Dust Devil Sediment Transport: From Lab to Field to Global Impact

Abstract

The impact of dust aerosols on the climate and environment of Earth and Mars is complex and forms a major area of research. A difficulty arises in estimating the contribution of small-scale dust devils to the total dust aerosol. This difficulty is due to uncertainties in the amount of dust lifted by individual dust devils, the frequency of dust devil occurrence, and the lack of statistical generality of individual experiments and observations. In this paper, we review results of observational, laboratory, and modeling studies and provide an overview of dust devil dust transport on various spatio-temporal scales as obtained with the different research approaches. Methods used for the investigation of dust devils on Earth and Mars vary. For example, while the use of imagery for the investigation of dust devil occurrence frequency is common practice for Mars, this is less so the case for Earth. Modeling approaches for Earth and Mars are similar in that they are based on the same underlying theory, but they are applied in different ways. Insights into the benefits and limitations of each approach suggest potential future research focuses, which can further reduce the uncertainty associated with dust devil dust entrainment. The potential impacts of dust devils on the climates of Earth and Mars are discussed on the basis of the presented research results.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

References

  1. A. Ansmann, M. Tesche, P. Knippertz, E. Bierwirth, D. Althausen, D. Müller, O. Schulz, Vertical profiling of convective dust plumes in southern Morocco during SAMUM. Tellus B 61(1), 340–353 (2009)

    ADS  Article  Google Scholar 

  2. R.A. Bagnold, The Physics of Blown Sand and Desert Dunes (Methuen, London, 1941), p. 265

    Google Scholar 

  3. M. Balme, R. Greeley, Dust devils on Earth and Mars. Rev. Geophys. 44 (2006). doi:10.1029/2005RG000188

  4. M. Balme, A. Hagermann, Particle lifting at the soil-air interface by atmospheric pressure excursions in dust devils. Geophys. Res. Lett. 33, L19S01 (2006). doi:10.1029/2006GL026819

    Article  Google Scholar 

  5. M.R. Balme, P.L. Whelley, R. Greeley, Mars: dust devil track survey in Argyre Planitia and Hellas Basin. J. Geophys. Res. 108(E8), 5086 (2003). doi:10.1029/2003JE002096

    Article  Google Scholar 

  6. M. Bangert, A. Nenes, B. Vogel, D. Barahona, V.A. Karydis, P. Kumar, C. Kottmeier, U. Blahak, Saharan dust event impacts on cloud formation and radiation over Western Europe. Atmos. Chem. Phys. 12, 4045–4063 (2012). doi:10.5194/acp-12-4045-2012

    ADS  Article  Google Scholar 

  7. S. Basu, M.I. Richardson, R.J. Wilson, Simulation of the Martian dust cycle with the GFDL Mars GCM. J. Geophys. Res., Planets 109(E11), E11006 (2004). doi:10.1029/2004JE002243

    ADS  Article  Google Scholar 

  8. O. Boucher, D. Randall, P. Artaxo, C. Bretherton, G. Feingold, P. Forster, V.-M. Kerminen, Y. Kondo, H. Liao, U. Lohmann, P. Rasch, S.K. Satheesh, S. Sherwood, B. Stevens, X.Y. Zhang, Clouds and Aerosols, in Climate Change 2013: the Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, ed. by T.F. Stocker, D. Quin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, P.M. Midgley (Cambridge University Press, Cambridge/New York, 2013)

    Google Scholar 

  9. C.S. Bristow, K.A. Hudson-Edwards, A. Chappell, Fertilizing the Amazon and equatorial Atlantic with West African dust. Geophys. Res. Lett. 37 (2010). doi:10.1029/2010GL043486

  10. R.V. Cakmur, R.L. Miller, O. Torres, Incorporating the effect of small-scale circulations upon dust emission in an atmospheric general circulation model. J. Geophys. Res., Atmos. 109(D7), D07201 (2004). doi:10.1029/2003JD004067

    ADS  Article  Google Scholar 

  11. B.A. Cantor, K.M. Kanak, K.S. Edgett, Mars Orbiter Camera observations of Martian dust devils and their tracks (September 1997 to January 2006) and evaluation of theoretical vortex models. J. Geophys. Res. 111, E12002 (2006). doi:10.1029/2006JE002700

    ADS  Article  Google Scholar 

  12. B.A. Cantor, MOC observations of the 2001 Mars planet-encircling dust storm. Icarus 186(1), 60–96 (2007). doi:10.1016/j.icarus.2006.08.019

    ADS  Article  Google Scholar 

  13. B.A. Cantor, P.B. James, M. Caplinger, M.J. Wolff, Martian dust storms: 1999 Mars Orbiter Camera observations. J. Geophys. Res. 106(E10), 23653–23687 (2001). doi:10.1029/2000JE001310

    ADS  Article  Google Scholar 

  14. J.J. Carroll, J.A. Ryan, Atmospheric vorticity and dust devil rotation. J. Geophys. Res. 75(27), 5179–5184 (1970). doi:10.1029/JC075i027p05179

    ADS  Article  Google Scholar 

  15. D.S. Choi, C.M. Dundas, Measurements of Martian dust devil winds with HiRISE. Geophys. Res. Lett. 38(24), L24206 (2011). doi:10.1029/2011GL049806

    ADS  Article  Google Scholar 

  16. S.M. Cowie, P. Knippertz, J.H. Marsham, Are vegetation-related roughness changes the cause of the recent decrease in dust emission from the Sahel? Geophys. Res. Lett. 40(9), 1868–1872 (2013)

    ADS  Article  Google Scholar 

  17. C. de Beule, G. Wurm, T. Kelling, M. Küpper, T. Jankowski, J. Teiser, The Martian soil as a planetary gas pump. Nat. Phys. 10, 17–20 (2014). doi:10.1038/nphys2821

