Skip to main content
Log in

High-Precision Laboratory Measurements Supporting Retrieval of Water Vapor, Gaseous Ammonia, and Aqueous Ammonia Clouds with the Juno Microwave Radiometer (MWR)

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

The NASA Juno mission includes a six-channel microwave radiometer system (MWR) operating in the 1.3–50 cm wavelength range in order to retrieve abundances of ammonia and water vapor from the microwave signature of Jupiter (see Janssen et al. 2016). In order to plan observations and accurately interpret data from such observations, over 6000 laboratory measurements of the microwave absorption properties of gaseous ammonia, water vapor, and aqueous ammonia solution have been conducted under simulated Jovian conditions using new laboratory systems capable of high-precision measurement under the extreme conditions of the deep atmosphere of Jupiter (up to 100 bars pressure and 505 K temperature). This is one of the most extensive laboratory measurement campaigns ever conducted in support of a microwave remote sensing instrument. New, more precise models for the microwave absorption from these constituents have and are being developed from these measurements. Application of these absorption properties to radiative transfer models for the six wavelengths involved will provide a valuable planning tool for observations, and will also make possible accurate retrievals of the abundance of these constituents during and after observations are conducted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • S.K. Atreya, M.H. Wong, T.C. Owen, P.R. Mahaffy, H.B. Niemann, I. de Pater, P. Drossart, T. Encrenaz, A comparison of the atmospheres of Jupiter and Saturn: deep atmospheric composition, cloud structure, vertical mixing, and origin. Planet. Space Sci. 47, 1243–1262 (1999)

    Article  ADS  Google Scholar 

  • A. Bellotti, P.G. Steffes, G. Chinsomboon, Laboratory measurements of the 5–20 cm wavelength opacity of ammonia, water vapor, and methane under simulated conditions for the deep jovian atmosphere. Icarus (2016). in press. doi:10.1016/j.icarus.2016.07.013

    Google Scholar 

  • G.L. Berge, S. Gulkis, Earth-based radio observations of Jupiter: millimeter to meter wavelengths, in Jupiter, ed. by T. Gehrels (Univ. of Arizona Press, Tucson, 1976), pp. 621–692

    Google Scholar 

  • D.R. DeBoer, P.G. Steffes, Laboratory measurements of the microwave properties of \(\mathrm{H}_{2}\mathrm{S}\) under simulated Jovian conditions with an application to Neptune. Icarus 109, 352–366 (1994)

    Article  ADS  Google Scholar 

  • I. de Pater, D.R. DeBoer, M. Marley, R. Freedman, R. Young, Retrieval of water in Jupiter’s deep atmosphere using microwave spectra of its brightness temperature. Icarus 173, 425–438 (2005)

    Article  ADS  Google Scholar 

  • K. Devaraj, P.G. Steffes, B.M. Karpowicz, Reconciling the centimeter and millimeter-wavelength ammonia absorption spectra under Jovian conditions: extensive millimeter-wavelength measurements and a consistent model. Icarus 212, 224–235 (2011)

    Article  ADS  Google Scholar 

  • K. Devaraj, P.G. Steffes, D. Duong, The centimeter-wavelength opacity of ammonia under deep Jovian conditions. Icarus 241, 165–179 (2014)

    Article  ADS  Google Scholar 

  • D.T. Duong, P.G. Steffes, S. Noorizadeh, The microwave properties of the Jovian clouds: a new model for the complex dielectric constant of aqueous ammonia. Icarus 229, 121–131 (2014)

    Article  ADS  Google Scholar 

  • G.C. Goodman, Models of Jupiter’s atmosphere. Ph.D. thesis, Unversity of Illinois (1969)

  • T.R. Hanley, The microwave opacity of ammonia and water vapor: application to remote sensing of the atmosphere of Jupiter. PhD dissertation, Georgia Institute of Technology, Atlanta, GA (2008). http://smartech.gatech.edu/handle/1853/24673

  • T.R. Hanley, P.G. Steffes, A high-sensitivity laboratory system for measuring the microwave properties of gases under simulated conditions for planetary atmospheres. Radio Sci. 42, RS6010 (2007)

    Article  ADS  Google Scholar 

  • T.R. Hanley, P.G. Steffes, B.M. Karpowicz, A new model of the hydrogen and helium-broadened microwave opacity of ammonia based on extensive laboratory measurements. Icarus 202, 316–335 (2009)

    Article  ADS  Google Scholar 

  • W. Ho, I.A. Kaufman, P. Thaddeus, Laboratory measurement of microwave absorption in models of the atmosphere of Venus. J. Geophys. Res. 71(21), 5091–5108 (1966)

    Article  ADS  Google Scholar 

  • J.P. Hoffman, P.G. Steffes, D.R. DeBoer, Laboratory measurements of the microwave opacity of phosphine: opacity formalism and application to the atmospheres of the outer planets. Icarus 152, 172–184 (2001)

