Skip to main content

Advertisement

Log in

Dust Devil Sediment Transport: From Lab to Field to Global Impact

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

The impact of dust aerosols on the climate and environment of Earth and Mars is complex and forms a major area of research. A difficulty arises in estimating the contribution of small-scale dust devils to the total dust aerosol. This difficulty is due to uncertainties in the amount of dust lifted by individual dust devils, the frequency of dust devil occurrence, and the lack of statistical generality of individual experiments and observations. In this paper, we review results of observational, laboratory, and modeling studies and provide an overview of dust devil dust transport on various spatio-temporal scales as obtained with the different research approaches. Methods used for the investigation of dust devils on Earth and Mars vary. For example, while the use of imagery for the investigation of dust devil occurrence frequency is common practice for Mars, this is less so the case for Earth. Modeling approaches for Earth and Mars are similar in that they are based on the same underlying theory, but they are applied in different ways. Insights into the benefits and limitations of each approach suggest potential future research focuses, which can further reduce the uncertainty associated with dust devil dust entrainment. The potential impacts of dust devils on the climates of Earth and Mars are discussed on the basis of the presented research results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • A. Ansmann, M. Tesche, P. Knippertz, E. Bierwirth, D. Althausen, D. Müller, O. Schulz, Vertical profiling of convective dust plumes in southern Morocco during SAMUM. Tellus B 61(1), 340–353 (2009)

    Article  ADS  Google Scholar 

  • R.A. Bagnold, The Physics of Blown Sand and Desert Dunes (Methuen, London, 1941), p. 265

    Google Scholar 

  • M. Balme, R. Greeley, Dust devils on Earth and Mars. Rev. Geophys. 44 (2006). doi:10.1029/2005RG000188

  • M. Balme, A. Hagermann, Particle lifting at the soil-air interface by atmospheric pressure excursions in dust devils. Geophys. Res. Lett. 33, L19S01 (2006). doi:10.1029/2006GL026819

    Article  Google Scholar 

  • M.R. Balme, P.L. Whelley, R. Greeley, Mars: dust devil track survey in Argyre Planitia and Hellas Basin. J. Geophys. Res. 108(E8), 5086 (2003). doi:10.1029/2003JE002096

    Article  Google Scholar 

  • M. Bangert, A. Nenes, B. Vogel, D. Barahona, V.A. Karydis, P. Kumar, C. Kottmeier, U. Blahak, Saharan dust event impacts on cloud formation and radiation over Western Europe. Atmos. Chem. Phys. 12, 4045–4063 (2012). doi:10.5194/acp-12-4045-2012

    Article  ADS  Google Scholar 

  • S. Basu, M.I. Richardson, R.J. Wilson, Simulation of the Martian dust cycle with the GFDL Mars GCM. J. Geophys. Res., Planets 109(E11), E11006 (2004). doi:10.1029/2004JE002243

    Article  ADS  Google Scholar 

  • O. Boucher, D. Randall, P. Artaxo, C. Bretherton, G. Feingold, P. Forster, V.-M. Kerminen, Y. Kondo, H. Liao, U. Lohmann, P. Rasch, S.K. Satheesh, S. Sherwood, B. Stevens, X.Y. Zhang, Clouds and Aerosols, in Climate Change 2013: the Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, ed. by T.F. Stocker, D. Quin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, P.M. Midgley (Cambridge University Press, Cambridge/New York, 2013)

    Google Scholar 

  • C.S. Bristow, K.A. Hudson-Edwards, A. Chappell, Fertilizing the Amazon and equatorial Atlantic with West African dust. Geophys. Res. Lett. 37 (2010). doi:10.1029/2010GL043486

  • R.V. Cakmur, R.L. Miller, O. Torres, Incorporating the effect of small-scale circulations upon dust emission in an atmospheric general circulation model. J. Geophys. Res., Atmos. 109(D7), D07201 (2004). doi:10.1029/2003JD004067

    Article  ADS  Google Scholar 

  • B.A. Cantor, K.M. Kanak, K.S. Edgett, Mars Orbiter Camera observations of Martian dust devils and their tracks (September 1997 to January 2006) and evaluation of theoretical vortex models. J. Geophys. Res. 111, E12002 (2006). doi:10.1029/2006JE002700

    Article  ADS  Google Scholar 

  • B.A. Cantor, MOC observations of the 2001 Mars planet-encircling dust storm. Icarus 186(1), 60–96 (2007). doi:10.1016/j.icarus.2006.08.019

    Article  ADS  Google Scholar 

  • B.A. Cantor, P.B. James, M. Caplinger, M.J. Wolff, Martian dust storms: 1999 Mars Orbiter Camera observations. J. Geophys. Res. 106(E10), 23653–23687 (2001). doi:10.1029/2000JE001310

    Article  ADS  Google Scholar 

  • J.J. Carroll, J.A. Ryan, Atmospheric vorticity and dust devil rotation. J. Geophys. Res. 75(27), 5179–5184 (1970). doi:10.1029/JC075i027p05179

    Article  ADS  Google Scholar 

  • D.S. Choi, C.M. Dundas, Measurements of Martian dust devil winds with HiRISE. Geophys. Res. Lett. 38(24), L24206 (2011). doi:10.1029/2011GL049806

    Article  ADS  Google Scholar 

  • S.M. Cowie, P. Knippertz, J.H. Marsham, Are vegetation-related roughness changes the cause of the recent decrease in dust emission from the Sahel? Geophys. Res. Lett. 40(9), 1868–1872 (2013)