    Article  Google Scholar 

  18. P. De Deckker, C.I. Munday, J. Brocks, T. O’Loingsigh, G.E. Allison, J. Hope, M. Norman, J.-B.W. Stuut, N.J. Tapper, S. van der Kaars, Characterisation of the major dust storm that traversed over eastern Australia in September 2009; a multidisciplinary approach. Aeolian Res. 15, 133–149 (2014). doi:10.1016/j.aeolia.2014.07.003

    ADS  Article  Google Scholar 

  19. J.W. Deardorff, A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers. J. Fluid Mech. 41(2), 453–480 (1970). doi:10.1017/S0022112070000691

    ADS  MATH  Article  Google Scholar 

  20. J. Deardorff, Observed characteristics of the outer layer. Short course on the planetary boundary layer (1978)

  21. P.J. DeMott, K. Sassen, M.R. Poellot, D. Baumgardner, D.C. Rogers, S.D. Brooks, A.J. Prenni, S.M. Kreidenweis, African dust aerosols as atmospheric ice nuclei. Geophys. Res. Lett. 30(14) (2003)

  22. E. Derbyshire, Natural minerogenic dust and human health. Ambio 36(1), 73–77 (2007). doi:10.1579/0044-7447(2007)36[73:NMDAHH]2.0.CO;2

    Article  Google Scholar 

  23. M.D. Ellehoj, H.P. Gunnlaugsson, P.A. Taylor, H. Kahanpää, K.M. Bean, B.A. Cantor, B.T. Gheynani, L. Drube, D. Fisher, A.-M. Harri, C. Holstein-Rathlou, M.T. Lemmon, M.B. Madsen, M.C. Malin, J. Polkko, P.H. Smith, L.K. Tamppari, W. Weng, J. Whiteway, Convective vortices and dust devils at the Phoenix Mars mission landing site. J. Geophys. Res. 115(E4) (2010). doi:10.1029/2009JE003413

  24. L.K. Fenton, R. Lorenz, Dust devil height and spacing with relation to the martian planetary boundary layer thickness. Icarus 260, 246–262 (2015). doi:10.1016/j.icarus.2015.07.028

    ADS  Article  Google Scholar 

  25. F. Ferri, P.H. Smith, M. Lemmon, N.O. Rennó, Dust devils as observed by Mars Pathfinder. J. Geophys. Res., Planets 108(E12) (2003). doi:10.1029/2000JE001421

  26. J.A. Fisher, M.I. Richardson, C.E. Newman, M.A. Szwast, C. Graf, S. Basu, S.P. Ewald, A.D. Toigo, R.J. Wilson, A survey of Martian dust devil activity using Mars Global Surveyor Mars Orbiter Camera images. J. Geophys. Res. 110(E3), E03004 (2005). doi:10.1029/2003JE002165

    ADS  Article  Google Scholar 

  27. S.D. Fuerstenau, Solar heating of suspended particles and the dynamics of Martian dust devils. Geophys. Res. Lett. 33(19) (2006). doi:10.1029/2006GL026798

  28. V.H. Garrison, E.A. Shinn, W.T. Foreman, D.W. Griffin, C.W. Holmes, C.A. Kellogg, M.S. Majewski, L.L. Richardson, K.B. Ritchie, G.W. Smith, African and Asian dust: from desert soils to coral reefs. Bioscience 53(5), 469–480 (2003). doi:10.1641/0006-3568(2003)053[0469:AAADFD]2.0.CO;2

    Article  Google Scholar 

  29. B.T. Gheynani, P.A. Taylor, Large Eddy Simulation of typical dust devil-like vortices in highly convective Martian boundary layers at the Phoenix lander site. Planet. Space Sci. 59, 43–50 (2011). doi:10.1016/j.pss.2010.10.011

    ADS  Article  Google Scholar 

  30. D.A. Gillette, P.C. Sinclair, Estimation of suspension of alkaline material by dust devils in the United States. Atmos. Environ. 24(5), 1135–1142 (1990)

    ADS  Article  Google Scholar 

  31. P. Ginoux, J.M. Prospero, T.E. Gill, N.C. Hsu, M. Zhao, Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products. Rev. Geophys. 50(3) (2012)

  32. R. Greeley, J.D. Iversen, Wind as a Geological Process on Earth, Mars, Venus and Titan (Cambridge University Press, New York, 1985), p. 333

    Google Scholar 

  33. R. Greeley, M.R. Balme, J.D. Iversen, S. Metzger, R. Mickelson, J. Phoreman, B. White, Martian dust devils: laboratory simulations of particle threshold. J. Geophys. Res. 108(E5), 5041 (2003)

    Article  Google Scholar 

  34. R. Greeley, P.L. Whelley, R.E. Arvidson, N.A. Cabrol, D.J. Foley, B.J. Franklin, P.G. Geissler, M.P. Golombek, R.O. Kuzmin, G.A. Landis, M.T. Lemmon, L.D.V. Neakrase, S.W. Squyres, S.D. Thompson, Active dust devils in Gusev crater, Mars: observations from the Mars Exploration Rover Spirit. J. Geophys. Res. 111(E12), E12S09 (2006). doi:10.1029/2006JE002743

    ADS  Article  Google Scholar 

  35. R. Greeley, D.A. Waller, N.A. Cabrol, G.A. Landis, M.T. Lemmon, L.D.V. Neakrase, M. Pendleton Hoffer, S.D. Thompson, P.L. Whelley, Gusev Crater, Mars: observations of three dust devil seasons. J. Geophys. Res., Planets 115(9), 1–18 (2010). doi:10.1029/2010JE003608

