Space Science Reviews

, Volume 203, Issue 1–4, pp 377–426 | Cite as

Dust Devil Sediment Transport: From Lab to Field to Global Impact

  • Martina KloseEmail author
  • Bradley C. Jemmett-Smith
  • Henrik Kahanpää
  • Melinda Kahre
  • Peter Knippertz
  • Mark T. Lemmon
  • Stephen R. Lewis
  • Ralph D. Lorenz
  • Lynn D. V. Neakrase
  • Claire Newman
  • Manish R. Patel
  • Dennis Reiss
  • Aymeric Spiga
  • Patrick L. Whelley


The impact of dust aerosols on the climate and environment of Earth and Mars is complex and forms a major area of research. A difficulty arises in estimating the contribution of small-scale dust devils to the total dust aerosol. This difficulty is due to uncertainties in the amount of dust lifted by individual dust devils, the frequency of dust devil occurrence, and the lack of statistical generality of individual experiments and observations. In this paper, we review results of observational, laboratory, and modeling studies and provide an overview of dust devil dust transport on various spatio-temporal scales as obtained with the different research approaches. Methods used for the investigation of dust devils on Earth and Mars vary. For example, while the use of imagery for the investigation of dust devil occurrence frequency is common practice for Mars, this is less so the case for Earth. Modeling approaches for Earth and Mars are similar in that they are based on the same underlying theory, but they are applied in different ways. Insights into the benefits and limitations of each approach suggest potential future research focuses, which can further reduce the uncertainty associated with dust devil dust entrainment. The potential impacts of dust devils on the climates of Earth and Mars are discussed on the basis of the presented research results.


Dust devils Dust emission Lab experiments Field measurements Modeling Dust environmental impact Sediment transport Earth Mars Planetary atmospheres 



We wish to thank Luca Montabone, one anonymous reviewer, and two editors for their careful review and valuable comments, and Bruce Cantor for his permission to reuse Fig. 4 of Cantor et al. (2006) in this paper. Bradley Jemmett-Smith and Peter Knippertz would like to acknowledge funding from the European Research Council Grant 257543 “Desert Storms”. Ralph Lorenz acknowledges the support of NASA Mars Fundamental Research Program grant NNX12AI04G. Not least, we are grateful to the International Space Science Institute (ISSI), Bern, Switzerland, and to the conveners for organizing the workshop “Dust Devils on Mars and Earth” (


  1. A. Ansmann, M. Tesche, P. Knippertz, E. Bierwirth, D. Althausen, D. Müller, O. Schulz, Vertical profiling of convective dust plumes in southern Morocco during SAMUM. Tellus B 61(1), 340–353 (2009) ADSCrossRefGoogle Scholar
  2. R.A. Bagnold, The Physics of Blown Sand and Desert Dunes (Methuen, London, 1941), p. 265 Google Scholar
  3. M. Balme, R. Greeley, Dust devils on Earth and Mars. Rev. Geophys. 44 (2006). doi: 10.1029/2005RG000188
  4. M. Balme, A. Hagermann, Particle lifting at the soil-air interface by atmospheric pressure excursions in dust devils. Geophys. Res. Lett. 33, L19S01 (2006). doi: 10.1029/2006GL026819 CrossRefGoogle Scholar
  5. M.R. Balme, P.L. Whelley, R. Greeley, Mars: dust devil track survey in Argyre Planitia and Hellas Basin. J. Geophys. Res. 108(E8), 5086 (2003). doi: 10.1029/2003JE002096 CrossRefGoogle Scholar
  6. M. Bangert, A. Nenes, B. Vogel, D. Barahona, V.A. Karydis, P. Kumar, C. Kottmeier, U. Blahak, Saharan dust event impacts on cloud formation and radiation over Western Europe. Atmos. Chem. Phys. 12, 4045–4063 (2012). doi: 10.5194/acp-12-4045-2012 ADSCrossRefGoogle Scholar
  7. S. Basu, M.I. Richardson, R.J. Wilson, Simulation of the Martian dust cycle with the GFDL Mars GCM. J. Geophys. Res., Planets 109(E11), E11006 (2004). doi: 10.1029/2004JE002243 ADSCrossRefGoogle Scholar
  8. O. Boucher, D. Randall, P. Artaxo, C. Bretherton, G. Feingold, P. Forster, V.-M. Kerminen, Y. Kondo, H. Liao, U. Lohmann, P. Rasch, S.K. Satheesh, S. Sherwood, B. Stevens, X.Y. Zhang, Clouds and Aerosols, in Climate Change 2013: the Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, ed. by T.F. Stocker, D. Quin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, P.M. Midgley (Cambridge University Press, Cambridge/New York, 2013) Google Scholar
  9. C.S. Bristow, K.A. Hudson-Edwards, A. Chappell, Fertilizing the Amazon and equatorial Atlantic with West African dust. Geophys. Res. Lett. 37 (2010). doi: 10.1029/2010GL043486
  10. R.V. Cakmur, R.L. Miller, O. Torres, Incorporating the effect of small-scale circulations upon dust emission in an atmospheric general circulation model. J. Geophys. Res., Atmos. 109(D7), D07201 (2004). doi: 10.1029/2003JD004067 ADSCrossRefGoogle Scholar
  11. B.A. Cantor, K.M. Kanak, K.S. Edgett, Mars Orbiter Camera observations of Martian dust devils and their tracks (September 1997 to January 2006) and evaluation of theoretical vortex models. J. Geophys. Res. 111, E12002 (2006). doi: 10.1029/2006JE002700 ADSCrossRefGoogle Scholar