    Article  ADS  Google Scholar 

  • C. de Beule, G. Wurm, T. Kelling, M. Küpper, T. Jankowski, J. Teiser, The Martian soil as a planetary gas pump. Nat. Phys. 10, 17–20 (2014). doi:10.1038/nphys2821

    Article  Google Scholar 

  • P. De Deckker, C.I. Munday, J. Brocks, T. O’Loingsigh, G.E. Allison, J. Hope, M. Norman, J.-B.W. Stuut, N.J. Tapper, S. van der Kaars, Characterisation of the major dust storm that traversed over eastern Australia in September 2009; a multidisciplinary approach. Aeolian Res. 15, 133–149 (2014). doi:10.1016/j.aeolia.2014.07.003

    Article  ADS  Google Scholar 

  • J.W. Deardorff, A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers. J. Fluid Mech. 41(2), 453–480 (1970). doi:10.1017/S0022112070000691

    Article  ADS  MATH  Google Scholar 

  • J. Deardorff, Observed characteristics of the outer layer. Short course on the planetary boundary layer (1978)

  • P.J. DeMott, K. Sassen, M.R. Poellot, D. Baumgardner, D.C. Rogers, S.D. Brooks, A.J. Prenni, S.M. Kreidenweis, African dust aerosols as atmospheric ice nuclei. Geophys. Res. Lett. 30(14) (2003)

  • E. Derbyshire, Natural minerogenic dust and human health. Ambio 36(1), 73–77 (2007). doi:10.1579/0044-7447(2007)36[73:NMDAHH]2.0.CO;2

    Article  Google Scholar 

  • M.D. Ellehoj, H.P. Gunnlaugsson, P.A. Taylor, H. Kahanpää, K.M. Bean, B.A. Cantor, B.T. Gheynani, L. Drube, D. Fisher, A.-M. Harri, C. Holstein-Rathlou, M.T. Lemmon, M.B. Madsen, M.C. Malin, J. Polkko, P.H. Smith, L.K. Tamppari, W. Weng, J. Whiteway, Convective vortices and dust devils at the Phoenix Mars mission landing site. J. Geophys. Res. 115(E4) (2010). doi:10.1029/2009JE003413

  • L.K. Fenton, R. Lorenz, Dust devil height and spacing with relation to the martian planetary boundary layer thickness. Icarus 260, 246–262 (2015). doi:10.1016/j.icarus.2015.07.028

    Article  ADS  Google Scholar 

  • F. Ferri, P.H. Smith, M. Lemmon, N.O. Rennó, Dust devils as observed by Mars Pathfinder. J. Geophys. Res., Planets 108(E12) (2003). doi:10.1029/2000JE001421

  • J.A. Fisher, M.I. Richardson, C.E. Newman, M.A. Szwast, C. Graf, S. Basu, S.P. Ewald, A.D. Toigo, R.J. Wilson, A survey of Martian dust devil activity using Mars Global Surveyor Mars Orbiter Camera images. J. Geophys. Res. 110(E3), E03004 (2005). doi:10.1029/2003JE002165

    Article  ADS  Google Scholar 

  • S.D. Fuerstenau, Solar heating of suspended particles and the dynamics of Martian dust devils. Geophys. Res. Lett. 33(19) (2006). doi:10.1029/2006GL026798

  • V.H. Garrison, E.A. Shinn, W.T. Foreman, D.W. Griffin, C.W. Holmes, C.A. Kellogg, M.S. Majewski, L.L. Richardson, K.B. Ritchie, G.W. Smith, African and Asian dust: from desert soils to coral reefs. Bioscience 53(5), 469–480 (2003). doi:10.1641/0006-3568(2003)053[0469:AAADFD]2.0.CO;2

    Article  Google Scholar 

  • B.T. Gheynani, P.A. Taylor, Large Eddy Simulation of typical dust devil-like vortices in highly convective Martian boundary layers at the Phoenix lander site. Planet. Space Sci. 59, 43–50 (2011). doi:10.1016/j.pss.2010.10.011

    Article  ADS  Google Scholar 

  • D.A. Gillette, P.C. Sinclair, Estimation of suspension of alkaline material by dust devils in the United States. Atmos. Environ. 24(5), 1135–1142 (1990)

    Article  ADS  Google Scholar 

  • P. Ginoux, J.M. Prospero, T.E. Gill, N.C. Hsu, M. Zhao, Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products. Rev. Geophys. 50(3) (2012)

  • R. Greeley, J.D. Iversen, Wind as a Geological Process on Earth, Mars, Venus and Titan (Cambridge University Press, New York, 1985), p. 333

    Book  Google Scholar 

  • R. Greeley, M.R. Balme, J.D. Iversen, S. Metzger, R. Mickelson, J. Phoreman, B. White, Martian dust devils: laboratory simulations of particle threshold. J. Geophys. Res. 108(E5), 5041 (2003)

    Article  Google Scholar 

  • R. Greeley, P.L. Whelley, R.E. Arvidson, N.A. Cabrol, D.J. Foley, B.J. Franklin, P.G. Geissler, M.P. Golombek, R.O. Kuzmin, G.A. Landis, M.T. Lemmon, L.D.V. Neakrase, S.W. Squyres, S.D. Thompson, Active dust devils in Gusev crater, Mars: observations from the Mars Exploration Rover Spirit. J. Geophys. Res. 111(E12), E12S09 (2006). doi:10.1029/2006JE002743

    Article  ADS  Google Scholar 

  • R. Greeley, D.A. Waller, N.A. Cabrol, G.A. Landis, M.T. Lemmon, L.D.V. Neakrase, M. Pendleton Hoffer, S.D. Thompson, P.L. Whelley, Gusev Crater, Mars: observations of three dust devil seasons. J. Geophys. Res., Planets 115(9), 1–18 (2010). doi:10.1029/2010JE003608

