Space Science Reviews

, Volume 201, Issue 1–4, pp 1–53 | Cite as

Solar Coronal Jets: Observations, Theory, and Modeling

  • N. E. RaouafiEmail author
  • S. Patsourakos
  • E. Pariat
  • P. R. Young
  • A. C. Sterling
  • A. Savcheva
  • M. Shimojo
  • F. Moreno-Insertis
  • C. R. DeVore
  • V. Archontis
  • T. Török
  • H. Mason
  • W. Curdt
  • K. Meyer
  • K. Dalmasse
  • Y. Matsui


Coronal jets represent important manifestations of ubiquitous solar transients, which may be the source of significant mass and energy input to the upper solar atmosphere and the solar wind. While the energy involved in a jet-like event is smaller than that of “nominal” solar flares and coronal mass ejections (CMEs), jets share many common properties with these phenomena, in particular, the explosive magnetically driven dynamics. Studies of jets could, therefore, provide critical insight for understanding the larger, more complex drivers of the solar activity. On the other side of the size-spectrum, the study of jets could also supply important clues on the physics of transients close or at the limit of the current spatial resolution such as spicules. Furthermore, jet phenomena may hint to basic process for heating the corona and accelerating the solar wind; consequently their study gives us the opportunity to attack a broad range of solar-heliospheric problems.


Plasmas Sun: activity Sun: corona Sun: magnetic fields Sun: UV radiation Sun: X-rays 



Atmospheric Imaging Assembly (Lemen et al. 2012)


Active region(s)


Astronomical unit


Bright point(s)


Coronal bright point(s)


Coronal Diagnostic Spectrometer (Harrison et al. 1995)


Coronal hole(s)


Equatorial coronal hole(s)


EUV Imaging Spectrometer (Culhane et al. 2007b)


EUV Imaging Telescope (Delaboudinière et al. 1995)


Extreme ultraviolet


Extreme UV Imager (Wuelser et al. 2004)


Field of view


Solar-B pre-launch (Kosugi et al. 2007)


Helioseismic and Magnetic Imager (Scherrer et al. 2012)


Hard X-ray(s)


Interface Region Imaging Spectrometer (de Pontieu et al. 2014b)


International Space Science Institute, Bern, Switzerland


Jet-base bright point(s)


Large Angle and Spectrometer COronagraph (Brueckner et al. 1995)


Line of sight


Michelson Doppler Imager (Scherrer et al. 1995)




Polar coronal hole(s)


Quiet Sun


Reuven Ramaty High Energy Solar Spectroscopic Imager (Lin et al. 2002)


Solar Dynamics Observatory (Pesnell et al. 2012)


Sun Earth Connection Coronal and Heliospheric Investigation (Howard et al. 2008)


Solar and Heliospheric Observatory (Domingo et al. 1995)


Solar TErrestrial RElations Observatory (Kaiser et al. 2008)


Solar UV Measurements of Emitted Radiation spectrometer (Wilhelm et al. 1995)


Solar wind


Soft X-ray(s)


Soft X-ray Telescope (Tsuneta et al. 1991)


Transition Region And Coronal Explorer (Handy et al. 1999)




UV Coronagraph Spectrometer (Kohl et al. 1995)


White light


X-ray Telescope (Golub et al. 2007)


Solar-A pre-launch (Ogawara et al. 1991)



The “Solar Jets” team members are grateful for the International Space Science Institute (ISSI, Bern, Switzerland) that hosted two meetings on March 2013 and March 2014 within the frame of the international team on the “Solar Coronal Jets (”. This work benefited greatly from discussions held at these meetings. S. Patsourakos acknowledges support from an FP7 Marie Curie Grant (FP7-PEOPLE-2010-RG/268288) as well as European Union (European Social Fund—ESF) and Greek national funds through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF)—Research Funding Program: Thales. Investing in knowledge society through the European Social Fund. A.C. Sterling thanks R.L. Moore for useful discussions. A.C. Sterling was supported by funding from the Heliophysics Division of NASA’s Science Mission Directorate through the Living With a Star Targeted Research and Technology Program, and by funding from the Hinode Project Office at NASA/MSFC. P.R. Young acknowledges funding from National Science Foundation grant AGS-1159353. T. Török was supported by NASA’s HSR and LWS programs. K. Dalmasse acknowledges support from the Computational and Information Systems Laboratory and from the HAO, as well as support from the AFOSR under award FA9550-15-1-0030.

