Space Science Reviews

, Volume 213, Issue 1–4, pp 187–204 | Cite as

High-Precision Laboratory Measurements Supporting Retrieval of Water Vapor, Gaseous Ammonia, and Aqueous Ammonia Clouds with the Juno Microwave Radiometer (MWR)

  • Paul G. Steffes
  • Thomas R. Hanley
  • Bryan M. Karpowicz
  • Kiruthika Devaraj
  • Sahand Noorizadeh
  • Danny Duong
  • Garrett Chinsomboon
  • Amadeo Bellotti
  • Michael A. Janssen
  • Scott J. Bolton
Article

Abstract

The NASA Juno mission includes a six-channel microwave radiometer system (MWR) operating in the 1.3–50 cm wavelength range in order to retrieve abundances of ammonia and water vapor from the microwave signature of Jupiter (see Janssen et al. 2016). In order to plan observations and accurately interpret data from such observations, over 6000 laboratory measurements of the microwave absorption properties of gaseous ammonia, water vapor, and aqueous ammonia solution have been conducted under simulated Jovian conditions using new laboratory systems capable of high-precision measurement under the extreme conditions of the deep atmosphere of Jupiter (up to 100 bars pressure and 505 K temperature). This is one of the most extensive laboratory measurement campaigns ever conducted in support of a microwave remote sensing instrument. New, more precise models for the microwave absorption from these constituents have and are being developed from these measurements. Application of these absorption properties to radiative transfer models for the six wavelengths involved will provide a valuable planning tool for observations, and will also make possible accurate retrievals of the abundance of these constituents during and after observations are conducted.

Keywords

Microwave spectroscopy Microwave radiometry Laboratory measurements 

Notes

Acknowledgements

This work was supported by NASA Contract NNM06AA75C from the Marshall Space Flight Center supporting the Juno Mission Science Team, under Subcontract 699054X from the Southwest Research Institute.