    Google Scholar 

  • D.J. Griggs, M. Noguer, Climate change 2001: the scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change. Weather 57(8), 267–269 (2002)

    Article  ADS  Google Scholar 

  • Z. Gu, J. Qiu, Y. Zhao, Y. Li, Simulation of terrestrial dust devil patterns. Adv. Atmos. Sci. 25(1), 31–42 (2008). doi:10.1007/s00376-008-0031-7

    Article  Google Scholar 

  • G. Hess, K. Spillane, Characteristics of dust devils in Australia. J. Appl. Meteorol. 29(6), 498–507 (1990)

    Article  ADS  Google Scholar 

  • R. Hesse, Short-lived and long-lived dust devil tracks in the coastal desert of southern Peru. Aeolian Res. 5, 101–106 (2012)

    Article  ADS  Google Scholar 

  • N. Huneeus, M. Schulz, Y. Balkanski, J. Griesfeller, J. Prospero, S. Kinne, S. Bauer, O. Boucher, M. Chin, F. Dentener, T. Diehl, R. Easter, D. Fillmore, S. Ghan, P. Ginoux, A. Grini, L. Horowitz, D. Koch, M.C. Krol, W. Landing, X. Liu, N. Mahowald, R. Miller, J.-J. Morcrette, G. Myhre, J. Penner, J. Perlwitz, P. Stier, T. Takemura, C.S. Zender, Global dust model intercomparison in AeroCom phase I. Atmos. Chem. Phys. 11(15), 7781–7816 (2011). doi:10.5194/acp-11-7781-2011. http://www.atmos-chem-phys.net/11/7781/2011/

    Article  ADS  Google Scholar 

  • IPCC, Clouds and aerosols, in Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, ed. by J.T. Houghton, Y. Ding, D.J. Griggs, M. Noguer, P.J. van der Linden, X. Dai, K. Maskell, C.A. Johnson (Cambridge University Press, Cambridge/New York, 2001), p. 881

    Google Scholar 

  • K. Isono, On ice-crystal nuclei and other substances found in snow crystals. J. Meteorol. 12, 456–462 (1955). doi:10.1016/j.aeolia.2013.11.002

    Article  Google Scholar 

  • J. Ito, H. Niino, M. Nakanishi, Large eddy simulation on dust suspension in a convective mixed layer. SOLA 6, 133–136 (2010a). doi:10.2151/sola.2010-034

    Article  Google Scholar 

  • J. Ito, R. Tanaka, H. Niino, M. Nakanishi, Large eddy simulation on dust devils in a diurnally-evolving convective mixed layer. J. Meteorol. Soc. Jpn. 88(1), 63–77 (2010b). doi:10.2151/jmsj.2010-105

    Article  Google Scholar 

  • B.C. Jemmett-Smith, J.H. Marsham, P. Knippertz, C.A. Gilkeson, Quantifying global dust devil occurrence from meteorological analyses. Geophys. Res. Lett. 42(4), 1275–1282 (2015)

    Article  ADS  Google Scholar 

  • H. Kahanpää, C. Newman, J. Moores, M.-P. Zorzano, J. Martín-Torres, S. Navarro, A. Lepinette, M.T. Lemmon, B. Cantor, P. Valentín-Serrano, A. Ullán, W. Schmidt, Convective vortices and dust devils at the MSL landing site: annual variability. J. Geophys. Res. (2016, submitted)

  • M.A. Kahre, J.R. Murphy, R.M. Haberle, F. Montmessin, J. Schaeffer, Simulating the Martian dust cycle with a finite surface dust reservoir. Geophys. Res. Lett. 32(20), L20204 (2005). doi:10.1029/2005GL023495

    Article  ADS  Google Scholar 

  • M.A. Kahre, J.R. Murphy, R.M. Haberle, Modeling the Martian dust cycle and surface dust reservoirs with the NASA Ames general circulation model. J. Geophys. Res., Planets 111(E6), E06008 (2006). doi:10.1029/2005JE002588

    Article  ADS  Google Scholar 

  • J.C. Kaimal, J.A. Businger, Case studies of a convective plume and a dust devil. J. Appl. Meteorol. 9, 612–620 (1970). doi:10.1175/1520-0450(1970)009<0612:CSOACP>2.0.CO;2

    Article  ADS  Google Scholar 

  • K.M. Kanak, Numerical simulation of dust devil-scale vortices. Q. J. R. Meteorol. Soc. 131(607), 1271–1292 (2005). doi:10.1256/qj.03.172

    Article  ADS  Google Scholar 

  • K.M. Kanak, D.K. Lilly, J.T. Snow, The formation of vertical vortices in the convective boundary layer. Q. J. R. Meteorol. Soc. 126(569), 2789–2810 (2000). doi:10.1002/qj.49712656910

    Article  ADS  Google Scholar 

  • C.A. Kellogg, D.W. Griffin, Aerobiology and the global transport of desert dust. Trends Ecol. Evol. 21(11), 638–644 (2006). doi:10.1016/j.tree.2006.07.004

    Article  Google Scholar 

  • M. Klose, Y. Shao, Stochastic parameterization of dust emission and application to convective atmospheric conditions. Atmos. Chem. Phys. 12(12), 7309–7320 (2012). doi:10.5194/acp-12-7309-2012

    Article  ADS  Google Scholar 

  • M. Klose, Y. Shao, Large-eddy simulation of turbulent dust emission. Aeolian Res. 8, 49–58 (2013). doi:10.1016/j.aeolia.2012.10.010