  12. B.A. Cantor, MOC observations of the 2001 Mars planet-encircling dust storm. Icarus 186(1), 60–96 (2007). doi: 10.1016/j.icarus.2006.08.019 ADSCrossRefGoogle Scholar
  13. B.A. Cantor, P.B. James, M. Caplinger, M.J. Wolff, Martian dust storms: 1999 Mars Orbiter Camera observations. J. Geophys. Res. 106(E10), 23653–23687 (2001). doi: 10.1029/2000JE001310 ADSCrossRefGoogle Scholar
  14. J.J. Carroll, J.A. Ryan, Atmospheric vorticity and dust devil rotation. J. Geophys. Res. 75(27), 5179–5184 (1970). doi: 10.1029/JC075i027p05179 ADSCrossRefGoogle Scholar
  15. D.S. Choi, C.M. Dundas, Measurements of Martian dust devil winds with HiRISE. Geophys. Res. Lett. 38(24), L24206 (2011). doi: 10.1029/2011GL049806 ADSCrossRefGoogle Scholar
  16. S.M. Cowie, P. Knippertz, J.H. Marsham, Are vegetation-related roughness changes the cause of the recent decrease in dust emission from the Sahel? Geophys. Res. Lett. 40(9), 1868–1872 (2013) ADSCrossRefGoogle Scholar
  17. C. de Beule, G. Wurm, T. Kelling, M. Küpper, T. Jankowski, J. Teiser, The Martian soil as a planetary gas pump. Nat. Phys. 10, 17–20 (2014). doi: 10.1038/nphys2821 CrossRefGoogle Scholar
  18. P. De Deckker, C.I. Munday, J. Brocks, T. O’Loingsigh, G.E. Allison, J. Hope, M. Norman, J.-B.W. Stuut, N.J. Tapper, S. van der Kaars, Characterisation of the major dust storm that traversed over eastern Australia in September 2009; a multidisciplinary approach. Aeolian Res. 15, 133–149 (2014). doi: 10.1016/j.aeolia.2014.07.003 ADSCrossRefGoogle Scholar
  19. J.W. Deardorff, A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers. J. Fluid Mech. 41(2), 453–480 (1970). doi: 10.1017/S0022112070000691 ADSzbMATHCrossRefGoogle Scholar
  20. J. Deardorff, Observed characteristics of the outer layer. Short course on the planetary boundary layer (1978) Google Scholar
  21. P.J. DeMott, K. Sassen, M.R. Poellot, D. Baumgardner, D.C. Rogers, S.D. Brooks, A.J. Prenni, S.M. Kreidenweis, African dust aerosols as atmospheric ice nuclei. Geophys. Res. Lett. 30(14) (2003) Google Scholar
  22. E. Derbyshire, Natural minerogenic dust and human health. Ambio 36(1), 73–77 (2007). doi: 10.1579/0044-7447(2007)36[73:NMDAHH]2.0.CO;2 CrossRefGoogle Scholar
  23. M.D. Ellehoj, H.P. Gunnlaugsson, P.A. Taylor, H. Kahanpää, K.M. Bean, B.A. Cantor, B.T. Gheynani, L. Drube, D. Fisher, A.-M. Harri, C. Holstein-Rathlou, M.T. Lemmon, M.B. Madsen, M.C. Malin, J. Polkko, P.H. Smith, L.K. Tamppari, W. Weng, J. Whiteway, Convective vortices and dust devils at the Phoenix Mars mission landing site. J. Geophys. Res. 115(E4) (2010). doi: 10.1029/2009JE003413
  24. L.K. Fenton, R. Lorenz, Dust devil height and spacing with relation to the martian planetary boundary layer thickness. Icarus 260, 246–262 (2015). doi: 10.1016/j.icarus.2015.07.028 ADSCrossRefGoogle Scholar
  25. F. Ferri, P.H. Smith, M. Lemmon, N.O. Rennó, Dust devils as observed by Mars Pathfinder. J. Geophys. Res., Planets 108(E12) (2003). doi: 10.1029/2000JE001421
  26. J.A. Fisher, M.I. Richardson, C.E. Newman, M.A. Szwast, C. Graf, S. Basu, S.P. Ewald, A.D. Toigo, R.J. Wilson, A survey of Martian dust devil activity using Mars Global Surveyor Mars Orbiter Camera images. J. Geophys. Res. 110(E3), E03004 (2005). doi: 10.1029/2003JE002165 ADSCrossRefGoogle Scholar
  27. S.D. Fuerstenau, Solar heating of suspended particles and the dynamics of Martian dust devils. Geophys. Res. Lett. 33(19) (2006). doi: 10.1029/2006GL026798
  28. V.H. Garrison, E.A. Shinn, W.T. Foreman, D.W. Griffin, C.W. Holmes, C.A. Kellogg, M.S. Majewski, L.L. Richardson, K.B. Ritchie, G.W. Smith, African and Asian dust: from desert soils to coral reefs. Bioscience 53(5), 469–480 (2003). doi: 10.1641/0006-3568(2003)053[0469:AAADFD]2.0.CO;2 CrossRefGoogle Scholar
  29. B.T. Gheynani, P.A. Taylor, Large Eddy Simulation of typical dust devil-like vortices in highly convective Martian boundary layers at the Phoenix lander site. Planet. Space Sci. 59, 43–50 (2011). doi: 10.1016/j.pss.2010.10.011 ADSCrossRefGoogle Scholar
  30. D.A. Gillette, P.C. Sinclair, Estimation of suspension of alkaline material by dust devils in the United States. Atmos. Environ. 24(5), 1135–1142 (1990) ADSCrossRefGoogle Scholar
  31. P. Ginoux, J.M. Prospero, T.E. Gill, N.C. Hsu, M. Zhao, Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products. Rev. Geophys. 50(3) (2012) Google Scholar
  32. R. Greeley, J.D. Iversen, Wind as a Geological Process on Earth, Mars, Venus and Titan (Cambridge University Press, New York, 1985), p. 333 CrossRefGoogle Scholar
  33. R. Greeley, M.R. Balme, J.D. Iversen, S. Metzger, R. Mickelson, J. Phoreman, B. White, Martian dust devils: laboratory simulations of particle threshold. J. Geophys. Res. 108(E5), 5041 (2003) CrossRefGoogle Scholar
  34. R. Greeley, P.L. Whelley, R.E. Arvidson, N.A. Cabrol, D.J. Foley, B.J. Franklin, P.G. Geissler, M.P. Golombek, R.O. Kuzmin, G.A. Landis, M.T. Lemmon, L.D.V. Neakrase, S.W. Squyres, S.D. Thompson, Active dust devils in Gusev crater, Mars: observations from the Mars Exploration Rover Spirit. J. Geophys. Res. 111(E12), E12S09 (2006). doi: 10.1029/2006JE002743 ADSCrossRefGoogle Scholar
