Skip to main content
Log in

The Impact of Century-Scale Changes in the Core Magnetic Field on External Magnetic Field Contributions

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

The Earth’s internal magnetic field controls to a degree the strength, geographic positioning, and structure of currents flowing in the ionosphere and magnetosphere, which produce their own (external) magnetic fields. The secular variation of the Earth’s internal magnetic field can therefore lead to long-term changes in the externally produced magnetic field as well. Here we will examine this more closely. First, we obtain scaling relations to describe how the strength of magnetic perturbations associated with various different current systems in the ionosphere and magnetosphere depends on the internal magnetic field intensity. Second, we discuss how changes in the orientation of a simple dipolar magnetic field will affect the current systems. Third, we use model simulations to study how actual changes in the Earth’s internal magnetic field between 1908 and 2008 have affected some of the relevant current systems. The influence of the internal magnetic field on low- to mid-latitude currents in the ionosphere is relatively well understood, while the effects on high-latitude current systems and currents in the magnetosphere still pose considerable challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • I. Cnossen, The importance of geomagnetic field changes versus rising CO2 levels for long-term change in the upper atmosphere. J. Space Weather Space Clim. 4, A18 (2014)

    Article  ADS  Google Scholar 

  • I. Cnossen, A.D. Richmond, Modelling the effects of changes in the Earth’s magnetic field from 1957 to 1997 on the ionospheric hmF2 and foF2 parameters. J. Atmos. Sol.-Terr. Phys. 70, 1512–1524 (2008)

    Article  ADS  Google Scholar 

  • I. Cnossen, A.D. Richmond, How changes in the tilt angle of the geomagnetic dipole affect the coupled magnetosphere-ionosphere-thermosphere system. J. Geophys. Res. 117, A10317 (2012)

    ADS  Google Scholar 

  • I. Cnossen, A.D. Richmond, Changes in the Earth’s magnetic field over the past century: effects on the ionosphere-thermosphere system and solar quiet (Sq) magnetic variation. J. Geophys. Res. 118, 849–858 (2013)

    Article  Google Scholar 

  • I. Cnossen, A.D. Richmond, M. Wiltberger, W. Wang, P. Schmitt, The response of the coupled magnetosphere-ionosphere-thermosphere system to a 25 % reduction in the dipole moment of the Earth’s magnetic field. J. Geophys. Res. 116, A12304 (2011). doi:10.1029/2011JA017063

    ADS  Google Scholar 

  • I. Cnossen, A.D. Richmond, M. Wiltberger, The dependence of the coupled magnetosphere-ionosphere-thermosphere system on the Earth’s magnetic dipole moment. J. Geophys. Res. 117, A05302 (2012a). doi:10.1029/2012JA017555

    ADS  Google Scholar 

  • I. Cnossen, M. Wiltberger, J.E. Ouellette, The effects of seasonal and diurnal variations in the Earth’s magnetic dipole orientation on solar wind-magnetosphere-ionosphere coupling. J. Geophys. Res. 117, A11211 (2012b)

    ADS  Google Scholar 

  • B.F. De Haro Barbas, A.G. Elias, I. Cnossen, M. Zossi de Artigas, Long-term changes in solar quiet (Sq) geomagnetic variations related to Earth’s magnetic field secular variation. J. Geophys. Res. Space Phys. 118, 3712–3718 (2013)

    Article  ADS  Google Scholar 

  • A.G. Elias, M. Zossi de Artigas, B.F. De Haro Barbas, Trends in the solar quiet geomagnetic field variation linked to the Earth’s magnetic field secular variation and increasing concentrations of greenhouse gases. J. Geophys. Res. 115, A08316 (2010)

    Article  ADS  Google Scholar 

  • C.C. Finlay, V. Lesur, E. Thébault, F. Vervelidou, A. Morschhauser, R. Shore, Challenges handling magnetospheric and ionospheric signals in internal geomagnetic field modelling. Space Sci. Rev., in review (this volume, 2016)

  • N. Fukushima, Generalized theorem of no ground magnetic effect of vertical current connected with Pedersen currents in the uniform conductivity ionosphere. Rep. Ionos. Space Res. Jpn. 30, 35–40 (1976)

    ADS  Google Scholar 

  • S. Gasda, A.D. Richmond, Longitudinal and interhemispheric variations of auroral ionospheric electrodynamics in a realistic geomagnetic field. J. Geophys. Res. 103, 4011–4021 (1998)

    Article  ADS  Google Scholar 

  • K.-H. Glassmeier, J. Vogt, A. Stadelmann, S. Buchert, Concerning long-term geomagnetic variations and space climatology. Ann. Geophys. 22(10), 3669–3677 (2004)

    Article  ADS  Google Scholar 

  • T.W. Hill, A.J. Dessler, R.A. Wolf, Mercury and Mars: the role of ionospheric conductivity in the acceleration of magnetospheric particles. Geophys. Res. Lett. 3, 429–432 (1976)

    Article  ADS  Google Scholar 

  • Y. Hurtaud, C. Peymirat, A.D. Richmond, Modeling seasonal and diurnal effects on ionospheric conductances, region-2 currents, and plasma convection in the inner magnetosphere. J. Geophys. Res. 112, A09217 (2007)

    Article  ADS  Google Scholar 

  • M.G. Kivelson, C.T. Russell, Introduction to Space Physics (Cambridge University Press, Cambridge, 1995). 568 pp.