    Article  ADS  Google Scholar 

  • M. Klose, Y. Shao, A numerical study on dust devils with implications to global dust budget estimates. Aeolian Res. 22, 47–58 (2016). doi:10.1016/j.aeolia.2016.05.003

    Article  ADS  Google Scholar 

  • M. Klose, Y. Shao, X.L. Li, H.S. Zhang, M. Ishizuka, M. Mikami, J.F. Leys, Further development of a parameterization for convective turbulent dust emission and evaluation based on field observations. J. Geophys. Res., Atmos. 119, 10441–10457 (2014). doi:10.1002/2014JD021688

    Article  ADS  Google Scholar 

  • M.R. Klose, Convective Turbulent Dust Emission: Process, parameterization, and relevance in the Earth system, Dissertation, Universität zu Köln, 2014. http://kups.ub.uni-koeln.de/id/eprint/5826

  • J. Koch, N.O. Renno, The role of convective plumes and vortices on the global aerosol budget. Geophys. Res. Lett. 32 (2005). doi:10.1029/2005GL023420

  • J.F. Kok, N.M. Mahowald, G. Fratini, J.A. Gillies, M. Ishizuka, J.F. Leys, M. Mikami, M.-S. Park, S.-U. Park, R.S. Van Pelt, T.M. Zobeck, An improved dust emission model—Part 1: model description and comparison against measurements. Atmos. Chem. Phys. 14(23), 13023–13041 (2014). doi:10.5194/acp-14-13023-2014

    Article  ADS  Google Scholar 

  • J.F. Kok, N.O. Renno, Enhancement of the emission of mineral dust aerosols by electric forces. Geophys. Res. Lett. 33(19), 2–6 (2006). doi:10.1029/2006GL026284

    Article  Google Scholar 

  • M. Küpper, G. Wurm, Thermal creep-assisted dust lifting on Mars: wind tunnel experiments for the entrainment threshold velocity. J. Geophys. Res. 120(7), 1346–1356 (2015). doi:10.1002/2015JE004848

    Article  Google Scholar 

  • M.V. Kurgansky, Steady-state properties and statistical distribution of atmospheric dust devils. Geophys. Res. Lett. 33(19) (2006). doi:10.1029/2006GL026142

  • M.V. Kurgansky, A. Montecinos, V. Villagran, S.M. Metzger, Micrometeorological conditions for dust-devil occurrence in the Atacama Desert. Bound.-Layer Meteorol. 138(2), 285–298 (2011)

    Article  ADS  Google Scholar 

  • M.T. Lemmon, M.J. Wolff, J.F. Bell III, M.D. Smith, B.A. Cantor, P.H. Smith, Dust aerosol, clouds, and the atmospheric optical depth record over 5 Mars years of the Mars Exploration Rover mission. Icarus 251, 96–111 (2015). doi:10.1016/j.icarus.2014.03.029. Dynamic Mars

    Article  ADS  Google Scholar 

  • H. Lettau, Note on aerodynamic roughness-parameter estimation on the basis of roughness element description. J. Appl. Meteorol. 8, 828–832 (1969). doi:10.1175/1520-0450(1969)008<0828:NOARPE>2.0.CO;2

    Article  ADS  Google Scholar 

  • G.A. Loosmore, J.R. Hunt, Dust resuspension without saltation. J. Geophys. Res. 105(D16), 20663–20671 (2000). doi:10.1029/2000JD900271

    Article  ADS  Google Scholar 

  • R. Lorenz, On the statistical distribution of dust devil diameters. Icarus 215(1), 381–390 (2011). doi:10.1016/j.icarus.2011.06.005

    Article  ADS  Google Scholar 

  • R. Lorenz, The longevity and aspect ratio of dust devils: effects on detection efficiencies and comparison of landed and orbital imaging at Mars. Icarus 226(1), 964–970 (2013). doi:10.1016/j.icarus.2013.06.031

    Article  ADS  Google Scholar 

  • R.D. Lorenz, Vortex encounter rates with fixed barometer stations: comparison with visual dust devil counts and large-eddy simulations. J. Atmos. Sci. 71, 4461–4472 (2014). doi:10.1175/JAS-D-14-0138.1

    Article  ADS  Google Scholar 

  • R.D. Lorenz, B.K. Jackson, Dust devils and dustless vortices on a desert playa observed with surface pressure and solar flux logging. GeoResJ 5, 1–11 (2015). doi:10.1016/j.grj.2014.11.002

    Article  Google Scholar 

  • R.D. Lorenz, M.J. Myers, Dust devil hazard to aviation: a review of United States air accident reports. J. Meteorol. 30(298), 178–184 (2005)

    Google Scholar 

  • R.D. Lorenz, D. Reiss, Solar panel clearing events, dust devil tracks, and in-situ vortex detections on Mars. Icarus 248, 162–164 (2015). doi:10.1016/j.icarus.2014.10.034

    Article  ADS  Google Scholar 

  • R.D. Lorenz, L.D. Neakrase, J.D. Anderson, In-situ measurement of dust devil activity at La Jornada Experimental Range, New Mexico, USA. Aeolian Res., 1–12 (2015). doi:10.1016/j.aeolia.2015.01.012

  • D.J. Lunt, P.J. Valdes, The modern dust cycle: comparison of model results with observations and study of sensitivities. J. Geophys. Res., Atmos. 107(D23), 4669 (2002). doi:10.1029/2002JD002316

    Article  ADS  Google Scholar 

  • T. Lyons, U. Nair, I. Foster, Clearing enhances dust devil formation. J. Arid Environ. 72(10), 1918–1928 (2008)