    Google Scholar 

  36. D.J. Griggs, M. Noguer, Climate change 2001: the scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change. Weather 57(8), 267–269 (2002)

    ADS  Article  Google Scholar 

  37. Z. Gu, J. Qiu, Y. Zhao, Y. Li, Simulation of terrestrial dust devil patterns. Adv. Atmos. Sci. 25(1), 31–42 (2008). doi:10.1007/s00376-008-0031-7

    Article  Google Scholar 

  38. G. Hess, K. Spillane, Characteristics of dust devils in Australia. J. Appl. Meteorol. 29(6), 498–507 (1990)

    ADS  Article  Google Scholar 

  39. R. Hesse, Short-lived and long-lived dust devil tracks in the coastal desert of southern Peru. Aeolian Res. 5, 101–106 (2012)

    ADS  Article  Google Scholar 

  40. N. Huneeus, M. Schulz, Y. Balkanski, J. Griesfeller, J. Prospero, S. Kinne, S. Bauer, O. Boucher, M. Chin, F. Dentener, T. Diehl, R. Easter, D. Fillmore, S. Ghan, P. Ginoux, A. Grini, L. Horowitz, D. Koch, M.C. Krol, W. Landing, X. Liu, N. Mahowald, R. Miller, J.-J. Morcrette, G. Myhre, J. Penner, J. Perlwitz, P. Stier, T. Takemura, C.S. Zender, Global dust model intercomparison in AeroCom phase I. Atmos. Chem. Phys. 11(15), 7781–7816 (2011). doi:10.5194/acp-11-7781-2011. http://www.atmos-chem-phys.net/11/7781/2011/

    ADS  Article  Google Scholar 

  41. IPCC, Clouds and aerosols, in Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, ed. by J.T. Houghton, Y. Ding, D.J. Griggs, M. Noguer, P.J. van der Linden, X. Dai, K. Maskell, C.A. Johnson (Cambridge University Press, Cambridge/New York, 2001), p. 881

    Google Scholar 

  42. K. Isono, On ice-crystal nuclei and other substances found in snow crystals. J. Meteorol. 12, 456–462 (1955). doi:10.1016/j.aeolia.2013.11.002

    Article  Google Scholar 

  43. J. Ito, H. Niino, M. Nakanishi, Large eddy simulation on dust suspension in a convective mixed layer. SOLA 6, 133–136 (2010a). doi:10.2151/sola.2010-034

    Article  Google Scholar 

  44. J. Ito, R. Tanaka, H. Niino, M. Nakanishi, Large eddy simulation on dust devils in a diurnally-evolving convective mixed layer. J. Meteorol. Soc. Jpn. 88(1), 63–77 (2010b). doi:10.2151/jmsj.2010-105

    Article  Google Scholar 

  45. B.C. Jemmett-Smith, J.H. Marsham, P. Knippertz, C.A. Gilkeson, Quantifying global dust devil occurrence from meteorological analyses. Geophys. Res. Lett. 42(4), 1275–1282 (2015)

    ADS  Article  Google Scholar 

  46. H. Kahanpää, C. Newman, J. Moores, M.-P. Zorzano, J. Martín-Torres, S. Navarro, A. Lepinette, M.T. Lemmon, B. Cantor, P. Valentín-Serrano, A. Ullán, W. Schmidt, Convective vortices and dust devils at the MSL landing site: annual variability. J. Geophys. Res. (2016, submitted)

  47. M.A. Kahre, J.R. Murphy, R.M. Haberle, F. Montmessin, J. Schaeffer, Simulating the Martian dust cycle with a finite surface dust reservoir. Geophys. Res. Lett. 32(20), L20204 (2005). doi:10.1029/2005GL023495

    ADS  Article  Google Scholar 

  48. M.A. Kahre, J.R. Murphy, R.M. Haberle, Modeling the Martian dust cycle and surface dust reservoirs with the NASA Ames general circulation model. J. Geophys. Res., Planets 111(E6), E06008 (2006). doi:10.1029/2005JE002588

    ADS  Article  Google Scholar 

  49. J.C. Kaimal, J.A. Businger, Case studies of a convective plume and a dust devil. J. Appl. Meteorol. 9, 612–620 (1970). doi:10.1175/1520-0450(1970)009<0612:CSOACP>2.0.CO;2

    ADS  Article  Google Scholar 

  50. K.M. Kanak, Numerical simulation of dust devil-scale vortices. Q. J. R. Meteorol. Soc. 131(607), 1271–1292 (2005). doi:10.1256/qj.03.172

    ADS  Article  Google Scholar 

  51. K.M. Kanak, D.K. Lilly, J.T. Snow, The formation of vertical vortices in the convective boundary layer. Q. J. R. Meteorol. Soc. 126(569), 2789–2810 (2000). doi:10.1002/qj.49712656910

    ADS  Article  Google Scholar 

  52. C.A. Kellogg, D.W. Griffin, Aerobiology and the global transport of desert dust. Trends Ecol. Evol. 21(11), 638–644 (2006). doi:10.1016/j.tree.2006.07.004

    Article  Google Scholar 

  53. M. Klose, Y. Shao, Stochastic parameterization of dust emission and application to convective atmospheric conditions. Atmos. Chem. Phys. 12(12), 7309–7320 (2012). doi:10.5194/acp-12-7309-2012

    ADS  Article  Google Scholar 

  54. M. Klose, Y. Shao, Large-eddy simulation of turbulent dust emission. Aeolian Res. 8, 49–58 (2013). doi:10.1016/j.aeolia.2012.10.010