  35. R. Greeley, D.A. Waller, N.A. Cabrol, G.A. Landis, M.T. Lemmon, L.D.V. Neakrase, M. Pendleton Hoffer, S.D. Thompson, P.L. Whelley, Gusev Crater, Mars: observations of three dust devil seasons. J. Geophys. Res., Planets 115(9), 1–18 (2010). doi: 10.1029/2010JE003608 Google Scholar
  36. D.J. Griggs, M. Noguer, Climate change 2001: the scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change. Weather 57(8), 267–269 (2002) ADSCrossRefGoogle Scholar
  37. Z. Gu, J. Qiu, Y. Zhao, Y. Li, Simulation of terrestrial dust devil patterns. Adv. Atmos. Sci. 25(1), 31–42 (2008). doi: 10.1007/s00376-008-0031-7 CrossRefGoogle Scholar
  38. G. Hess, K. Spillane, Characteristics of dust devils in Australia. J. Appl. Meteorol. 29(6), 498–507 (1990) ADSCrossRefGoogle Scholar
  39. R. Hesse, Short-lived and long-lived dust devil tracks in the coastal desert of southern Peru. Aeolian Res. 5, 101–106 (2012) ADSCrossRefGoogle Scholar
  40. N. Huneeus, M. Schulz, Y. Balkanski, J. Griesfeller, J. Prospero, S. Kinne, S. Bauer, O. Boucher, M. Chin, F. Dentener, T. Diehl, R. Easter, D. Fillmore, S. Ghan, P. Ginoux, A. Grini, L. Horowitz, D. Koch, M.C. Krol, W. Landing, X. Liu, N. Mahowald, R. Miller, J.-J. Morcrette, G. Myhre, J. Penner, J. Perlwitz, P. Stier, T. Takemura, C.S. Zender, Global dust model intercomparison in AeroCom phase I. Atmos. Chem. Phys. 11(15), 7781–7816 (2011). doi: 10.5194/acp-11-7781-2011. ADSCrossRefGoogle Scholar
  41. IPCC, Clouds and aerosols, in Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, ed. by J.T. Houghton, Y. Ding, D.J. Griggs, M. Noguer, P.J. van der Linden, X. Dai, K. Maskell, C.A. Johnson (Cambridge University Press, Cambridge/New York, 2001), p. 881 Google Scholar
  42. K. Isono, On ice-crystal nuclei and other substances found in snow crystals. J. Meteorol. 12, 456–462 (1955). doi: 10.1016/j.aeolia.2013.11.002 CrossRefGoogle Scholar
  43. J. Ito, H. Niino, M. Nakanishi, Large eddy simulation on dust suspension in a convective mixed layer. SOLA 6, 133–136 (2010a). doi: 10.2151/sola.2010-034 CrossRefGoogle Scholar
  44. J. Ito, R. Tanaka, H. Niino, M. Nakanishi, Large eddy simulation on dust devils in a diurnally-evolving convective mixed layer. J. Meteorol. Soc. Jpn. 88(1), 63–77 (2010b). doi: 10.2151/jmsj.2010-105 CrossRefGoogle Scholar
  45. B.C. Jemmett-Smith, J.H. Marsham, P. Knippertz, C.A. Gilkeson, Quantifying global dust devil occurrence from meteorological analyses. Geophys. Res. Lett. 42(4), 1275–1282 (2015) ADSCrossRefGoogle Scholar
  46. H. Kahanpää, C. Newman, J. Moores, M.-P. Zorzano, J. Martín-Torres, S. Navarro, A. Lepinette, M.T. Lemmon, B. Cantor, P. Valentín-Serrano, A. Ullán, W. Schmidt, Convective vortices and dust devils at the MSL landing site: annual variability. J. Geophys. Res. (2016, submitted) Google Scholar
  47. M.A. Kahre, J.R. Murphy, R.M. Haberle, F. Montmessin, J. Schaeffer, Simulating the Martian dust cycle with a finite surface dust reservoir. Geophys. Res. Lett. 32(20), L20204 (2005). doi: 10.1029/2005GL023495 ADSCrossRefGoogle Scholar
  48. M.A. Kahre, J.R. Murphy, R.M. Haberle, Modeling the Martian dust cycle and surface dust reservoirs with the NASA Ames general circulation model. J. Geophys. Res., Planets 111(E6), E06008 (2006). doi: 10.1029/2005JE002588 ADSCrossRefGoogle Scholar
  49. J.C. Kaimal, J.A. Businger, Case studies of a convective plume and a dust devil. J. Appl. Meteorol. 9, 612–620 (1970). doi: 10.1175/1520-0450(1970)009<0612:CSOACP>2.0.CO;2 ADSCrossRefGoogle Scholar
  50. K.M. Kanak, Numerical simulation of dust devil-scale vortices. Q. J. R. Meteorol. Soc. 131(607), 1271–1292 (2005). doi: 10.1256/qj.03.172 ADSCrossRefGoogle Scholar
  51. K.M. Kanak, D.K. Lilly, J.T. Snow, The formation of vertical vortices in the convective boundary layer. Q. J. R. Meteorol. Soc. 126(569), 2789–2810 (2000). doi: 10.1002/qj.49712656910 ADSCrossRefGoogle Scholar
  52. C.A. Kellogg, D.W. Griffin, Aerobiology and the global transport of desert dust. Trends Ecol. Evol. 21(11), 638–644 (2006). doi: 10.1016/j.tree.2006.07.004 CrossRefGoogle Scholar
  53. M. Klose, Y. Shao, Stochastic parameterization of dust emission and application to convective atmospheric conditions. Atmos. Chem. Phys. 12(12), 7309–7320 (2012). doi: 10.5194/acp-12-7309-2012 ADSCrossRefGoogle Scholar
  54. M. Klose, Y. Shao, Large-eddy simulation of turbulent dust emission. Aeolian Res. 8, 49–58 (2013). doi: 10.1016/j.aeolia.2012.10.010 ADSCrossRefGoogle Scholar
  55. M. Klose, Y. Shao, A numerical study on dust devils with implications to global dust budget estimates. Aeolian Res. 22, 47–58 (2016). doi: 10.1016/j.aeolia.2016.05.003 ADSCrossRefGoogle Scholar
  56. M. Klose, Y. Shao, X.L. Li, H.S. Zhang, M. Ishizuka, M. Mikami, J.F. Leys, Further development of a parameterization for convective turbulent dust emission and evaluation based on field observations. J. Geophys. Res., Atmos. 119, 10441–10457 (2014). doi: 10.1002/2014JD021688 ADSCrossRefGoogle Scholar
  57. M.R. Klose, Convective Turbulent Dust Emission: Process, parameterization, and relevance in the Earth system, Dissertation, Universität zu Köln, 2014.