    Google Scholar 

  • H. Korth, B.J. Anderson, M.J. Wiltberger, J.G. Lyon, P.C. Anderson, Intercomparison of ionospheric electrodynamics from the iridium constellation with global MHD simulations. J. Geophys. Res. 109, A07307 (2004)

    Article  ADS  Google Scholar 

  • K.M. Laundal, I. Cnossen, S.E. Milan, S.E. Haaland, J. Coxon, N.M. Pedatella, M. Förster, J.P. Reistad, North-South asymmetries: effects on high-latitude geospace. Space Sci. Rev. (2016). doi:10.1007/s11214-016-0273-0

    Google Scholar 

  • P. Le Sager, T.S. Huang, Ionospheric currents and field-aligned currents generated by dynamo action in an asymmetric magnetic field. J. Geophys. Res. 107, 1025 (2002)

    Article  Google Scholar 

  • J.G. Lyon, J.A. Fedder, C.M. Mobarry, The Lyon-Fedder-Mobarry (LFM) global MHD magnetospheric simulation code. J. Atmos. Sol.-Terr. Phys. 66(15–16), 1333–1350 (2004)

    Article  ADS  Google Scholar 

  • J. Park, H. Lühr, K.W. Min, Climatology of the inter-hemispheric field-aligned current system in the equatorial ionosphere as observed by CHAMP. Ann. Geophys. 29, 573–582 (2011)

    Article  ADS  Google Scholar 

  • C. Peymirat, D. Fontaine, Numerical simulation of magnetospheric convection including the effect of field-aligned currents and electron precipitation. J. Geophys. Res. 99, 11,155–11,176 (1994)

    Article  ADS  Google Scholar 

  • K.G. Powell, P.L. Roe, T.J. Linde, T.I. Gombosi, D.L. De Zeeuw, A solution-adaptive upwind scheme for ideal magnetohydrodynamics. J. Comput. Phys. 154, 284–309 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • A.D. Richmond, Ionospheric electrodynamics, in Handbook of Ionospheric Electrodynamics, Vol. II (1995), pp. 249–290

    Google Scholar 

  • A.D. Richmond, R.G. Roble, Electrodynamic effects of thermospheric winds from the NCAR thermospheric general circulation model. J. Geophys. Res. 92, 12,365–12,376 (1987)

    Article  ADS  Google Scholar 

  • A.D. Richmond, E.C. Ridley, R.G. Roble, A thermosphere/ionosphere general circulation model with coupled electrodynamics. Geophys. Res. Lett. 19, 601–604 (1992)

    Article  ADS  Google Scholar 

  • H. Rishbeth, The quadrupole ionosphere. Ann. Geophys. 3, 293–298 (1985)

    ADS  Google Scholar 

  • R.G. Roble, E.C. Ridley, A.D. Richmond, A coupled thermosphere/ionosphere general circulation model. Geophys. Res. Lett. 15, 1325–1328 (1988)

    Article  ADS  Google Scholar 

  • T.J. Sabaka, N. Olsen, R.A. Langel, A comprehensive model of the quiet-time, near-Earth magnetic field: phase 3. Geophys. J. Int. 151, 32–68 (2002)

    Article  ADS  Google Scholar 

  • T.J. Sabaka, N. Olsen, M.E. Purucker, Extending comprehensive models of the Earth’s magnetic field with ørsted and CHAMP data. Geophys. J. Int. 159, 521–547 (2004)

    Article  ADS  Google Scholar 

  • G.L. Siscoe, C.-K. Chen, The paleomagnetosphere. J. Geophys. Res. 80(14), 4675–4680 (1975)

    Article  ADS  Google Scholar 

  • G.L. Siscoe, L. Christopher, Effects of geomagnetic dipole variations on the auroral zone locations. J. Geomagn. Geoelectr. 27, 485–489 (1975)

    Article  ADS  Google Scholar 

  • G.L. Siscoe, D.G. Sibeck, Effects of nondipole components on auroral zone configurations during weak dipole field epochs. J. Geophys. Res. 85, 3549–3556 (1980)

    Article  ADS  Google Scholar 

  • G.L. Siscoe, G.M. Erickson, B.U.O. Sonnerup, N.C. Maynard, J.A. Schoendorf, K.D. Siebert, D.R. Weimer, W.W. White, G.R. Wilson, Hill model of transpolar potential saturation: comparisons with MHD simulations. J. Geophys. Res. 107(A6), 1075 (2002)