    ADS  Article  Google Scholar 

  55. M. Klose, Y. Shao, A numerical study on dust devils with implications to global dust budget estimates. Aeolian Res. 22, 47–58 (2016). doi:10.1016/j.aeolia.2016.05.003

    ADS  Article  Google Scholar 

  56. M. Klose, Y. Shao, X.L. Li, H.S. Zhang, M. Ishizuka, M. Mikami, J.F. Leys, Further development of a parameterization for convective turbulent dust emission and evaluation based on field observations. J. Geophys. Res., Atmos. 119, 10441–10457 (2014). doi:10.1002/2014JD021688

    ADS  Article  Google Scholar 

  57. M.R. Klose, Convective Turbulent Dust Emission: Process, parameterization, and relevance in the Earth system, Dissertation, Universität zu Köln, 2014. http://kups.ub.uni-koeln.de/id/eprint/5826

  58. J. Koch, N.O. Renno, The role of convective plumes and vortices on the global aerosol budget. Geophys. Res. Lett. 32 (2005). doi:10.1029/2005GL023420

  59. J.F. Kok, N.M. Mahowald, G. Fratini, J.A. Gillies, M. Ishizuka, J.F. Leys, M. Mikami, M.-S. Park, S.-U. Park, R.S. Van Pelt, T.M. Zobeck, An improved dust emission model—Part 1: model description and comparison against measurements. Atmos. Chem. Phys. 14(23), 13023–13041 (2014). doi:10.5194/acp-14-13023-2014

    ADS  Article  Google Scholar 

  60. J.F. Kok, N.O. Renno, Enhancement of the emission of mineral dust aerosols by electric forces. Geophys. Res. Lett. 33(19), 2–6 (2006). doi:10.1029/2006GL026284

    Article  Google Scholar 

  61. M. Küpper, G. Wurm, Thermal creep-assisted dust lifting on Mars: wind tunnel experiments for the entrainment threshold velocity. J. Geophys. Res. 120(7), 1346–1356 (2015). doi:10.1002/2015JE004848

    Article  Google Scholar 

  62. M.V. Kurgansky, Steady-state properties and statistical distribution of atmospheric dust devils. Geophys. Res. Lett. 33(19) (2006). doi:10.1029/2006GL026142

  63. M.V. Kurgansky, A. Montecinos, V. Villagran, S.M. Metzger, Micrometeorological conditions for dust-devil occurrence in the Atacama Desert. Bound.-Layer Meteorol. 138(2), 285–298 (2011)

    ADS  Article  Google Scholar 

  64. M.T. Lemmon, M.J. Wolff, J.F. Bell III, M.D. Smith, B.A. Cantor, P.H. Smith, Dust aerosol, clouds, and the atmospheric optical depth record over 5 Mars years of the Mars Exploration Rover mission. Icarus 251, 96–111 (2015). doi:10.1016/j.icarus.2014.03.029. Dynamic Mars

    ADS  Article  Google Scholar 

  65. H. Lettau, Note on aerodynamic roughness-parameter estimation on the basis of roughness element description. J. Appl. Meteorol. 8, 828–832 (1969). doi:10.1175/1520-0450(1969)008<0828:NOARPE>2.0.CO;2

    ADS  Article  Google Scholar 

  66. G.A. Loosmore, J.R. Hunt, Dust resuspension without saltation. J. Geophys. Res. 105(D16), 20663–20671 (2000). doi:10.1029/2000JD900271

    ADS  Article  Google Scholar 

  67. R. Lorenz, On the statistical distribution of dust devil diameters. Icarus 215(1), 381–390 (2011). doi:10.1016/j.icarus.2011.06.005

    ADS  Article  Google Scholar 

  68. R. Lorenz, The longevity and aspect ratio of dust devils: effects on detection efficiencies and comparison of landed and orbital imaging at Mars. Icarus 226(1), 964–970 (2013). doi:10.1016/j.icarus.2013.06.031

    ADS  Article  Google Scholar 

  69. R.D. Lorenz, Vortex encounter rates with fixed barometer stations: comparison with visual dust devil counts and large-eddy simulations. J. Atmos. Sci. 71, 4461–4472 (2014). doi:10.1175/JAS-D-14-0138.1

    ADS  Article  Google Scholar 

  70. R.D. Lorenz, B.K. Jackson, Dust devils and dustless vortices on a desert playa observed with surface pressure and solar flux logging. GeoResJ 5, 1–11 (2015). doi:10.1016/j.grj.2014.11.002

    Article  Google Scholar 

  71. R.D. Lorenz, M.J. Myers, Dust devil hazard to aviation: a review of United States air accident reports. J. Meteorol. 30(298), 178–184 (2005)

    Google Scholar 

  72. R.D. Lorenz, D. Reiss, Solar panel clearing events, dust devil tracks, and in-situ vortex detections on Mars. Icarus 248, 162–164 (2015). doi:10.1016/j.icarus.2014.10.034

    ADS  Article  Google Scholar 

  73. R.D. Lorenz, L.D. Neakrase, J.D. Anderson, In-situ measurement of dust devil activity at La Jornada Experimental Range, New Mexico, USA. Aeolian Res., 1–12 (2015). doi:10.1016/j.aeolia.2015.01.012

  74. D.J. Lunt, P.J. Valdes, The modern dust cycle: comparison of model results with observations and study of sensitivities. J. Geophys. Res., Atmos. 107(D23), 4669 (2002). doi:10.1029/2002JD002316

    ADS  Article  Google Scholar 

  75. T. Lyons, U. Nair, I. Foster, Clearing enhances dust devil formation. J. Arid Environ. 72(10), 1918–1928 (2008)

    Article  Google Scholar 

  76. B. Marticorena, G. Bergametti, Modeling the atmospheric dust cycle: 1. Design of a soil-derived dust emission scheme. J. Geophys. Res. 100(D8), 16415–16430 (1995)