The SOHO is a mission of international cooperation between ESA and NASA. Hinode is a Japanese mission developed and launched by ISAS/JAXA, with NAOJ as a domestic partner and NASA and STFC (UK) as international partners. It is operated by these agencies in cooperation with the ESA and NSC (Norway). The STEREO/SECCHI data used here are produced by an international consortium of the NRL (USA), LMSAL (USA), NASA GSFC (USA), RAL (UK), Univ. Birmingham (UK), MPS (Germany), CSL (Belgium), IOTA (France), and IAS (France). SDO is the first mission to be launched for NASA’s Living With a Star (LWS) Program. IRIS is a NASA small explorer mission developed and operated by LMSAL with mission operations executed at NASA Ames Research center and major contributions to downlink communications funded by the Norwegian Space Center (NSC, Norway) through an ESA PRODEX contract.


  1. M. Adams, A.C. Sterling, R.L. Moore, G.A. Gary, A small-scale eruption leading to a blowout macrospicule jet in an on-disk coronal hole. Astrophys. J. 783, 11 (2014). doi: 10.1088/0004-637X/783/1/11 ADSCrossRefGoogle Scholar
  2. D. Alexander, L. Fletcher, High-resolution observations of plasma jets in the solar corona. Sol. Phys. 190, 167 (1999). doi: 10.1023/A:1005213826793 ADSCrossRefGoogle Scholar
  3. S.K. Antiochos, Heating of the corona by magnetic singularities. Mem. Soc. Astron. Ital. 61, 369 (1990) ADSGoogle Scholar
  4. V. Archontis, A.W. Hood, A flux emergence model for solar eruptions. Astrophys. J. Lett. 674, 113 (2008). doi: 10.1086/529377 ADSCrossRefGoogle Scholar
  5. V. Archontis, A.W. Hood, Magnetic flux emergence: a precursor of solar plasma expulsion. Astron. Astrophys. 537, 62 (2012). doi: 10.1051/0004-6361/201116956 ADSCrossRefGoogle Scholar
  6. V. Archontis, A.W. Hood, A numerical model of standard to blowout jets. Astrophys. J. Lett. 769, 21 (2013). doi: 10.1088/2041-8205/769/2/L21 ADSCrossRefGoogle Scholar
  7. V. Archontis, K. Tsinganos, C. Gontikakis, Recurrent solar jets in active regions. Astron. Astrophys. 512, 2 (2010). doi: 10.1051/0004-6361/200913752 ADSCrossRefGoogle Scholar
  8. H.M. Bain, L. Fletcher, Hard X-ray emission from a flare-related jet. Astron. Astrophys. 508, 1443 (2009). doi: 10.1051/0004-6361/200911876 ADSCrossRefGoogle Scholar
  9. S.J. Bame, J.R. Asbridge, W.C. Feldman, J.T. Gosling, Evidence for a structure-free state at high solar wind speeds. J. Geophys. Res. 82, 1487 (1977). doi: 10.1029/JA082i010p01487 ADSCrossRefGoogle Scholar
  10. D. Banerjee, E. O’Shea, J.G. Doyle, Giant macro-spicule as observed by CDS on SOHO. Astron. Astrophys. 355, 1152 (2000) ADSGoogle Scholar
  11. J.M. Beckers, Solar spicules (Invited review paper). Sol. Phys. 3, 367 (1968). doi: 10.1007/BF00171614 ADSGoogle Scholar
  12. J.M. Beckers, Solar spicules. Annu. Rev. Astron. Astrophys. 10, 73 (1972). doi: 10.1146/annurev.aa.10.090172.000445 ADSCrossRefGoogle Scholar
  13. S. Berkebile-Stoiser, P. Gömöry, A.M. Veronig et al., Multi-wavelength fine structure and mass flows in solar microflares. Astron. Astrophys. 505, 811 (2009). doi: 10.1051/0004-6361/200912100 ADSCrossRefGoogle Scholar
  14. J.D. Bohlin, S.N. Vogel, J.D. Purcell et al., A newly observed solar feature—macrospicules in He II 304 A. Astrophys. J. Lett. 197, 133 (1975). doi: 10.1086/181794 ADSCrossRefGoogle Scholar
  15. M. Bout, P. Lamy, A. Llebaria, Electron density in coronal jets, in From Solar Min to Max: Half a Solar Cycle with SOHO, ed. by A. Wilson. ESA SP-508 (2002), pp. 379–382 Google Scholar