    Article  Google Scholar 

  • M. Takeda, Three dimensional ionospheric currents and field aligned currents generated by asymmetrical dynamo action in the ionosphere. J. Atmos. Terr. Phys. 44, 187–193 (1982)

    Article  ADS  Google Scholar 

  • M. Takeda, Effects of the strength of the geomagnetic main field strength on the dynamo action in the ionosphere. J. Geophys. Res. 101, 7875–7880 (1996)

    Article  ADS  Google Scholar 

  • E. Thébault, C.C. Finlay, C. Beggan et al., International geomagnetic reference field: the 12th generation. Earth Planets Space 67, 79 (2015)

    Article  ADS  Google Scholar 

  • J. Vogt, K.-H. Glassmeier, Modelling the plaeomagnetosphere: strategy and first results. Adv. Space Res. 28, 863–868 (2001)

    Article  ADS  Google Scholar 

  • C.-U. Wagner, D. Möhlmann, K. Schäfer, V.M. Mishin, M.I. Matveev, Large-scale electric fields and currents and related geomagnetic variations in the quiet plasmasphere. Space Sci. Rev. 26, 391–446 (1980)

    Article  ADS  Google Scholar 

  • E.K. Walton, S.A. Bowhill, Seasonal variations in the low latitude dynamo currents system near sunspot maximum. J. Atmos. Terr. Phys. 41, 937–949 (1979)

    Article  ADS  Google Scholar 

  • W. Wang, M. Wiltberger, A.G. Burns, S.C. Solomon, T.L. Killeen, N. Maruyama, J.G. Lyon, Initial results from the coupled magnetosphere-ionosphere-thermosphere model: thermosphere-ionosphere responses. J. Atmos. Sol.-Terr. Phys. 66, 1425–1441 (2004)

    Article  ADS  Google Scholar 

  • W. Wang, J.L. Lei, A.G. Burns, M. Wiltberger, A.D. Richmond, S.C. Solomon, T.L. Killeen, E.R. Talaat, D.N. Anderson, Ionospheric electric field variations during a geomagnetic storm simulated by a coupled magnetosphere ionosphere thermosphere (CMIT) model. Geophys. Res. Lett. 35, L18105 (2008)

    Article  ADS  Google Scholar 

  • M. Wiltberger, W. Wang, A.G. Burns, S.C. Solomon, J.G. Lyon, C.C. Goodrich, Initial results from the coupled magnetosphere ionosphere thermosphere model: magnetospheric and ionospheric responses. J. Atmos. Sol.-Terr. Phys. 66, 1411–1423 (2004)

    Article  ADS  Google Scholar 

  • M. Wiltberger, R.S. Weigel, W. Lotko, J.A. Fedder, Modeling seasonal variations of auroral particle precipitation in a global-scale magnetosphere-ionosphere simulation. J. Geophys. Res. 114, A01204 (2009)

    Article  ADS  Google Scholar 

  • M. Wiltberger, E.J. Rigler, V. Merkin, J.G. Lyon, Structure of high latitude currents in global magnetosphere-ionosphere models. Space Sci. Rev. (2016). doi:10.1007/s11214-016-0271-2

    Google Scholar 

  • B. Zhang, W. Lotko, O. Brambles, M. Wiltberger, J.G. Lyon, Electron precipitation models in global magnetosphere simulations. J. Geophys. Res. Space Phys. 120, 1035–1056 (2015)

    Article  ADS  Google Scholar 

  • B. Zieger, J. Vogt, K.-H. Glassmeier, T.I. Gombosi, Magnetohydrodynamic simulation of an equatorial dipolar magnetosphere. J. Geophys. Res. 109, A07205 (2004)

    Article  ADS  Google Scholar 

  • B. Zieger, J. Vogt, K.-H. Glassmeier, Scaling relations in the paleomagnetosphere derived from MHD simulations. J. Geophys. Res. 111(A6), A06203 (2006a)

    Article  ADS  Google Scholar 

  • B. Zieger, J. Vogt, A.J. Ridley, K.H. Glassmeier, A parametric study of magnetosphere-ionosphere coupling in the paleomagnetosphere. Adv. Space Res. 38, 1707–1712 (2006b)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Part of this work was sponsored by a fellowship of the Natural Environment Research Council, grant number NE/J018058/1. I am grateful to Arthur D. Richmond for helpful comments on an earlier draft of the manuscript and to Christopher C. Finlay for useful discussions on the content of Sect. 5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingrid Cnossen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cnossen, I. The Impact of Century-Scale Changes in the Core Magnetic Field on External Magnetic Field Contributions. Space Sci Rev 206, 259–280 (2017). https://doi.org/10.1007/s11214-016-0276-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-016-0276-x

Keywords

Navigation