  58. J. Koch, N.O. Renno, The role of convective plumes and vortices on the global aerosol budget. Geophys. Res. Lett. 32 (2005). doi: 10.1029/2005GL023420
  59. J.F. Kok, N.M. Mahowald, G. Fratini, J.A. Gillies, M. Ishizuka, J.F. Leys, M. Mikami, M.-S. Park, S.-U. Park, R.S. Van Pelt, T.M. Zobeck, An improved dust emission model—Part 1: model description and comparison against measurements. Atmos. Chem. Phys. 14(23), 13023–13041 (2014). doi: 10.5194/acp-14-13023-2014 ADSCrossRefGoogle Scholar
  60. J.F. Kok, N.O. Renno, Enhancement of the emission of mineral dust aerosols by electric forces. Geophys. Res. Lett. 33(19), 2–6 (2006). doi: 10.1029/2006GL026284 CrossRefGoogle Scholar
  61. M. Küpper, G. Wurm, Thermal creep-assisted dust lifting on Mars: wind tunnel experiments for the entrainment threshold velocity. J. Geophys. Res. 120(7), 1346–1356 (2015). doi: 10.1002/2015JE004848 CrossRefGoogle Scholar
  62. M.V. Kurgansky, Steady-state properties and statistical distribution of atmospheric dust devils. Geophys. Res. Lett. 33(19) (2006). doi: 10.1029/2006GL026142
  63. M.V. Kurgansky, A. Montecinos, V. Villagran, S.M. Metzger, Micrometeorological conditions for dust-devil occurrence in the Atacama Desert. Bound.-Layer Meteorol. 138(2), 285–298 (2011) ADSCrossRefGoogle Scholar
  64. M.T. Lemmon, M.J. Wolff, J.F. Bell III, M.D. Smith, B.A. Cantor, P.H. Smith, Dust aerosol, clouds, and the atmospheric optical depth record over 5 Mars years of the Mars Exploration Rover mission. Icarus 251, 96–111 (2015). doi: 10.1016/j.icarus.2014.03.029. Dynamic Mars ADSCrossRefGoogle Scholar
  65. H. Lettau, Note on aerodynamic roughness-parameter estimation on the basis of roughness element description. J. Appl. Meteorol. 8, 828–832 (1969). doi: 10.1175/1520-0450(1969)008<0828:NOARPE>2.0.CO;2 ADSCrossRefGoogle Scholar
  66. G.A. Loosmore, J.R. Hunt, Dust resuspension without saltation. J. Geophys. Res. 105(D16), 20663–20671 (2000). doi: 10.1029/2000JD900271 ADSCrossRefGoogle Scholar
  67. R. Lorenz, On the statistical distribution of dust devil diameters. Icarus 215(1), 381–390 (2011). doi: 10.1016/j.icarus.2011.06.005 ADSCrossRefGoogle Scholar
  68. R. Lorenz, The longevity and aspect ratio of dust devils: effects on detection efficiencies and comparison of landed and orbital imaging at Mars. Icarus 226(1), 964–970 (2013). doi: 10.1016/j.icarus.2013.06.031 ADSCrossRefGoogle Scholar
  69. R.D. Lorenz, Vortex encounter rates with fixed barometer stations: comparison with visual dust devil counts and large-eddy simulations. J. Atmos. Sci. 71, 4461–4472 (2014). doi: 10.1175/JAS-D-14-0138.1 ADSCrossRefGoogle Scholar
  70. R.D. Lorenz, B.K. Jackson, Dust devils and dustless vortices on a desert playa observed with surface pressure and solar flux logging. GeoResJ 5, 1–11 (2015). doi: 10.1016/j.grj.2014.11.002 CrossRefGoogle Scholar
  71. R.D. Lorenz, M.J. Myers, Dust devil hazard to aviation: a review of United States air accident reports. J. Meteorol. 30(298), 178–184 (2005) Google Scholar
  72. R.D. Lorenz, D. Reiss, Solar panel clearing events, dust devil tracks, and in-situ vortex detections on Mars. Icarus 248, 162–164 (2015). doi: 10.1016/j.icarus.2014.10.034 ADSCrossRefGoogle Scholar
  73. R.D. Lorenz, L.D. Neakrase, J.D. Anderson, In-situ measurement of dust devil activity at La Jornada Experimental Range, New Mexico, USA. Aeolian Res., 1–12 (2015). doi: 10.1016/j.aeolia.2015.01.012
  74. D.J. Lunt, P.J. Valdes, The modern dust cycle: comparison of model results with observations and study of sensitivities. J. Geophys. Res., Atmos. 107(D23), 4669 (2002). doi: 10.1029/2002JD002316 ADSCrossRefGoogle Scholar
  75. T. Lyons, U. Nair, I. Foster, Clearing enhances dust devil formation. J. Arid Environ. 72(10), 1918–1928 (2008) CrossRefGoogle Scholar
  76. B. Marticorena, G. Bergametti, Modeling the atmospheric dust cycle: 1. Design of a soil-derived dust emission scheme. J. Geophys. Res. 100(D8), 16415–16430 (1995) ADSCrossRefGoogle Scholar
  77. J.P. Mason, M.R. Patel, S.R. Lewis, Radiative transfer modelling of dust devils. Icarus 223(1), 1–10 (2013). doi: 10.1016/j.icarus.2012.11.018 ADSCrossRefGoogle Scholar
  78. J.P. Mason, M.R. Patel, S.R. Lewis, The retrieval of optical properties from terrestrial dust devil vortices. Icarus 231(0), 385–393 (2014). doi: 10.1016/j.icarus.2013.12.013 ADSCrossRefGoogle Scholar