References

  1. S.K. Atreya, M.H. Wong, T.C. Owen, P.R. Mahaffy, H.B. Niemann, I. de Pater, P. Drossart, T. Encrenaz, A comparison of the atmospheres of Jupiter and Saturn: deep atmospheric composition, cloud structure, vertical mixing, and origin. Planet. Space Sci. 47, 1243–1262 (1999) ADSCrossRefGoogle Scholar
  2. A. Bellotti, P.G. Steffes, G. Chinsomboon, Laboratory measurements of the 5–20 cm wavelength opacity of ammonia, water vapor, and methane under simulated conditions for the deep jovian atmosphere. Icarus (2016). in press. doi: 10.1016/j.icarus.2016.07.013 Google Scholar
  3. G.L. Berge, S. Gulkis, Earth-based radio observations of Jupiter: millimeter to meter wavelengths, in Jupiter, ed. by T. Gehrels (Univ. of Arizona Press, Tucson, 1976), pp. 621–692 Google Scholar
  4. D.R. DeBoer, P.G. Steffes, Laboratory measurements of the microwave properties of \(\mathrm{H}_{2}\mathrm{S}\) under simulated Jovian conditions with an application to Neptune. Icarus 109, 352–366 (1994) ADSCrossRefGoogle Scholar
  5. I. de Pater, D.R. DeBoer, M. Marley, R. Freedman, R. Young, Retrieval of water in Jupiter’s deep atmosphere using microwave spectra of its brightness temperature. Icarus 173, 425–438 (2005) ADSCrossRefGoogle Scholar
  6. K. Devaraj, P.G. Steffes, B.M. Karpowicz, Reconciling the centimeter and millimeter-wavelength ammonia absorption spectra under Jovian conditions: extensive millimeter-wavelength measurements and a consistent model. Icarus 212, 224–235 (2011) ADSCrossRefGoogle Scholar
  7. K. Devaraj, P.G. Steffes, D. Duong, The centimeter-wavelength opacity of ammonia under deep Jovian conditions. Icarus 241, 165–179 (2014) ADSCrossRefGoogle Scholar
  8. D.T. Duong, P.G. Steffes, S. Noorizadeh, The microwave properties of the Jovian clouds: a new model for the complex dielectric constant of aqueous ammonia. Icarus 229, 121–131 (2014) ADSCrossRefGoogle Scholar
  9. G.C. Goodman, Models of Jupiter’s atmosphere. Ph.D. thesis, Unversity of Illinois (1969) Google Scholar
  10. T.R. Hanley, The microwave opacity of ammonia and water vapor: application to remote sensing of the atmosphere of Jupiter. PhD dissertation, Georgia Institute of Technology, Atlanta, GA (2008). http://smartech.gatech.edu/handle/1853/24673
  11. T.R. Hanley, P.G. Steffes, A high-sensitivity laboratory system for measuring the microwave properties of gases under simulated conditions for planetary atmospheres. Radio Sci. 42, RS6010 (2007) ADSCrossRefGoogle Scholar
  12. T.R. Hanley, P.G. Steffes, B.M. Karpowicz, A new model of the hydrogen and helium-broadened microwave opacity of ammonia based on extensive laboratory measurements. Icarus 202, 316–335 (2009) ADSCrossRefGoogle Scholar
  13. W. Ho, I.A. Kaufman, P. Thaddeus, Laboratory measurement of microwave absorption in models of the atmosphere of Venus. J. Geophys. Res. 71(21), 5091–5108 (1966) ADSCrossRefGoogle Scholar
  14. J.P. Hoffman, P.G. Steffes, D.R. DeBoer, Laboratory measurements of the microwave opacity of phosphine: opacity formalism and application to the atmospheres of the outer planets. Icarus 152, 172–184 (2001) ADSCrossRefGoogle Scholar
  15. M.A. Janssen, M.D. Hofstadter, S. Gulkis, A.P. Ingersoll, M. Allison, S.J. Bolton, S.M. Levin, L.W. Kamp, Microwave remote sensing of Jupiter’s atmosphere from an orbiting spacecraft. Icarus 173, 447–453 (2005) ADSCrossRefGoogle Scholar
  16. M.A. Janssen, J. Oswald, S. Brown, S. Gulkis, S. Levin, S. Bolton, A. Kitiyakara, J. Chen, F. Maiwald, A. Larson, P. Pingree, K. Lee, R. Redick, R. Hughes, M. Allison, S. Atreya, A. Ingersoll, J. Lunine, T. Owen, P. Steffes, G. Bedrossian, D. Dawson, W. Hatch, D. Russel, N. Chamberlain, M. Zawadski, B. Khayatian, A. Mazer, B. Franklin, H. Conley, J. Kempenaar, M. Loo, E. Sunada, C. Wang, (2016). MWR: Microwave Radiometer for the Juno Mission to Jupiter, Space Sci. Rev. submitted for publication Google Scholar
  17. J. Joiner, P.G. Steffes, Modeling of Jupiter’s millimeter wave emission utilizing laboratory measurements of ammonia (NH3) opacity. J. Geophys. Res. 96, 17463–17470 (1991) ADSCrossRefGoogle Scholar
  18. B.M. Karpowicz, P.G. Steffes, In search of water vapor on Jupiter: laboratory measurements of the microwave properties of water vapor under simulated Jovian conditions. Icarus 212, 210–223 (2011a) ADSCrossRefGoogle Scholar
  19. B.M. Karpowicz, P.G. Steffes, Corrigendum to “In search of water vapor on Jupiter: laboratory measurements of the microwave properties of water vapor under simulated Jovian conditions”. Icarus 214, 783 (2011b) [Icarus 212, 210–223] ADSCrossRefGoogle Scholar
  20. B.M. Karpowicz, P.G. Steffes, Investigating the h2–He–h2o–CH4 equation of state in the deep troposphere of Jupiter. Icarus 223, 277–297 (2013) ADSCrossRefGoogle Scholar
  21. S.E. Law, D.H. Staelin, Measurements of Venus and Jupiter near 1-cm wavelength. Astrophys. J. 154, 1077–1086 (1968) ADSCrossRefGoogle Scholar
  22. P.N. Mohammed, P.G. Steffes, Laboratory measurements of the Ka-band (7.5 to 9.2 mm) opacity of phosphine (PH3) and ammonia (NH3) under simulated conditions for the Cassini-Saturn encounter. Icarus 166, 423–435 (2003) ADSCrossRefGoogle Scholar
  23. P.N. Mohammed, P.G. Steffes, Laboratory measurements of the W band (3.2 mm) properties of phosphine (PH3) and ammonia (NH3) under simulated conditions for the outer planets. J. Geophys. Res. 109(E07S13), 1–9 (2004) Google Scholar
  24. E.C. Morris, R.W. Parsons, Microwave absorption by gas mixtures at pressures up to several hundred bars. I. Experimental technique and results. Aust. J. Phys. 23, 335–349 (1970) ADSGoogle Scholar
  25. M. Roos-Serote, S.K. Atreya, M.K. Wong, P. Drossart, On the water abundance in the atmosphere of Jupiter. Planet. Space Sci. 52, 397–414 (2004) ADSCrossRefGoogle Scholar
  26. P.W. Rosencranz, Water vapor microwave continuum absorption: a comparison of measurements and models. Radio Sci. 33, 919–928 (1998) ADSCrossRefGoogle Scholar
  27. T.R. Spilker, Laboratory measurements of the microwave absorptivity and refractivity spectra of gas mixtures applicable to giant planet atmospheres. Ph.D. thesis, Stanford University, CA (1990) Google Scholar
  28. P.G. Steffes, J.M. Jenkins, Laboratory measurements of the microwave opacity of gaseous ammonia (NH3) under simulated conditions for the Jovian atmosphere. Icarus 72, 35–47 (1987) ADSCrossRefGoogle Scholar
  29. C.H. Townes, A.L. Schawlow, Microwave Spectroscopy (Dover Publications Inc, New York, 1955) Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Paul G. Steffes
    • 1
  • Thomas R. Hanley
    • 1
    • 2
  • Bryan M. Karpowicz
    • 1
  • Kiruthika Devaraj
    • 1
    • 3
  • Sahand Noorizadeh
    • 1
    • 4
  • Danny Duong
    • 1
    • 5
  • Garrett Chinsomboon
    • 1
    • 8
  • Amadeo Bellotti
    • 1
  • Michael A. Janssen
    • 6
  • Scott J. Bolton
    • 7
  1. 1.School of Electrical and Computer EngineeringGeorgia Institute of TechnologyAtlantaUSA
  2. 2.The Johns Hopkins University Applied Physics LaboratoryLaurelUSA
  3. 3.Planet LabsSan FranciscoUSA
  4. 4.Tektronix Inc.BeavertonUSA
  5. 5.MPR AssociatesAlexandriaUSA
  6. 6.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA
  7. 7.Southwest Research InstituteSan AntonioUSA
  8. 8.Abbott Medical OpticsMilpitasUSA

Personalised recommendations