    Article  Google Scholar 

  • B. Marticorena, G. Bergametti, Modeling the atmospheric dust cycle: 1. Design of a soil-derived dust emission scheme. J. Geophys. Res. 100(D8), 16415–16430 (1995)

    Article  ADS  Google Scholar 

  • J.P. Mason, M.R. Patel, S.R. Lewis, Radiative transfer modelling of dust devils. Icarus 223(1), 1–10 (2013). doi:10.1016/j.icarus.2012.11.018

    Article  ADS  Google Scholar 

  • J.P. Mason, M.R. Patel, S.R. Lewis, The retrieval of optical properties from terrestrial dust devil vortices. Icarus 231(0), 385–393 (2014). doi:10.1016/j.icarus.2013.12.013

    Article  ADS  Google Scholar 

  • S.M. Metzger, M.R. Balme, M.C. Towner, B.J. Bos, T.J. Ringrose, M.R. Patel, In situ measurements of particle load and transport in dust devils. Icarus 214(2), 766–772 (2011). doi:10.1016/j.icarus.2011.03.013

    Article  ADS  Google Scholar 

  • S.M. Metzger, Dust devils as aeolian transport mechanisms in the southern Nevada and in the Mars Pathfinder landing site, PhD thesis, University of Nevada, 1999

  • S.M. Metzger, J.R. Carr, J.R. Johnson, T.J. Parker, M.T. Lemmon, Dust devil vortices seen by the Mars Pathfinder Camera. Geophys. Res. Lett. 26(18), 2781–2784 (1999). doi:10.1029/1999GL008341

    Article  ADS  Google Scholar 

  • T.I. Michaels, Numerical modeling of Mars dust devils: Albedo track generation. Geophys. Res. Lett. 33(19) (2006). doi:10.1029/2006GL026268

  • T.I. Michaels, S.C.R. Rafkin, Large eddy simulation of atmospheric convection on Mars. Q. J. R. Meteorol. Soc. 130, 1251–1274 (2004). doi:10.1256/qj.02.169

    Article  ADS  Google Scholar 

  • D.V. Michelangeli, O.B. Toon, R.M. Haberle, J.B. Pollack, Numerical simulations of the formation and evolution of water ice clouds in the martian atmosphere. Icarus 102(2), 261–285 (1993). doi:10.1006/icar.1993.1048

    Article  ADS  Google Scholar 

  • R.L. Miller, P. Knippertz, C. Pérez García-Pando, J.P. Perlwitz, I. Tegen, Impact of dust radiative forcing upon climate, in Mineral Dust, ed. by P. Knippertz, J.-B.W. Stuut (Springer, Netherlands, 2014), pp. 327–357. ISBN 978-94-017-8977-6. doi:10.1007/978-94-017-8978-3_13

    Chapter  Google Scholar 

  • L. Montabone, F. Forget, E. Millour, R.J. Wilson, S.R. Lewis, B. Cantor, D. Kass, A. Kleinböhl, M.T. Lemmon, M.D. Smith, M.J. Wolff, Eight-year climatology of dust optical depth on Mars. Icarus 251, 65–95 (2015). doi:10.1016/j.icarus.2014.12.034. Dynamic Mars

    Article  ADS  Google Scholar 

  • J.E. Moores, M.T. Lemmon, H. Kahanpää, S.C.R. Rafkin, R. Francis, J. Pla-Garcia, K. Bean, R. Haberle, C. Newman, M. Mischna, A.R. Vasavada, M. de la Torre Juárez, N. Renno, J. Bell, F. Calef, B. Cantor, T.H. Mcconnochie, A.-M. Harri, M. Genzer, M.H. Wong, M.D. Smith, F.J. Martín-Torres, M.-P. Zorzano, O. Kemppinen, E. McCullough, Observational evidence of a suppressed planetary boundary layer in northern Gale Crater, Mars as seen by the Navcam instrument onboard the Mars Science Laboratory rover. Icarus 249(15), 129–142 (2015). doi:10.1016/j.icarus.2014.09.020

    Article  ADS  Google Scholar 

  • D.P. Mulholland, P.L. Read, S.R. Lewis, Simulating the interannual variability of major dust storms on Mars using variable lifting thresholds. Icarus 223(1), 344–358 (2013). doi:10.1016/j.icarus.2012.12.003

    Article  ADS  Google Scholar 

  • J.R. Murphy, S. Nelli, Mars Pathfinder convective vortices: frequency of occurrence. Geophys. Res. Lett. 29(23), 18–1184 (2002). doi:10.1029/2002GL015214

    Article  Google Scholar 

  • L.D.V. Neakrase, R. Greeley, Dust devils in the laboratory: effects of surface roughness on vortex dynamics. J. Geophys. Res. 115, E05003 (2010a). doi:10.1029/2009JE003465

    Article  ADS  Google Scholar 

  • L.D.V. Neakrase, R. Greeley, Dust devil sediment flux on Earth and Mars: laboratory simulations. Icarus 206(1), 306–318 (2010b)

    Article  ADS  Google Scholar 

  • L.D.V. Neakrase, R. Greeley, J.D. Iversen, M.R. Balme, E.E. Eddlemon, Dust flux within dust devils: preliminary laboratory simulations Geophys. Res. Lett., 33, L19S09, (2006). doi:10.1029/2006GL026810

    Article  Google Scholar 

  • C.E. Newman, S.R. Lewis, P.L. Read, The atmospheric circulation and dust activity in different orbital epochs on Mars. Icarus 174(1), 135–160 (2005). doi:10.1016/j.icarus.2004.10.023

