Patel, D. Reiss, A.P. Rossi, A. Spiga, T. Takemi, W. Wei, History and applications of dust devil studies. Space Sci. Rev. (2016). doi:10.1007/s11214-016-0239-2

    Google Scholar 

  • J.P. Mason, M.R. Patel, S.R. Lewis, Radiative transfer modelling of dust devils. Icarus 223(1), 1 (2013)

    Article  ADS  Google Scholar 

  • J.O. Mattsson, T. Nihlén, W. Yue, Observations of dust devils in a semi-arid district of southern Tunisia. Weather 48(11), 359–363 (1993)

    Article  ADS  Google Scholar 

  • H.J. Melosh, Impact Cratering: A Geologic Process (Oxford Univ. Press, London, 1990)

    Google Scholar 

  • S. Metzger, M. Balme, A. Pathare, Meteorologic conditions and the formation of terrestrial dust devils, in 40th Lunar and Planetary Science Conference, Houston, TX (2009)

    Google Scholar 

  • J.E. Moores, M.T. Lemmon, H. Kahanpää, S.C. Rafkin, R. Francis, J. Pla-Garcia, K. Bean, R. Haberle, C. Newman, M. Mischna, A.R. Vasavada, Observational evidence of a suppressed planetary boundary layer in northern Gale Crater, Mars as seen by the Navcam instrument onboard the Mars Science Laboratory rover. Icarus 249, 129–142 (2015)

    Article  ADS  Google Scholar 

  • J.R. Murphy, S. Nelli, Mars pathfinder convective vortices: frequency of occurrence. Geophys. Res. Lett. 29(23) (2002). doi:10.1029/2002GL015214

  • L.D.V. Neakrase, R. Greeley, J.D. Iversen, M.R. Balme, E.E. Eddlemon, Dust flux within dust devils: preliminary laboratory simulations. Geophys. Res. Lett. 33, L19S09 (2006). doi:10.1029/2006GL026810

    Article  Google Scholar 

  • H. Ohno, T. Takemi, Mechanisms for intensification and maintenance of numerically simulated dust devils. Atmos. Sci. Lett. 11, 27–32 (2010). doi:10.1002/asl.249

    Google Scholar 

  • A.M.C. Oke, N.J. Tapper, D. Dunkerley, Willy-willies in the Australian landscape: the role of key meteorological variables and surface conditions in defining frequency and spatial characteristics. J. Arid Environ. 71, 201–215 (2007)

    Article  Google Scholar 

  • A.V. Pathare, M.R. Balme, S.M. Metzger, A. Spiga, M.C. Towner, N.O. Renno, F. Saca, Assessing the power law hypothesis for the size-frequency distribution of terrestrial and martian dust devils. Icarus 209, 851–852 (2010)

    Article  ADS  Google Scholar 

  • S. Raasch, T. Franke, Structure and formation of dust devil-like vortices in the atmospheric boundary layer: a high-resolution numerical study. J. Geophys. Res., Atmos. 116(D16) (2011). doi:10.1029/2011JD016010

  • D. Reiss, First observations of terrestrial dust devils in orbital image data: comparison with dust devils in Amazonis Planitia, Mars, in Lunar and Planetary Science Conference, Houston, TX, 21–25 March (2016)

    Google Scholar 

  • D. Reiss, A. Spiga, G. Erkeling, The horizontal motion of dust devils on Mars derived from CRISM and CTX/HiRISE observations. Icarus 227, 8–20 (2014)

    Article  ADS  Google Scholar 

  • D. Reiss, L. Fenton, L. Neakrase, M. Zimmerman, T. Statella, P. Whelley, A.P. Rossi, M. Balme, Dust devil tracks. Space Sci. Rev. (2016 this issue)

  • T.J. Ringrose, M.C. Towner, J.C. Zarnecki, Convective vortices on Mars: a reanalysis of Viking Lander 2 meteorological data, sols 1–60. Icarus 163, 78–87 (2003)

    Article  ADS  Google Scholar 

  • T.J. Ringrose, M.R. Patel, M.C. Towner, M. Balme, S.M. Metzger, J.C. Zarnecki, The meteorological signatures of dust devils on Mars. Planet. Space Sci. 55 (14), 2151–2163 (2007)

    Article  ADS  Google Scholar 

  • J.A. Ryan, J.J. Carroll, Dust devil wind velocities: mature state. J. Geophys. Res. 75, 531–541 (1970)

    Article  ADS  Google Scholar 

  • J.A. Ryan, R.D. Lucich, Possible dust devils, vortices on Mars. J. Geophys. Res. 88, 11005–11011 (1983)

    Article  ADS  Google Scholar 

  • J. Scargle, J. Norris, B. Jackson, J. Chiang, Studies in astronomical time series analysis, VI: Bayesian block representations. Astrophys. J. 764(2), 167 (2013). doi:10.1088/0004-637X/764/2/167

    Article  ADS  Google Scholar 

  • P.C. Sinclair, General characteristics of dust devils. J. Appl. Meteorol. 8(1), 32–45 (1969)

    Article  ADS  Google Scholar 

  • P.C. Sinclair, The lower structure of dust devils. J. Atmos. Sci. 30(8), 1599–1619 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  • J.T. Snow, T. McClelland, Dust devils at White Sands Missile Range, New Mexico, 1: temporal and spatial distributions. J. Geophys. Res. 95, 13,707–13,721 (1990)

    Article  ADS  Google Scholar 

  • C. Stanzel, M. Pätzold, D.A. Williams, P.L. Whelley, R. Greeley, G. Neukum (HRSC Co-Investigator Team), Dust devil speeds, directions of motion and general characteristics observed by the Mars Express High Resolution Stereo Camera. Icarus 197(1), 39–51 (2008)

    Article  ADS  Google Scholar 

  • D.M. Tratt, M.H. Hecht, D.C. Catling, E.C. Samulon, P.H. Smith, In situ measurements of dust devil dynamics: toward a strategy for Mars. J. Geophys. Res. 108(E11), 5116 (2003). doi:10.1029/2003JE002161

    Article  Google Scholar 

  • C.A. Verba, P. Geissler, T. Titus, D. Waller, Observations from the High Resolution Imaging Science Experiment (HiRISE): martian dust devils in Gusev and Russell craters. J. Geophys. Res. 115, E09002 (2012). doi:10.1029/2009JE003498

    ADS  Google Scholar 

  • R.E. Wyett, Pressure drop in a dust devil. Mon. Weather Rev. 82, 7 (1954)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph D. Lorenz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lorenz, R.D., Jackson, B.K. Dust Devil Populations and Statistics. Space Sci Rev 203, 277–297 (2016). https://doi.org/10.1007/s11214-016-0277-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-016-0277-9

Keywords

Navigation