    Article  ADS  Google Scholar 

  • M.A. Janssen, M.D. Hofstadter, S. Gulkis, A.P. Ingersoll, M. Allison, S.J. Bolton, S.M. Levin, L.W. Kamp, Microwave remote sensing of Jupiter’s atmosphere from an orbiting spacecraft. Icarus 173, 447–453 (2005)

    Article  ADS  Google Scholar 

  • M.A. Janssen, J. Oswald, S. Brown, S. Gulkis, S. Levin, S. Bolton, A. Kitiyakara, J. Chen, F. Maiwald, A. Larson, P. Pingree, K. Lee, R. Redick, R. Hughes, M. Allison, S. Atreya, A. Ingersoll, J. Lunine, T. Owen, P. Steffes, G. Bedrossian, D. Dawson, W. Hatch, D. Russel, N. Chamberlain, M. Zawadski, B. Khayatian, A. Mazer, B. Franklin, H. Conley, J. Kempenaar, M. Loo, E. Sunada, C. Wang, (2016). MWR: Microwave Radiometer for the Juno Mission to Jupiter, Space Sci. Rev. submitted for publication

  • J. Joiner, P.G. Steffes, Modeling of Jupiter’s millimeter wave emission utilizing laboratory measurements of ammonia (NH3) opacity. J. Geophys. Res. 96, 17463–17470 (1991)

    Article  ADS  Google Scholar 

  • B.M. Karpowicz, P.G. Steffes, In search of water vapor on Jupiter: laboratory measurements of the microwave properties of water vapor under simulated Jovian conditions. Icarus 212, 210–223 (2011a)

    Article  ADS  Google Scholar 

  • B.M. Karpowicz, P.G. Steffes, Corrigendum to “In search of water vapor on Jupiter: laboratory measurements of the microwave properties of water vapor under simulated Jovian conditions”. Icarus 214, 783 (2011b) [Icarus 212, 210–223]

    Article  ADS  Google Scholar 

  • B.M. Karpowicz, P.G. Steffes, Investigating the h2–He–h2o–CH4 equation of state in the deep troposphere of Jupiter. Icarus 223, 277–297 (2013)

    Article  ADS  Google Scholar 

  • S.E. Law, D.H. Staelin, Measurements of Venus and Jupiter near 1-cm wavelength. Astrophys. J. 154, 1077–1086 (1968)

    Article  ADS  Google Scholar 

  • P.N. Mohammed, P.G. Steffes, Laboratory measurements of the Ka-band (7.5 to 9.2 mm) opacity of phosphine (PH3) and ammonia (NH3) under simulated conditions for the Cassini-Saturn encounter. Icarus 166, 423–435 (2003)

    Article  ADS  Google Scholar 

  • P.N. Mohammed, P.G. Steffes, Laboratory measurements of the W band (3.2 mm) properties of phosphine (PH3) and ammonia (NH3) under simulated conditions for the outer planets. J. Geophys. Res. 109(E07S13), 1–9 (2004)

    Google Scholar 

  • E.C. Morris, R.W. Parsons, Microwave absorption by gas mixtures at pressures up to several hundred bars. I. Experimental technique and results. Aust. J. Phys. 23, 335–349 (1970)

    ADS  Google Scholar 

  • M. Roos-Serote, S.K. Atreya, M.K. Wong, P. Drossart, On the water abundance in the atmosphere of Jupiter. Planet. Space Sci. 52, 397–414 (2004)

    Article  ADS  Google Scholar 

  • P.W. Rosencranz, Water vapor microwave continuum absorption: a comparison of measurements and models. Radio Sci. 33, 919–928 (1998)

    Article  ADS  Google Scholar 

  • T.R. Spilker, Laboratory measurements of the microwave absorptivity and refractivity spectra of gas mixtures applicable to giant planet atmospheres. Ph.D. thesis, Stanford University, CA (1990)

  • P.G. Steffes, J.M. Jenkins, Laboratory measurements of the microwave opacity of gaseous ammonia (NH3) under simulated conditions for the Jovian atmosphere. Icarus 72, 35–47 (1987)

    Article  ADS  Google Scholar 

  • C.H. Townes, A.L. Schawlow, Microwave Spectroscopy (Dover Publications Inc, New York, 1955)

    Google Scholar 

Download references

Acknowledgements

This work was supported by NASA Contract NNM06AA75C from the Marshall Space Flight Center supporting the Juno Mission Science Team, under Subcontract 699054X from the Southwest Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul G. Steffes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Steffes, P.G., Hanley, T.R., Karpowicz, B.M. et al. High-Precision Laboratory Measurements Supporting Retrieval of Water Vapor, Gaseous Ammonia, and Aqueous Ammonia Clouds with the Juno Microwave Radiometer (MWR). Space Sci Rev 213, 187–204 (2017). https://doi.org/10.1007/s11214-016-0265-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-016-0265-0

Keywords

Navigation