    Article  ADS  Google Scholar 

  • C.E. Newman, M.I. Richardson, The impact of surface dust source exhaustion on the martian dust cycle, dust storms and interannual variability, as simulated by the MarsWRF General Circulation Model. Icarus 257, 47–87 (2015). doi:10.1016/j.icarus.2015.03.030

    Article  ADS  Google Scholar 

  • C.E. Newman, S.R. Lewis, P.L. Read, F. Forget, Modeling the Martian dust cycle, 1. Representations of dust transport processes. J. Geophys. Res., Planets 107(E12), 6-1–6-18 (2002a). doi:10.1029/2002JE001910. 5123

    Article  Google Scholar 

  • C.E. Newman, S.R. Lewis, P.L. Read, F. Forget, Modeling the Martian dust cycle 2. Multiannual radiatively active dust transport simulations. J. Geophys. Res., Planets 107(E12), 7-1–7-15 (2002b). doi:10.1029/2002JE001920. 5124

    Article  Google Scholar 

  • H. Ohno, T. Takemi, Mechanisms for intensification and maintenance of numerically simulated dust devils. Atmos. Sci. Lett. (2010). doi:10.1002/asl.249

    Google Scholar 

  • A.M.C. Oke, D. Dunkerley, N.J. Tapper, Willy-willies in the Australian landscape: sediment transport characteristics. J. Arid Environ. 71(2), 216–228 (2007a). doi:10.1016/j.jaridenv.2007.03.014

    Article  Google Scholar 

  • A. Oke, N. Tapper, D. Dunkerley, Willy-willies in the Australian landscape: the role of key meteorological variables and surface conditions in defining frequency and spatial characteristics. J. Arid Environ. 71(2), 201–215 (2007b)

    Article  Google Scholar 

  • F. Pantillon, P. Knippertz, J.H. Marsham, C.E. Birch, A parameterization of convective dust storms for models with mass-flux convection schemes. J. Atmos. Sci. 72, 2545–2561 (2015). doi:10.1175/JAS-D-14-0341.1

    Article  ADS  Google Scholar 

  • A. Petrosyan, B. Galperin, S.E. Larsen, S.R. Lewis, A. Määttänen, P.L. Read, N. Renno, L.P.H.T. Rogberg, H. Savijärvi, T. Siili, A. Spiga, A. Toigo, L. Vázquez, The martian atmospheric boundary layer. Rev. Geophys. 49(3) (2011). doi:10.1029/2010RG000351

  • S. Raasch, T. Franke, Structure and formation of dust devil-like vortices in the atmospheric boundary layer: a high-resolution numerical study. J. Geophys. Res. 116, D16120, (2011). doi:10.1029/2011JD016010

    Article  ADS  Google Scholar 

  • S.C.R. Rafkin, R.M. Haberle, T.I. Michaels, The Mars regional atmospheric modeling system: model description and selected simulations. Icarus 151, 228–256 (2001)

    Article  ADS  Google Scholar 

  • P.L. Read, S.R. Lewis, The Martian Climate Revisited: Atmosphere and Environment of a Desert Planet (Springer, Berlin/New York, 2004)

    Google Scholar 

  • D. Reiss, N.M. Hoekzema, O.J. Stenzel, Dust deflation by dust devils on Mars derived from optical depth measurements using the shadow method in HiRISE images. Planet. Space Sci. 93–94, 54–64 (2014). doi:10.1016/j.pss.2014.01.016

    Article  Google Scholar 

  • D. Reiss, J. Raack, H. Hiesinger, Bright dust devil tracks on Earth: implications for their formation on Mars. Icarus 211(1), 917–920 (2011). doi:10.1016/j.icarus.2010.09.009

    Article  ADS  Google Scholar 

  • D. Reiss, A. Spiga, G. Erkerling, The horizontal motion of dust devils on Mars derived from CRISM and CTX/HiRISE observations. Icarus 227, 8–20 (2014). doi:10.1016/j.icarus.2013.08.028

    Article  ADS  Google Scholar 

  • D. Reiss, M. Zanetti, G. Neukum, Multitemporal observations of identical active dust devils on Mars with the High Resolution Stereo Camera (HRSC) and Mars Orbiter Camera (MOC). Icarus 215 (2011). doi:10.1016/j.icarus.2011.06.011

  • D. Reiss, J. Raack, A.P. Rossi, G. Di Achille, H. Hiesinger, First in-situ analysis of dust devil tracks on Earth and their comparison with tracks on Mars. Geophys. Res. Lett. 37(14), L14203 (2010). doi:10.1029/2010GL044016

    Article  ADS  Google Scholar 

  • D. Reiss, R.D. Lorenz, Dust devil track survey at Elysium Planitia, Mars: implications for the InSight landing sites. Icarus 266, 315–330 (2015). doi:10.1016/j.icarus.2015.11.012

    Article  ADS  Google Scholar 

  • D. Reiss, M.I. Zimmerman, D.C. Lewellen, Formation of cycloidal dust devil tracks by redeposition of coarse sands in southern Peru: implications for Mars. Earth Planet. Sci. Lett. 383, 7–15 (2013)

    Article  ADS  Google Scholar 

  • N.O. Renno, A.P. Ingersoll, Natural convection as a heat engine: a theory for CAPE. J. Atmos. Sci. 53, 572–585 (1996). doi:10.1175/1520-0469(1996)053<0572:NCAAHE>2.0.CO;2

    Article  ADS  Google Scholar 

  • N.O. Renno, M.L. Burkett, M.P. Larkin, A simple thermodynamical theory for dust devils. J. Atmos. Sci. 55, 3244–3252 (1998). doi:10.1175/1520-0469(1998)055<3244:ASTTFD>2.0.CO;2