  16. R.J. Bray, R.E. Loughhead, The Solar Chromosphere. The International Astrophysics Series (Chapman & Hall, London, 1974) Google Scholar
  17. G.E. Brueckner, A high-resolution view of the solar chromosphere and corona. Highlights Astron. 5, 557–569 (1980) ADSCrossRefGoogle Scholar
  18. G.E. Brueckner, J.-D.F. Bartoe, High velocity jets in the “quiet” Sun as a possible source of the solar wind and the heating of the corona. Bull. Am. Astron. Soc. 10, 416 (1978) ADSGoogle Scholar
  19. G.E. Brueckner, J.-D.F. Bartoe, Observations of high-energy jets in the corona above the quiet Sun, the heating of the corona, and the acceleration of the solar wind. Astrophys. J. 272, 329 (1983). doi: 10.1086/161297 ADSCrossRefGoogle Scholar
  20. G.E. Brueckner, R.A. Howard, M.J. Koomen et al., The large angle spectroscopic coronagraph (LASCO). Sol. Phys. 162, 357 (1995). doi: 10.1007/BF00733434 ADSCrossRefGoogle Scholar
  21. R.C. Canfield, K.P. Reardon, K.D. Leka et al., H alpha surges and X-ray jets in AR 7260. Astrophys. J. 464, 1016 (1996). doi: 10.1086/177389 ADSCrossRefGoogle Scholar
  22. J. Chae, The formation of a prominence in NOAA active region 8668. II. Trace observations of jets and eruptions associated with canceling magnetic features. Astrophys. J. 584, 1084 (2003). doi: 10.1086/345739 ADSCrossRefGoogle Scholar
  23. K. Chandrashekhar, A. Bemporad, D. Banerjee et al., Characteristics of polar coronal hole jets. Astron. Astrophys. 561, 104 (2014a). doi: 10.1051/0004-6361/201321213 ADSCrossRefGoogle Scholar
  24. K. Chandrashekhar, R.J. Morton, D. Banerjee, G.R. Gupta, The dynamical behaviour of a jet in an on-disk coronal hole observed with AIA/SDO. Astron. Astrophys. 562, 98 (2014b). doi: 10.1051/0004-6361/201322408 ADSCrossRefGoogle Scholar
  25. H.D. Chen, Y.C. Jiang, S.L. Ma, Observations of H\(\alpha\) surges and ultraviolet jets above satellite sunspots. Astron. Astrophys. 478, 907 (2008). doi: 10.1051/0004-6361:20078641 ADSCrossRefGoogle Scholar
  26. H. Chen, Y. Jiang, S. Ma, An EUV jet and H\(\alpha\) filament eruption associated with flux cancelation in a decaying active region. Sol. Phys. 255, 79 (2009). doi: 10.1007/s11207-008-9298-1 ADSCrossRefGoogle Scholar
  27. H.-D. Chen, J. Zhang, S.-L. Ma, The kinematics of an untwisting solar jet in a polar coronal hole observed by SDO/AIA. Res. Astron. Astrophys. 12, 573 (2012). doi: 10.1088/1674-4527/12/5/009 ADSCrossRefGoogle Scholar
  28. N. Chen, W.-H. Ip, D. Innes, Flare-associated type III radio bursts and dynamics of the EUV jet from SDO/AIA and RHESSI observations. Astrophys. J. 769, 96 (2013). doi: 10.1088/0004-637X/769/2/96 ADSCrossRefGoogle Scholar
  29. M.C.M. Cheung, B. de Pontieu, T.D. Tarbell et al., Homologous helical jets: observations by IRIS, SDO, and Hinode and magnetic modeling with data-driven simulations. Astrophys. J. 801, 83 (2015). doi: 10.1088/0004-637X/801/2/83 ADSCrossRefGoogle Scholar
  30. C. Chifor, H. Isobe, H.E. Mason et al., Magnetic flux cancellation associated with a recurring solar jet observed with Hinode, RHESSI, and STEREO/EUVI. Astron. Astrophys. 491, 279–288 (2008a). doi: 10.1051/0004-6361:200810265 ADSCrossRefGoogle Scholar
  31. C. Chifor, P.R. Young, H. Isobe et al., An active region jet observed with Hinode. Astron. Astrophys. 481, 57 (2008b). doi: 10.1051/0004-6361:20079081 ADSCrossRefGoogle Scholar
  32. S. Christe, S. Krucker, R.P. Lin, Hard X-rays associated with type III radio bursts. Astrophys. J. Lett. 680, 149–152 (2008). doi: 10.1086/589971 ADSCrossRefGoogle Scholar