  79. S.M. Metzger, M.R. Balme, M.C. Towner, B.J. Bos, T.J. Ringrose, M.R. Patel, In situ measurements of particle load and transport in dust devils. Icarus 214(2), 766–772 (2011). doi: 10.1016/j.icarus.2011.03.013 ADSCrossRefGoogle Scholar
  80. S.M. Metzger, Dust devils as aeolian transport mechanisms in the southern Nevada and in the Mars Pathfinder landing site, PhD thesis, University of Nevada, 1999 Google Scholar
  81. S.M. Metzger, J.R. Carr, J.R. Johnson, T.J. Parker, M.T. Lemmon, Dust devil vortices seen by the Mars Pathfinder Camera. Geophys. Res. Lett. 26(18), 2781–2784 (1999). doi: 10.1029/1999GL008341 ADSCrossRefGoogle Scholar
  82. T.I. Michaels, Numerical modeling of Mars dust devils: Albedo track generation. Geophys. Res. Lett. 33(19) (2006). doi: 10.1029/2006GL026268
  83. T.I. Michaels, S.C.R. Rafkin, Large eddy simulation of atmospheric convection on Mars. Q. J. R. Meteorol. Soc. 130, 1251–1274 (2004). doi: 10.1256/qj.02.169 ADSCrossRefGoogle Scholar
  84. D.V. Michelangeli, O.B. Toon, R.M. Haberle, J.B. Pollack, Numerical simulations of the formation and evolution of water ice clouds in the martian atmosphere. Icarus 102(2), 261–285 (1993). doi: 10.1006/icar.1993.1048 ADSCrossRefGoogle Scholar
  85. R.L. Miller, P. Knippertz, C. Pérez García-Pando, J.P. Perlwitz, I. Tegen, Impact of dust radiative forcing upon climate, in Mineral Dust, ed. by P. Knippertz, J.-B.W. Stuut (Springer, Netherlands, 2014), pp. 327–357. ISBN 978-94-017-8977-6. doi: 10.1007/978-94-017-8978-3_13 CrossRefGoogle Scholar
  86. L. Montabone, F. Forget, E. Millour, R.J. Wilson, S.R. Lewis, B. Cantor, D. Kass, A. Kleinböhl, M.T. Lemmon, M.D. Smith, M.J. Wolff, Eight-year climatology of dust optical depth on Mars. Icarus 251, 65–95 (2015). doi: 10.1016/j.icarus.2014.12.034. Dynamic Mars ADSCrossRefGoogle Scholar
  87. J.E. Moores, M.T. Lemmon, H. Kahanpää, S.C.R. Rafkin, R. Francis, J. Pla-Garcia, K. Bean, R. Haberle, C. Newman, M. Mischna, A.R. Vasavada, M. de la Torre Juárez, N. Renno, J. Bell, F. Calef, B. Cantor, T.H. Mcconnochie, A.-M. Harri, M. Genzer, M.H. Wong, M.D. Smith, F.J. Martín-Torres, M.-P. Zorzano, O. Kemppinen, E. McCullough, Observational evidence of a suppressed planetary boundary layer in northern Gale Crater, Mars as seen by the Navcam instrument onboard the Mars Science Laboratory rover. Icarus 249(15), 129–142 (2015). doi: 10.1016/j.icarus.2014.09.020 ADSCrossRefGoogle Scholar
  88. D.P. Mulholland, P.L. Read, S.R. Lewis, Simulating the interannual variability of major dust storms on Mars using variable lifting thresholds. Icarus 223(1), 344–358 (2013). doi: 10.1016/j.icarus.2012.12.003 ADSCrossRefGoogle Scholar
  89. J.R. Murphy, S. Nelli, Mars Pathfinder convective vortices: frequency of occurrence. Geophys. Res. Lett. 29(23), 18–1184 (2002). doi: 10.1029/2002GL015214 CrossRefGoogle Scholar
  90. L.D.V. Neakrase, R. Greeley, Dust devils in the laboratory: effects of surface roughness on vortex dynamics. J. Geophys. Res. 115, E05003 (2010a). doi: 10.1029/2009JE003465 ADSCrossRefGoogle Scholar
  91. L.D.V. Neakrase, R. Greeley, Dust devil sediment flux on Earth and Mars: laboratory simulations. Icarus 206(1), 306–318 (2010b) ADSCrossRefGoogle Scholar
  92. L.D.V. Neakrase, R. Greeley, J.D. Iversen, M.R. Balme, E.E. Eddlemon, Dust flux within dust devils: preliminary laboratory simulations Geophys. Res. Lett., 33, L19S09, (2006). doi: 10.1029/2006GL026810 CrossRefGoogle Scholar
  93. C.E. Newman, S.R. Lewis, P.L. Read, The atmospheric circulation and dust activity in different orbital epochs on Mars. Icarus 174(1), 135–160 (2005). doi: 10.1016/j.icarus.2004.10.023 ADSCrossRefGoogle Scholar
  94. C.E. Newman, M.I. Richardson, The impact of surface dust source exhaustion on the martian dust cycle, dust storms and interannual variability, as simulated by the MarsWRF General Circulation Model. Icarus 257, 47–87 (2015). doi: 10.1016/j.icarus.2015.03.030 ADSCrossRefGoogle Scholar
  95. C.E. Newman, S.R. Lewis, P.L. Read, F. Forget, Modeling the Martian dust cycle, 1. Representations of dust transport processes. J. Geophys. Res., Planets 107(E12), 6-1–6-18 (2002a). doi: 10.1029/2002JE001910. 5123 CrossRefGoogle Scholar
  96. C.E. Newman, S.R. Lewis, P.L. Read, F. Forget, Modeling the Martian dust cycle 2. Multiannual radiatively active dust transport simulations. J. Geophys. Res., Planets 107(E12), 7-1–7-15 (2002b). doi: 10.1029/2002JE001920. 5124 CrossRefGoogle Scholar