    Article  ADS  MathSciNet  Google Scholar 

  • N.O. Renno, V.J. Abreu, J. Koch, P.H. Smith, O.K. Hartogensis, H.A.R.D. Bruin, D. Burose, G.T. Delory, W.M. Farrell, C.J. Watts, J. Garatuza, M. Parker, A. Carswell, MATADOR 2002: a pilot field experiment on convective plumes and dust devils. J. Geophys. Res. 109 (2004). doi:10.1029/2003JE002219

  • N.O. Renno, A.A. Nush, J. Luninne, J. Murphy, Martian and terrestrial dust devils: test of a scaling theory using Pathfinder data. J. Geophys. Res. 105, 1859–1866 (2000). doi:10.1029/19999JE001037

    Article  ADS  Google Scholar 

  • D. Rosenfeld, Y. Rudich, R. Lahav, Desert dust suppressing precipitation: a possible desertification feedback loop. Proc. Natl. Acad. Sci. USA 98(11), 5975–5980 (2001). doi:10.1073/pnas.101122798

    Article  ADS  Google Scholar 

  • J.A. Ryan, R.D. Lucich, Possible dust devils, vortices on mars. J. Geophys. Res. 88(C15), 11005–11011 (1983). doi:10.1029/JC088iC15p11005

    Article  ADS  Google Scholar 

  • J. Ryan, Relation of dust devil frequency and diameter to atmospheric temperature. J. Geophys. Res. 77(36), 7133–7137 (1972)

    Article  ADS  Google Scholar 

  • K. Schepanski, I. Tegen, M. Todd, B. Heinold, G. Bönisch, Meteorological processes forcing Saharan dust emission inferred from MSG-SEVIRI observations of subdaily dust source activation and numerical models. J. Geophys. Res. 114, 10201 (2012)

    Article  Google Scholar 

  • J.T. Schofield, J.R. Barnes, D. Crisp, R.M. Haberle, S. Larsen, J.A. Magalhaes, J.R. Murphy, A. Seiff, G. Wilson, The Mars Pathfinder atmospheric structure investigation meteorology (ASI/MET) experiment. Science 278(5344), 1752–1758 (1997). doi:10.1126/science.278.5344.1752

    Article  ADS  Google Scholar 

  • Y. Shao, Simplification of a dust emission scheme and comparison with data. J. Geophys. Res. 109 (2004). doi:10.1029/2003JD004372

  • Y. Shao, Physics and Modelling of Wind Erosion, 2nd edn. (Springer, Berlin, 2008), p. 452

    Google Scholar 

  • Y. Shao, M. Klose, A note on the stochastic nature of particle cohesive force and implications to threshold friction velocity for aerodynamic dust entrainment. Aeolian Res. (2016, in revision)

  • Y. Shao, H. Lu, A simple expression for wind erosion threshold friction velocity. J. Geophys. Res. 105, 22437–22443 (2000)

    Article  ADS  Google Scholar 

  • Y. Shao, M. Klose, K.-H. Wyrwoll, Recent global dust trend and connections to climate forcing. J. Geophys. Res., Atmos. 118, 1–12 (2013). doi:10.1002/jgrd.50836

    Article  ADS  Google Scholar 

  • Y. Shao, M.R. Raupach, P.A. Findlater, The effect of saltation bombardment on the entrainment of dust by wind. J. Geophys. Res. 98, 12719–12726 (1993)

    Article  ADS  Google Scholar 

  • Y. Shao, K.-H. Wyrwoll, A. Chappell, J. Huang, Z. Lin, G.H. McTainsh, M. Mikami, T.Y. Tanaka, X. Wang, S. Yoon, Dust cycle: an emerging core theme in Earth system science. Aeolian Res. 2, 181–204 (2011). doi:10.1016/j.aeolia.2011.02.001

    Article  ADS  Google Scholar 

  • Y. Shao, S. Liu, J. Schween, S. Crewell, Large-eddy atmosphere-land-surface modelling over heterogeneous surfaces: model development and comparison with measurements. Bound.-Layer Meteorol. 148(2), 333–356 (2013). doi:10.1007/s10546-013-9823-0

    Article  ADS  Google Scholar 

  • E.A. Shinn, G.W. Smith, J.M. Prospero, P. Betzer, M.L. Hayes, V. Garrison, R.T. Barber, African dust and the demise of Carribbean coral reefs. Geophys. Res. Lett. 27(19), 3029–3032 (2000). doi:10.1029/2000GL011599

    Article  ADS  Google Scholar 

  • P.C. Sinclair, General characteristics of dust devils. J. Appl. Meteorol. 8, 32–45 (1969). doi:10.1175/1520-0450(1969)008<0032:GCODD>2.0.CO;2

    Article  ADS  Google Scholar 

  • P.C. Sinclair, The lower structure of dust devils. J. Atmos. Sci. 30, 1599–1619 (1973). doi:10.1175/1520-0469(1973)0302.0.CO;2

    Article  ADS  Google Scholar 

  • M.D. Smith, Interannual variability in TES atmospheric observations of Mars during 1999–2003. Icarus 167(1), 148–165 (2004). doi:10.1016/j.icarus.2003.09.010. Special Issue on DS1/Comet Borrelly

    Article  ADS  Google Scholar 

  • J.T. Snow, T.M. McClelland, Dust devils at White Sands Missile Range, New Mexico: 1. Temporal and spatial distributions. J. Geophys. Res., Atmos. 95(D9), 13707–13721 (1990). doi:10.1029/JD095iD09p13707