    ADS  Article  Google Scholar 

  77. J.P. Mason, M.R. Patel, S.R. Lewis, Radiative transfer modelling of dust devils. Icarus 223(1), 1–10 (2013). doi:10.1016/j.icarus.2012.11.018

    ADS  Article  Google Scholar 

  78. J.P. Mason, M.R. Patel, S.R. Lewis, The retrieval of optical properties from terrestrial dust devil vortices. Icarus 231(0), 385–393 (2014). doi:10.1016/j.icarus.2013.12.013

    ADS  Article  Google Scholar 

  79. S.M. Metzger, M.R. Balme, M.C. Towner, B.J. Bos, T.J. Ringrose, M.R. Patel, In situ measurements of particle load and transport in dust devils. Icarus 214(2), 766–772 (2011). doi:10.1016/j.icarus.2011.03.013

    ADS  Article  Google Scholar 

  80. S.M. Metzger, Dust devils as aeolian transport mechanisms in the southern Nevada and in the Mars Pathfinder landing site, PhD thesis, University of Nevada, 1999

  81. S.M. Metzger, J.R. Carr, J.R. Johnson, T.J. Parker, M.T. Lemmon, Dust devil vortices seen by the Mars Pathfinder Camera. Geophys. Res. Lett. 26(18), 2781–2784 (1999). doi:10.1029/1999GL008341

    ADS  Article  Google Scholar 

  82. T.I. Michaels, Numerical modeling of Mars dust devils: Albedo track generation. Geophys. Res. Lett. 33(19) (2006). doi:10.1029/2006GL026268

  83. T.I. Michaels, S.C.R. Rafkin, Large eddy simulation of atmospheric convection on Mars. Q. J. R. Meteorol. Soc. 130, 1251–1274 (2004). doi:10.1256/qj.02.169

    ADS  Article  Google Scholar 

  84. D.V. Michelangeli, O.B. Toon, R.M. Haberle, J.B. Pollack, Numerical simulations of the formation and evolution of water ice clouds in the martian atmosphere. Icarus 102(2), 261–285 (1993). doi:10.1006/icar.1993.1048

    ADS  Article  Google Scholar 

  85. R.L. Miller, P. Knippertz, C. Pérez García-Pando, J.P. Perlwitz, I. Tegen, Impact of dust radiative forcing upon climate, in Mineral Dust, ed. by P. Knippertz, J.-B.W. Stuut (Springer, Netherlands, 2014), pp. 327–357. ISBN 978-94-017-8977-6. doi:10.1007/978-94-017-8978-3_13

    Google Scholar 

  86. L. Montabone, F. Forget, E. Millour, R.J. Wilson, S.R. Lewis, B. Cantor, D. Kass, A. Kleinböhl, M.T. Lemmon, M.D. Smith, M.J. Wolff, Eight-year climatology of dust optical depth on Mars. Icarus 251, 65–95 (2015). doi:10.1016/j.icarus.2014.12.034. Dynamic Mars

    ADS  Article  Google Scholar 

  87. J.E. Moores, M.T. Lemmon, H. Kahanpää, S.C.R. Rafkin, R. Francis, J. Pla-Garcia, K. Bean, R. Haberle, C. Newman, M. Mischna, A.R. Vasavada, M. de la Torre Juárez, N. Renno, J. Bell, F. Calef, B. Cantor, T.H. Mcconnochie, A.-M. Harri, M. Genzer, M.H. Wong, M.D. Smith, F.J. Martín-Torres, M.-P. Zorzano, O. Kemppinen, E. McCullough, Observational evidence of a suppressed planetary boundary layer in northern Gale Crater, Mars as seen by the Navcam instrument onboard the Mars Science Laboratory rover. Icarus 249(15), 129–142 (2015). doi:10.1016/j.icarus.2014.09.020

    ADS  Article  Google Scholar 

  88. D.P. Mulholland, P.L. Read, S.R. Lewis, Simulating the interannual variability of major dust storms on Mars using variable lifting thresholds. Icarus 223(1), 344–358 (2013). doi:10.1016/j.icarus.2012.12.003

    ADS  Article  Google Scholar 

  89. J.R. Murphy, S. Nelli, Mars Pathfinder convective vortices: frequency of occurrence. Geophys. Res. Lett. 29(23), 18–1184 (2002). doi:10.1029/2002GL015214

    Article  Google Scholar 

  90. L.D.V. Neakrase, R. Greeley, Dust devils in the laboratory: effects of surface roughness on vortex dynamics. J. Geophys. Res. 115, E05003 (2010a). doi:10.1029/2009JE003465

    ADS  Article  Google Scholar 

  91. L.D.V. Neakrase, R. Greeley, Dust devil sediment flux on Earth and Mars: laboratory simulations. Icarus 206(1), 306–318 (2010b)

    ADS  Article  Google Scholar 

  92. L.D.V. Neakrase, R. Greeley, J.D. Iversen, M.R. Balme, E.E. Eddlemon, Dust flux within dust devils: preliminary laboratory simulations Geophys. Res. Lett., 33, L19S09, (2006). doi:10.1029/2006GL026810

    Article  Google Scholar 

  93. C.E. Newman, S.R. Lewis, P.L. Read, The atmospheric circulation and dust activity in different orbital epochs on Mars. Icarus 174(1), 135–160 (2005). doi:10.1016/j.icarus.2004.10.023

    ADS  Article  Google Scholar 

  94. C.E. Newman, M.I. Richardson, The impact of surface dust source exhaustion on the martian dust cycle, dust storms and interannual variability, as simulated by the MarsWRF General Circulation Model. Icarus 257, 47–87 (2015). doi:10.1016/j.icarus.2015.03.030