  97. H. Ohno, T. Takemi, Mechanisms for intensification and maintenance of numerically simulated dust devils. Atmos. Sci. Lett. (2010). doi: 10.1002/asl.249 Google Scholar
  98. A.M.C. Oke, D. Dunkerley, N.J. Tapper, Willy-willies in the Australian landscape: sediment transport characteristics. J. Arid Environ. 71(2), 216–228 (2007a). doi: 10.1016/j.jaridenv.2007.03.014 CrossRefGoogle Scholar
  99. A. Oke, N. Tapper, D. Dunkerley, Willy-willies in the Australian landscape: the role of key meteorological variables and surface conditions in defining frequency and spatial characteristics. J. Arid Environ. 71(2), 201–215 (2007b) CrossRefGoogle Scholar
  100. F. Pantillon, P. Knippertz, J.H. Marsham, C.E. Birch, A parameterization of convective dust storms for models with mass-flux convection schemes. J. Atmos. Sci. 72, 2545–2561 (2015). doi: 10.1175/JAS-D-14-0341.1 ADSCrossRefGoogle Scholar
  101. A. Petrosyan, B. Galperin, S.E. Larsen, S.R. Lewis, A. Määttänen, P.L. Read, N. Renno, L.P.H.T. Rogberg, H. Savijärvi, T. Siili, A. Spiga, A. Toigo, L. Vázquez, The martian atmospheric boundary layer. Rev. Geophys. 49(3) (2011). doi: 10.1029/2010RG000351
  102. S. Raasch, T. Franke, Structure and formation of dust devil-like vortices in the atmospheric boundary layer: a high-resolution numerical study. J. Geophys. Res. 116, D16120, (2011). doi: 10.1029/2011JD016010 ADSCrossRefGoogle Scholar
  103. S.C.R. Rafkin, R.M. Haberle, T.I. Michaels, The Mars regional atmospheric modeling system: model description and selected simulations. Icarus 151, 228–256 (2001) ADSCrossRefGoogle Scholar
  104. P.L. Read, S.R. Lewis, The Martian Climate Revisited: Atmosphere and Environment of a Desert Planet (Springer, Berlin/New York, 2004) Google Scholar
  105. D. Reiss, N.M. Hoekzema, O.J. Stenzel, Dust deflation by dust devils on Mars derived from optical depth measurements using the shadow method in HiRISE images. Planet. Space Sci. 93–94, 54–64 (2014). doi: 10.1016/j.pss.2014.01.016 CrossRefGoogle Scholar
  106. D. Reiss, J. Raack, H. Hiesinger, Bright dust devil tracks on Earth: implications for their formation on Mars. Icarus 211(1), 917–920 (2011). doi: 10.1016/j.icarus.2010.09.009 ADSCrossRefGoogle Scholar
  107. D. Reiss, A. Spiga, G. Erkerling, The horizontal motion of dust devils on Mars derived from CRISM and CTX/HiRISE observations. Icarus 227, 8–20 (2014). doi: 10.1016/j.icarus.2013.08.028 ADSCrossRefGoogle Scholar
  108. D. Reiss, M. Zanetti, G. Neukum, Multitemporal observations of identical active dust devils on Mars with the High Resolution Stereo Camera (HRSC) and Mars Orbiter Camera (MOC). Icarus 215 (2011). doi: 10.1016/j.icarus.2011.06.011
  109. D. Reiss, J. Raack, A.P. Rossi, G. Di Achille, H. Hiesinger, First in-situ analysis of dust devil tracks on Earth and their comparison with tracks on Mars. Geophys. Res. Lett. 37(14), L14203 (2010). doi: 10.1029/2010GL044016 ADSCrossRefGoogle Scholar
  110. D. Reiss, R.D. Lorenz, Dust devil track survey at Elysium Planitia, Mars: implications for the InSight landing sites. Icarus 266, 315–330 (2015). doi: 10.1016/j.icarus.2015.11.012 ADSCrossRefGoogle Scholar
  111. D. Reiss, M.I. Zimmerman, D.C. Lewellen, Formation of cycloidal dust devil tracks by redeposition of coarse sands in southern Peru: implications for Mars. Earth Planet. Sci. Lett. 383, 7–15 (2013) ADSCrossRefGoogle Scholar
  112. N.O. Renno, A.P. Ingersoll, Natural convection as a heat engine: a theory for CAPE. J. Atmos. Sci. 53, 572–585 (1996). doi: 10.1175/1520-0469(1996)053<0572:NCAAHE>2.0.CO;2 ADSCrossRefGoogle Scholar
  113. N.O. Renno, M.L. Burkett, M.P. Larkin, A simple thermodynamical theory for dust devils. J. Atmos. Sci. 55, 3244–3252 (1998). doi: 10.1175/1520-0469(1998)055<3244:ASTTFD>2.0.CO;2 ADSMathSciNetCrossRefGoogle Scholar
  114. N.O. Renno, V.J. Abreu, J. Koch, P.H. Smith, O.K. Hartogensis, H.A.R.D. Bruin, D. Burose, G.T. Delory, W.M. Farrell, C.J. Watts, J. Garatuza, M. Parker, A. Carswell, MATADOR 2002: a pilot field experiment on convective plumes and dust devils. J. Geophys. Res. 109 (2004). doi: 10.1029/2003JE002219
  115. N.O. Renno, A.A. Nush, J. Luninne, J. Murphy, Martian and terrestrial dust devils: test of a scaling theory using Pathfinder data. J. Geophys. Res. 105, 1859–1866 (2000). doi: 10.1029/19999JE001037 ADSCrossRefGoogle Scholar