    Article  ADS  Google Scholar 

  • I.N. Sokolik, O.B. Toon, Direct radiative forcing by anthropogenic airborne mineral aerosols. Nature 381, 681–683 (1996)

    Article  ADS  Google Scholar 

  • A. Spiga, F. Forget, A new model to simulate the Martian mesoscale and microscale atmospheric circulation: validation and first results. J. Geophys. Res. 114, 02009 (2009). doi:10.1029/2008JE003242

    Article  Google Scholar 

  • A. Spiga, J. Faure, J.-B. Madeleine, A. Määttänen, F. Forget, Rocket dust storms and detached dust layers in the Martian atmosphere. J. Geophys. Res. 118(4), 746–767 (2013). doi:10.1002/jgre.20046

    Article  Google Scholar 

  • K. Steakley, J. Murphy, A year of convective vortex activity at Gale crater. Icarus (2016, accepted). doi:10.1016/j.icarus.2016.06.010

  • G. Sterk, L. Herrmann, A. Bationo, Wind-blown nutrient transport and soil productivity changes in southwest Niger. Land Degrad. Dev. 7(4), 325–335 (1996). doi:10.1002/(SICI)1099-145X(199612)7:4<325::AID-LDR237>3.0.CO;2-Q

    Article  Google Scholar 

  • P.P. Sullivan, J.C. McWilliams, C.-H. Moeng, A subgrid-scale model for large-eddy simulation of planetary boundary-layer flows. Bound.-Layer Meteorol. 71(3), 247–276 (1994). doi:10.1007/BF00713741

    Article  ADS  Google Scholar 

  • T. Takemi, M. Yasui, J. Zhou, L. Liu, Role of boundary layer and cumulus convection on dust emission and transport over a midlatitude desert area. J. Geophys. Res., Atmos. 111(D11), D11203 (2006). doi:10.1029/2005JD006666

    Article  ADS  Google Scholar 

  • T.Y. Tanaka, M. Chiba, A numerical study of the contributions of dust source regions to the global dust budget. Glob. Planet. Change 52, 88–104 (2006)

    Article  ADS  Google Scholar 

  • P. Thomas, P.J. Gierasch, Dust devils on Mars. Science 230(4722), 175–177 (1985). doi:10.1126/science.230.4722.175

    Article  ADS  Google Scholar 

  • A.D. Toigo, M.I. Richardson, Meteorology of proposed Mars Exploration Rover landing sites. J. Geophys. Res. 108(E12), 8092 (2003). doi:10.1029/2003JE002064

    Article  Google Scholar 

  • C.A. Verba, P.E. Geissler, T.N. Titus, D. Waller, Observations from the High Resolution Imaging Science Experiment (HiRISE): Martian dust devils in Gusev and Russell craters. J. Geophys. Res. 115(E9), E09002 (2010). doi:10.1029/2009JE003498

    Article  ADS  Google Scholar 

  • H. Wang, M.I. Richardson, The origin, evolution, and trajectory of large dust storms on Mars during Mars years 24–30 (1999–2011). Icarus 251, 112–127 (2015). doi:10.1016/j.icarus.2013.10.033. Dynamic Mars

    Article  ADS  Google Scholar 

  • N.P. Webb, C.L. Strong, A. Chappell, S.K. Marx, G.H. McTainsh, Soil organic carbon enrichment of dust emissions: magnitude, mechanisms and its implications for the carbon cycle. Earth Surf. Process. Landf. 38(14), 1662–1671 (2013). doi:10.1002/esp.3404

    Article  ADS  Google Scholar 

  • P.L. Whelley, R. Greeley, Latitudinal dependency in dust devil activity on Mars. J. Geophys. Res., Planets 111(E10), E10003 (2006). doi:10.1029/2006JE002677

    Article  ADS  Google Scholar 

  • P.L. Whelley, R. Greeley, The distribution of dust devil activity on Mars. J. Geophys. Res. 113(E7) (2008). doi:10.1029/2007JE002966

  • G. Wurm, J. Teiser, D. Reiss, Greenhouse and thermophoretic effects in dust layers: the missing link for lifting of dust on Mars. Geophys. Res. Lett. 35, L10201 (2008). doi:10.1029/2008GL033799

    Article  ADS  Google Scholar 

  • Y.Z. Zhao, Z.L. Gu, Y.Z. Yu, Y. Ge, Y. Li, X. Feng, Mechanism and large eddy simulation of dust devils. Atmos.-Ocean 42(1), 61–84 (2004). doi:10.3137/ao.420105

    Article  Google Scholar 

  • A.D. Zimon, Adhesion of Dust and Powder (Consultants Bureau, New York, 1982), p. 438

    Book  Google Scholar 

Download references

Acknowledgements

We wish to thank Luca Montabone, one anonymous reviewer, and two editors for their careful review and valuable comments, and Bruce Cantor for his permission to reuse Fig. 4 of Cantor et al. (2006) in this paper. Bradley Jemmett-Smith and Peter Knippertz would like to acknowledge funding from the European Research Council Grant 257543 “Desert Storms”. Ralph Lorenz acknowledges the support of NASA Mars Fundamental Research Program grant NNX12AI04G. Not least, we are grateful to the International Space Science Institute (ISSI), Bern, Switzerland, and to the conveners for organizing the workshop “Dust Devils on Mars and Earth” (www.issibern.ch/workshops/dustdevils/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martina Klose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klose, M., Jemmett-Smith, B.C., Kahanpää, H. et al. Dust Devil Sediment Transport: From Lab to Field to Global Impact. Space Sci Rev 203, 377–426 (2016). https://doi.org/10.1007/s11214-016-0261-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-016-0261-4

Keywords

Navigation