    ADS  Article  Google Scholar 

  95. C.E. Newman, S.R. Lewis, P.L. Read, F. Forget, Modeling the Martian dust cycle, 1. Representations of dust transport processes. J. Geophys. Res., Planets 107(E12), 6-1–6-18 (2002a). doi:10.1029/2002JE001910. 5123

    Article  Google Scholar 

  96. C.E. Newman, S.R. Lewis, P.L. Read, F. Forget, Modeling the Martian dust cycle 2. Multiannual radiatively active dust transport simulations. J. Geophys. Res., Planets 107(E12), 7-1–7-15 (2002b). doi:10.1029/2002JE001920. 5124

    Article  Google Scholar 

  97. H. Ohno, T. Takemi, Mechanisms for intensification and maintenance of numerically simulated dust devils. Atmos. Sci. Lett. (2010). doi:10.1002/asl.249

    Google Scholar 

  98. A.M.C. Oke, D. Dunkerley, N.J. Tapper, Willy-willies in the Australian landscape: sediment transport characteristics. J. Arid Environ. 71(2), 216–228 (2007a). doi:10.1016/j.jaridenv.2007.03.014

    Article  Google Scholar 

  99. A. Oke, N. Tapper, D. Dunkerley, Willy-willies in the Australian landscape: the role of key meteorological variables and surface conditions in defining frequency and spatial characteristics. J. Arid Environ. 71(2), 201–215 (2007b)

    Article  Google Scholar 

  100. F. Pantillon, P. Knippertz, J.H. Marsham, C.E. Birch, A parameterization of convective dust storms for models with mass-flux convection schemes. J. Atmos. Sci. 72, 2545–2561 (2015). doi:10.1175/JAS-D-14-0341.1

    ADS  Article  Google Scholar 

  101. A. Petrosyan, B. Galperin, S.E. Larsen, S.R. Lewis, A. Määttänen, P.L. Read, N. Renno, L.P.H.T. Rogberg, H. Savijärvi, T. Siili, A. Spiga, A. Toigo, L. Vázquez, The martian atmospheric boundary layer. Rev. Geophys. 49(3) (2011). doi:10.1029/2010RG000351

  102. S. Raasch, T. Franke, Structure and formation of dust devil-like vortices in the atmospheric boundary layer: a high-resolution numerical study. J. Geophys. Res. 116, D16120, (2011). doi:10.1029/2011JD016010

    ADS  Article  Google Scholar 

  103. S.C.R. Rafkin, R.M. Haberle, T.I. Michaels, The Mars regional atmospheric modeling system: model description and selected simulations. Icarus 151, 228–256 (2001)

    ADS  Article  Google Scholar 

  104. P.L. Read, S.R. Lewis, The Martian Climate Revisited: Atmosphere and Environment of a Desert Planet (Springer, Berlin/New York, 2004)

    Google Scholar 

  105. D. Reiss, N.M. Hoekzema, O.J. Stenzel, Dust deflation by dust devils on Mars derived from optical depth measurements using the shadow method in HiRISE images. Planet. Space Sci. 93–94, 54–64 (2014). doi:10.1016/j.pss.2014.01.016

    Article  Google Scholar 

  106. D. Reiss, J. Raack, H. Hiesinger, Bright dust devil tracks on Earth: implications for their formation on Mars. Icarus 211(1), 917–920 (2011). doi:10.1016/j.icarus.2010.09.009

    ADS  Article  Google Scholar 

  107. D. Reiss, A. Spiga, G. Erkerling, The horizontal motion of dust devils on Mars derived from CRISM and CTX/HiRISE observations. Icarus 227, 8–20 (2014). doi:10.1016/j.icarus.2013.08.028

    ADS  Article  Google Scholar 

  108. D. Reiss, M. Zanetti, G. Neukum, Multitemporal observations of identical active dust devils on Mars with the High Resolution Stereo Camera (HRSC) and Mars Orbiter Camera (MOC). Icarus 215 (2011). doi:10.1016/j.icarus.2011.06.011

  109. D. Reiss, J. Raack, A.P. Rossi, G. Di Achille, H. Hiesinger, First in-situ analysis of dust devil tracks on Earth and their comparison with tracks on Mars. Geophys. Res. Lett. 37(14), L14203 (2010). doi:10.1029/2010GL044016

    ADS  Article  Google Scholar 

  110. D. Reiss, R.D. Lorenz, Dust devil track survey at Elysium Planitia, Mars: implications for the InSight landing sites. Icarus 266, 315–330 (2015). doi:10.1016/j.icarus.2015.11.012

    ADS  Article  Google Scholar 

  111. D. Reiss, M.I. Zimmerman, D.C. Lewellen, Formation of cycloidal dust devil tracks by redeposition of coarse sands in southern Peru: implications for Mars. Earth Planet. Sci. Lett. 383, 7–15 (2013)

    ADS  Article  Google Scholar 

  112. N.O. Renno, A.P. Ingersoll, Natural convection as a heat engine: a theory for CAPE. J. Atmos. Sci. 53, 572–585 (1996). doi:10.1175/1520-0469(1996)053<0572:NCAAHE>2.0.CO;2

    ADS  Article  Google Scholar 

  113. N.O. Renno, M.L. Burkett, M.P. Larkin, A simple thermodynamical theory for dust devils. J. Atmos. Sci. 55, 3244–3252 (1998). doi:10.1175/1520-0469(1998)055<3244:ASTTFD>2.0.CO;2