  116. D. Rosenfeld, Y. Rudich, R. Lahav, Desert dust suppressing precipitation: a possible desertification feedback loop. Proc. Natl. Acad. Sci. USA 98(11), 5975–5980 (2001). doi: 10.1073/pnas.101122798 ADSCrossRefGoogle Scholar
  117. J.A. Ryan, R.D. Lucich, Possible dust devils, vortices on mars. J. Geophys. Res. 88(C15), 11005–11011 (1983). doi: 10.1029/JC088iC15p11005 ADSCrossRefGoogle Scholar
  118. J. Ryan, Relation of dust devil frequency and diameter to atmospheric temperature. J. Geophys. Res. 77(36), 7133–7137 (1972) ADSCrossRefGoogle Scholar
  119. K. Schepanski, I. Tegen, M. Todd, B. Heinold, G. Bönisch, Meteorological processes forcing Saharan dust emission inferred from MSG-SEVIRI observations of subdaily dust source activation and numerical models. J. Geophys. Res. 114, 10201 (2012) CrossRefGoogle Scholar
  120. J.T. Schofield, J.R. Barnes, D. Crisp, R.M. Haberle, S. Larsen, J.A. Magalhaes, J.R. Murphy, A. Seiff, G. Wilson, The Mars Pathfinder atmospheric structure investigation meteorology (ASI/MET) experiment. Science 278(5344), 1752–1758 (1997). doi: 10.1126/science.278.5344.1752 ADSCrossRefGoogle Scholar
  121. Y. Shao, Simplification of a dust emission scheme and comparison with data. J. Geophys. Res. 109 (2004). doi: 10.1029/2003JD004372
  122. Y. Shao, Physics and Modelling of Wind Erosion, 2nd edn. (Springer, Berlin, 2008), p. 452 Google Scholar
  123. Y. Shao, M. Klose, A note on the stochastic nature of particle cohesive force and implications to threshold friction velocity for aerodynamic dust entrainment. Aeolian Res. (2016, in revision) Google Scholar
  124. Y. Shao, H. Lu, A simple expression for wind erosion threshold friction velocity. J. Geophys. Res. 105, 22437–22443 (2000) ADSCrossRefGoogle Scholar
  125. Y. Shao, M. Klose, K.-H. Wyrwoll, Recent global dust trend and connections to climate forcing. J. Geophys. Res., Atmos. 118, 1–12 (2013). doi: 10.1002/jgrd.50836 ADSCrossRefGoogle Scholar
  126. Y. Shao, M.R. Raupach, P.A. Findlater, The effect of saltation bombardment on the entrainment of dust by wind. J. Geophys. Res. 98, 12719–12726 (1993) ADSCrossRefGoogle Scholar
  127. Y. Shao, K.-H. Wyrwoll, A. Chappell, J. Huang, Z. Lin, G.H. McTainsh, M. Mikami, T.Y. Tanaka, X. Wang, S. Yoon, Dust cycle: an emerging core theme in Earth system science. Aeolian Res. 2, 181–204 (2011). doi: 10.1016/j.aeolia.2011.02.001 ADSCrossRefGoogle Scholar
  128. Y. Shao, S. Liu, J. Schween, S. Crewell, Large-eddy atmosphere-land-surface modelling over heterogeneous surfaces: model development and comparison with measurements. Bound.-Layer Meteorol. 148(2), 333–356 (2013). doi: 10.1007/s10546-013-9823-0 ADSCrossRefGoogle Scholar
  129. E.A. Shinn, G.W. Smith, J.M. Prospero, P. Betzer, M.L. Hayes, V. Garrison, R.T. Barber, African dust and the demise of Carribbean coral reefs. Geophys. Res. Lett. 27(19), 3029–3032 (2000). doi: 10.1029/2000GL011599 ADSCrossRefGoogle Scholar
  130. P.C. Sinclair, General characteristics of dust devils. J. Appl. Meteorol. 8, 32–45 (1969). doi: 10.1175/1520-0450(1969)008<0032:GCODD>2.0.CO;2 ADSCrossRefGoogle Scholar
  131. P.C. Sinclair, The lower structure of dust devils. J. Atmos. Sci. 30, 1599–1619 (1973). doi: 10.1175/1520-0469(1973)0302.0.CO;2 ADSCrossRefGoogle Scholar
  132. M.D. Smith, Interannual variability in TES atmospheric observations of Mars during 1999–2003. Icarus 167(1), 148–165 (2004). doi: 10.1016/j.icarus.2003.09.010. Special Issue on DS1/Comet Borrelly ADSCrossRefGoogle Scholar
  133. J.T. Snow, T.M. McClelland, Dust devils at White Sands Missile Range, New Mexico: 1. Temporal and spatial distributions. J. Geophys. Res., Atmos. 95(D9), 13707–13721 (1990). doi: 10.1029/JD095iD09p13707 ADSCrossRefGoogle Scholar
  134. I.N. Sokolik, O.B. Toon, Direct radiative forcing by anthropogenic airborne mineral aerosols. Nature 381, 681–683 (1996) ADSCrossRefGoogle Scholar
  135. A. Spiga, F. Forget, A new model to simulate the Martian mesoscale and microscale atmospheric circulation: validation and first results. J. Geophys. Res. 114, 02009 (2009). doi: 10.1029/2008JE003242 CrossRefGoogle Scholar
  136. A. Spiga, J. Faure, J.-B. Madeleine, A. Määttänen, F. Forget, Rocket dust storms and detached dust layers in the Martian atmosphere. J. Geophys. Res. 118(4), 746–767 (2013). doi: 10.1002/jgre.20046 CrossRefGoogle Scholar
  137. K. Steakley, J. Murphy, A year of convective vortex activity at Gale crater. Icarus (2016, accepted). doi: 10.1016/j.icarus.2016.06.010