    ADS  MathSciNet  Article  Google Scholar 

  114. N.O. Renno, V.J. Abreu, J. Koch, P.H. Smith, O.K. Hartogensis, H.A.R.D. Bruin, D. Burose, G.T. Delory, W.M. Farrell, C.J. Watts, J. Garatuza, M. Parker, A. Carswell, MATADOR 2002: a pilot field experiment on convective plumes and dust devils. J. Geophys. Res. 109 (2004). doi:10.1029/2003JE002219

  115. N.O. Renno, A.A. Nush, J. Luninne, J. Murphy, Martian and terrestrial dust devils: test of a scaling theory using Pathfinder data. J. Geophys. Res. 105, 1859–1866 (2000). doi:10.1029/19999JE001037

    ADS  Article  Google Scholar 

  116. D. Rosenfeld, Y. Rudich, R. Lahav, Desert dust suppressing precipitation: a possible desertification feedback loop. Proc. Natl. Acad. Sci. USA 98(11), 5975–5980 (2001). doi:10.1073/pnas.101122798

    ADS  Article  Google Scholar 

  117. J.A. Ryan, R.D. Lucich, Possible dust devils, vortices on mars. J. Geophys. Res. 88(C15), 11005–11011 (1983). doi:10.1029/JC088iC15p11005

    ADS  Article  Google Scholar 

  118. J. Ryan, Relation of dust devil frequency and diameter to atmospheric temperature. J. Geophys. Res. 77(36), 7133–7137 (1972)

    ADS  Article  Google Scholar 

  119. K. Schepanski, I. Tegen, M. Todd, B. Heinold, G. Bönisch, Meteorological processes forcing Saharan dust emission inferred from MSG-SEVIRI observations of subdaily dust source activation and numerical models. J. Geophys. Res. 114, 10201 (2012)

    Article  Google Scholar 

  120. J.T. Schofield, J.R. Barnes, D. Crisp, R.M. Haberle, S. Larsen, J.A. Magalhaes, J.R. Murphy, A. Seiff, G. Wilson, The Mars Pathfinder atmospheric structure investigation meteorology (ASI/MET) experiment. Science 278(5344), 1752–1758 (1997). doi:10.1126/science.278.5344.1752

    ADS  Article  Google Scholar 

  121. Y. Shao, Simplification of a dust emission scheme and comparison with data. J. Geophys. Res. 109 (2004). doi:10.1029/2003JD004372

  122. Y. Shao, Physics and Modelling of Wind Erosion, 2nd edn. (Springer, Berlin, 2008), p. 452

    Google Scholar 

  123. Y. Shao, M. Klose, A note on the stochastic nature of particle cohesive force and implications to threshold friction velocity for aerodynamic dust entrainment. Aeolian Res. (2016, in revision)

  124. Y. Shao, H. Lu, A simple expression for wind erosion threshold friction velocity. J. Geophys. Res. 105, 22437–22443 (2000)

    ADS  Article  Google Scholar 

  125. Y. Shao, M. Klose, K.-H. Wyrwoll, Recent global dust trend and connections to climate forcing. J. Geophys. Res., Atmos. 118, 1–12 (2013). doi:10.1002/jgrd.50836

    ADS  Article  Google Scholar 

  126. Y. Shao, M.R. Raupach, P.A. Findlater, The effect of saltation bombardment on the entrainment of dust by wind. J. Geophys. Res. 98, 12719–12726 (1993)

    ADS  Article  Google Scholar 

  127. Y. Shao, K.-H. Wyrwoll, A. Chappell, J. Huang, Z. Lin, G.H. McTainsh, M. Mikami, T.Y. Tanaka, X. Wang, S. Yoon, Dust cycle: an emerging core theme in Earth system science. Aeolian Res. 2, 181–204 (2011). doi:10.1016/j.aeolia.2011.02.001

    ADS  Article  Google Scholar 

  128. Y. Shao, S. Liu, J. Schween, S. Crewell, Large-eddy atmosphere-land-surface modelling over heterogeneous surfaces: model development and comparison with measurements. Bound.-Layer Meteorol. 148(2), 333–356 (2013). doi:10.1007/s10546-013-9823-0

    ADS  Article  Google Scholar 

  129. E.A. Shinn, G.W. Smith, J.M. Prospero, P. Betzer, M.L. Hayes, V. Garrison, R.T. Barber, African dust and the demise of Carribbean coral reefs. Geophys. Res. Lett. 27(19), 3029–3032 (2000). doi:10.1029/2000GL011599

    ADS  Article  Google Scholar 

  130. P.C. Sinclair, General characteristics of dust devils. J. Appl. Meteorol. 8, 32–45 (1969). doi:10.1175/1520-0450(1969)008<0032:GCODD>2.0.CO;2

    ADS  Article  Google Scholar 

  131. P.C. Sinclair, The lower structure of dust devils. J. Atmos. Sci. 30, 1599–1619 (1973). doi:10.1175/1520-0469(1973)0302.0.CO;2

    ADS  Article  Google Scholar 

  132. M.D. Smith, Interannual variability in TES atmospheric observations of Mars during 1999–2003. Icarus 167(1), 148–165 (2004). doi:10.1016/j.icarus.2003.09.010. Special Issue on DS1/Comet Borrelly

    ADS  Article  Google Scholar 

  133. J.T. Snow, T.M. McClelland, Dust devils at White Sands Missile Range, New Mexico: 1. Temporal and spatial distributions. J. Geophys. Res., Atmos. 95(D9), 13707–13721 (1990). doi:10.1029/JD095iD09p13707

    ADS  Article  Google Scholar 

  134. I.N. Sokolik, O.B. Toon, Direct radiative forcing by anthropogenic airborne mineral aerosols. Nature 381, 681–683 (1996)

    ADS  Article  Google Scholar 

  135. A. Spiga, F. Forget, A new model to simulate the Martian mesoscale and microscale atmospheric circulation: validation and first results. J. Geophys. Res. 114, 02009 (2009). doi:10.1029/2008JE003242

    Article  Google Scholar 

  136. A. Spiga, J. Faure, J.-B. Madeleine, A. Määttänen, F. Forget, Rocket dust storms and detached dust layers in the Martian atmosphere. J. Geophys. Res. 118(4), 746–767 (2013). doi:10.1002/jgre.20046

    Article  Google Scholar 

  137. K. Steakley, J. Murphy, A year of convective vortex activity at Gale crater. Icarus (2016, accepted). doi:10.1016/j.icarus.2016.06.010

  138. G. Sterk, L. Herrmann, A. Bationo, Wind-blown nutrient transport and soil productivity changes in southwest Niger. Land Degrad. Dev. 7(4), 325–335 (1996). doi:10.1002/(SICI)1099-145X(199612)7:4<325::AID-LDR237>3.0.CO;2-Q

    Article  Google Scholar 

  139. P.P. Sullivan, J.C. McWilliams, C.-H. Moeng, A subgrid-scale model for large-eddy simulation of planetary boundary-layer flows. Bound.-Layer Meteorol. 71(3), 247–276 (1994). doi:10.1007/BF00713741

    ADS  Article  Google Scholar 

  140. T. Takemi, M. Yasui, J. Zhou, L. Liu, Role of boundary layer and cumulus convection on dust emission and transport over a midlatitude desert area. J. Geophys. Res., Atmos. 111(D11), D11203 (2006). doi:10.1029/2005JD006666

    ADS  Article  Google Scholar 

  141. T.Y. Tanaka, M. Chiba, A numerical study of the contributions of dust source regions to the global dust budget. Glob. Planet. Change 52, 88–104 (2006)

    ADS  Article  Google Scholar 

  142. P. Thomas, P.J. Gierasch, Dust devils on Mars. Science 230(4722), 175–177 (1985). doi:10.1126/science.230.4722.175

    ADS  Article  Google Scholar 

  143. A.D. Toigo, M.I. Richardson, Meteorology of proposed Mars Exploration Rover landing sites. J. Geophys. Res. 108(E12), 8092 (2003). doi:10.1029/2003JE002064

    Article  Google Scholar 

  144. C.A. Verba, P.E. Geissler, T.N. Titus, D. Waller, Observations from the High Resolution Imaging Science Experiment (HiRISE): Martian dust devils in Gusev and Russell craters. J. Geophys. Res. 115(E9), E09002 (2010). doi:10.1029/2009JE003498

    ADS  Article  Google Scholar 

  145. H. Wang, M.I. Richardson, The origin, evolution, and trajectory of large dust storms on Mars during Mars years 24–30 (1999–2011). Icarus 251, 112–127 (2015). doi:10.1016/j.icarus.2013.10.033. Dynamic Mars

    ADS  Article  Google Scholar 

  146. N.P. Webb, C.L. Strong, A. Chappell, S.K. Marx, G.H. McTainsh, Soil organic carbon enrichment of dust emissions: magnitude, mechanisms and its implications for the carbon cycle. Earth Surf. Process. Landf. 38(14), 1662–1671 (2013). doi:10.1002/esp.3404

    ADS  Article  Google Scholar 

  147. P.L. Whelley, R. Greeley, Latitudinal dependency in dust devil activity on Mars. J. Geophys. Res., Planets 111(E10), E10003 (2006). doi:10.1029/2006JE002677

    ADS  Article  Google Scholar 

  148. P.L. Whelley, R. Greeley, The distribution of dust devil activity on Mars. J. Geophys. Res. 113(E7) (2008). doi:10.1029/2007JE002966

  149. G. Wurm, J. Teiser, D. Reiss, Greenhouse and thermophoretic effects in dust layers: the missing link for lifting of dust on Mars. Geophys. Res. Lett. 35, L10201 (2008). doi:10.1029/2008GL033799

    ADS  Article  Google Scholar 

  150. Y.Z. Zhao, Z.L. Gu, Y.Z. Yu, Y. Ge, Y. Li, X. Feng, Mechanism and large eddy simulation of dust devils. Atmos.-Ocean 42(1), 61–84 (2004). doi:10.3137/ao.420105

    Article  Google Scholar 

  151. A.D. Zimon, Adhesion of Dust and Powder (Consultants Bureau, New York, 1982), p. 438

    Google Scholar 

Download references

Acknowledgements

We wish to thank Luca Montabone, one anonymous reviewer, and two editors for their careful review and valuable comments, and Bruce Cantor for his permission to reuse Fig. 4 of Cantor et al. (2006) in this paper. Bradley Jemmett-Smith and Peter Knippertz would like to acknowledge funding from the European Research Council Grant 257543 “Desert Storms”. Ralph Lorenz acknowledges the support of NASA Mars Fundamental Research Program grant NNX12AI04G. Not least, we are grateful to the International Space Science Institute (ISSI), Bern, Switzerland, and to the conveners for organizing the workshop “Dust Devils on Mars and Earth” (www.issibern.ch/workshops/dustdevils/).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Martina Klose.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Klose, M., Jemmett-Smith, B.C., Kahanpää, H. et al. Dust Devil Sediment Transport: From Lab to Field to Global Impact. Space Sci Rev 203, 377–426 (2016). https://doi.org/10.1007/s11214-016-0261-4

Download citation

Keywords

  • Dust devils
  • Dust emission
  • Lab experiments
  • Field measurements
  • Modeling
  • Dust environmental impact
  • Sediment transport
  • Earth
  • Mars
  • Planetary atmospheres