  138. G. Sterk, L. Herrmann, A. Bationo, Wind-blown nutrient transport and soil productivity changes in southwest Niger. Land Degrad. Dev. 7(4), 325–335 (1996). doi: 10.1002/(SICI)1099-145X(199612)7:4<325::AID-LDR237>3.0.CO;2-Q CrossRefGoogle Scholar
  139. P.P. Sullivan, J.C. McWilliams, C.-H. Moeng, A subgrid-scale model for large-eddy simulation of planetary boundary-layer flows. Bound.-Layer Meteorol. 71(3), 247–276 (1994). doi: 10.1007/BF00713741 ADSCrossRefGoogle Scholar
  140. T. Takemi, M. Yasui, J. Zhou, L. Liu, Role of boundary layer and cumulus convection on dust emission and transport over a midlatitude desert area. J. Geophys. Res., Atmos. 111(D11), D11203 (2006). doi: 10.1029/2005JD006666 ADSCrossRefGoogle Scholar
  141. T.Y. Tanaka, M. Chiba, A numerical study of the contributions of dust source regions to the global dust budget. Glob. Planet. Change 52, 88–104 (2006) ADSCrossRefGoogle Scholar
  142. P. Thomas, P.J. Gierasch, Dust devils on Mars. Science 230(4722), 175–177 (1985). doi: 10.1126/science.230.4722.175 ADSCrossRefGoogle Scholar
  143. A.D. Toigo, M.I. Richardson, Meteorology of proposed Mars Exploration Rover landing sites. J. Geophys. Res. 108(E12), 8092 (2003). doi: 10.1029/2003JE002064 CrossRefGoogle Scholar
  144. C.A. Verba, P.E. Geissler, T.N. Titus, D. Waller, Observations from the High Resolution Imaging Science Experiment (HiRISE): Martian dust devils in Gusev and Russell craters. J. Geophys. Res. 115(E9), E09002 (2010). doi: 10.1029/2009JE003498 ADSCrossRefGoogle Scholar
  145. H. Wang, M.I. Richardson, The origin, evolution, and trajectory of large dust storms on Mars during Mars years 24–30 (1999–2011). Icarus 251, 112–127 (2015). doi: 10.1016/j.icarus.2013.10.033. Dynamic Mars ADSCrossRefGoogle Scholar
  146. N.P. Webb, C.L. Strong, A. Chappell, S.K. Marx, G.H. McTainsh, Soil organic carbon enrichment of dust emissions: magnitude, mechanisms and its implications for the carbon cycle. Earth Surf. Process. Landf. 38(14), 1662–1671 (2013). doi: 10.1002/esp.3404 ADSCrossRefGoogle Scholar
  147. P.L. Whelley, R. Greeley, Latitudinal dependency in dust devil activity on Mars. J. Geophys. Res., Planets 111(E10), E10003 (2006). doi: 10.1029/2006JE002677 ADSCrossRefGoogle Scholar
  148. P.L. Whelley, R. Greeley, The distribution of dust devil activity on Mars. J. Geophys. Res. 113(E7) (2008). doi: 10.1029/2007JE002966
  149. G. Wurm, J. Teiser, D. Reiss, Greenhouse and thermophoretic effects in dust layers: the missing link for lifting of dust on Mars. Geophys. Res. Lett. 35, L10201 (2008). doi: 10.1029/2008GL033799 ADSCrossRefGoogle Scholar
  150. Y.Z. Zhao, Z.L. Gu, Y.Z. Yu, Y. Ge, Y. Li, X. Feng, Mechanism and large eddy simulation of dust devils. Atmos.-Ocean 42(1), 61–84 (2004). doi: 10.3137/ao.420105 CrossRefGoogle Scholar
  151. A.D. Zimon, Adhesion of Dust and Powder (Consultants Bureau, New York, 1982), p. 438 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Martina Klose
    • 1
    • 2
    Email author
  • Bradley C. Jemmett-Smith
    • 3
  • Henrik Kahanpää
    • 4
  • Melinda Kahre
    • 5
  • Peter Knippertz
    • 6
  • Mark T. Lemmon
    • 7
  • Stephen R. Lewis
    • 8
  • Ralph D. Lorenz
    • 9
  • Lynn D. V. Neakrase
    • 10
  • Claire Newman
    • 11
  • Manish R. Patel
    • 8
  • Dennis Reiss
    • 12
  • Aymeric Spiga
    • 13
  • Patrick L. Whelley
    • 14
  1. 1.Institute for Geophysics and MeteorologyUniversity of CologneCologneGermany
  2. 2.USDA-ARS Jornada Experimental RangeLas CrucesUSA
  3. 3.Institute for Climate and Atmospheric Science, School of Earth and EnvironmentUniversity of LeedsLeedsUK
  4. 4.Finnish Meteorological InstituteHelsinkiFinland
  5. 5.NASA Ames Research CenterMoffett FieldUSA
  6. 6.Institute of Meteorology and Climate ResearchKarlsruhe Institute of TechnologyKarlsruheGermany
  7. 7.Department of Atmospheric SciencesTexas A&M UniversityCollege StationUSA
  8. 8.Department of Physical SciencesThe Open UniversityMilton KeynesUK
  9. 9.Johns Hopkins University Applied Physics LabLaurelUSA
  10. 10.Department of AstronomyNew Mexico State UniversityLas CrucesUSA
  11. 11.Aeolis ResearchPasadenaUSA
  12. 12.Institut für PlanetologieWestfälische Wilhelms-UniversitätMünsterGermany
  13. 13.Laboratoire de Météorologie DynamiqueUniversité Pierre et Marie CurieParisFrance
  14. 14.NASA Goddard Space Flight CenterGreenbeltUSA

Personalised recommendations