  33. J.W. Cirtain, L. Golub, L. Lundquist et al., Evidence for Alfvén waves in solar X-ray jets. Science 318, 1580 (2007). doi: 10.1126/science.1147050 ADSCrossRefGoogle Scholar
  34. G. Corti, G. Poletto, S.T. Suess et al., Cool-plasma jets that escape into the outer corona. Astrophys. J. 659, 1702 (2007). doi: 10.1086/512233 ADSCrossRefGoogle Scholar
  35. L. Culhane, L.K. Harra, D. Baker et al., Hinode EUV study of jets in the Sun’s South polar corona. Publ. Astron. Soc. Jpn. 59, 751 (2007a). doi: 10.1093/pasj/59.sp3.S751 ADSCrossRefGoogle Scholar
  36. J.L. Culhane, L.K. Harra, A.M. James et al., The EUV imaging spectrometer for Hinode. Sol. Phys. 243, 19 (2007b). doi: 10.1007/s01007-007-0293-1 ADSCrossRefGoogle Scholar
  37. W. Curdt, H. Tian, S. Kamio, Explosive events: swirling transition region jets. Sol. Phys. 280, 417 (2012). doi: 10.1007/s11207-012-9940-9 ADSCrossRefGoogle Scholar
  38. K. Dalmasse, E. Pariat, S.K. Antiochos, C.R. DeVore, Coronal jets in an inclined coronal magnetic field: a parametric 3D MHD study, in Understanding Solar Activity: Advances and Challenges. EAS Publications Series, vol. 55 (2012), pp. 201–205. doi: 10.1051/eas/1255028 Google Scholar
  39. B. de Pontieu, L.R. van der Voort, S.W. McIntosh et al., On the prevalence of small-scale twist in the solar chromosphere and transition region. Science 346, 1255732 (2014a). doi: 10.1126/science.1255732 CrossRefGoogle Scholar
  40. B. de Pontieu, A.M. Title, J.R. Lemen et al., The interface region imaging spectrograph (IRIS). Sol. Phys. 289, 2733 (2014b). doi: 10.1007/s11207-014-0485-y ADSCrossRefGoogle Scholar
  41. C.E. Deforest, J.T. Hoeksema, J.B. Gurman et al., Polar plume anatomy: results of a coordinated observation. Sol. Phys. 175, 393 (1997). doi: 10.1023/A:1004955223306 ADSCrossRefGoogle Scholar
  42. J.-P. Delaboudinière, G.E. Artzner, J. Brunaud et al., EIT: extreme-ultraviolet imaging telescope for the SOHO mission. Sol. Phys. 162, 291 (1995). doi: 10.1007/BF00733432 ADSCrossRefGoogle Scholar
  43. H.L. Demastus, W.J. Wagner, R.D. Robinson, Coronal disturbances. I: Fast transient events observed in the green coronal emission line during the last solar cycle. Sol. Phys. 31, 449 (1973). doi: 10.1007/BF00152820 ADSCrossRefGoogle Scholar
  44. C.R. DeVore, S.K. Antiochos, Homologous confined filament eruptions via magnetic breakout. Astrophys. J. 680, 740 (2008). doi: 10.1086/588011 ADSCrossRefGoogle Scholar
  45. D. Dobrzycka, J.C. Raymond, S.R. Cranmer, Ultraviolet spectroscopy of polar coronal jets. Astrophys. J. 538, 922 (2000). doi: 10.1086/309173 ADSCrossRefGoogle Scholar
  46. D. Dobrzycka, S.R. Cranmer, J.C. Raymond et al., Polar coronal jets at solar minimum. Astrophys. J. 565, 621 (2002). doi: 10.1086/324431 ADSCrossRefGoogle Scholar
  47. D. Dobrzycka, J.C. Raymond, D.A. Biesecker et al., Ultraviolet spectroscopy of narrow coronal mass ejections. Astrophys. J. 588, 586 (2003). doi: 10.1086/374047 ADSCrossRefGoogle Scholar
  48. V. Domingo, B. Fleck, A.I. Poland, The SOHO mission: an overview. Sol. Phys. 162, 1 (1995). doi: 10.1007/BF00733425 ADSCrossRefGoogle Scholar
  49. B.N. Dwivedi, K. Wilhelm, Solar coronal plumes and the fast solar wind. J. Astrophys. Astron. 36, 185 (2015). doi: 10.1007/s12036-015-9326-0 ADSCrossRefGoogle Scholar
  50. C.J. Eyles, G.M. Simnett, M.P. Cooke et al., The solar mass ejection imager (SMEI). Sol. Phys. 217, 319 (2003). doi: 10.1023/B:SOLA.0000006903.75671.49 ADSCrossRefGoogle Scholar
  51. Y. Fan, S.E. Gibson, Numerical simulations of three-dimensional coronal magnetic fields resulting from the emergence of twisted magnetic flux tubes. Astrophys. J. 609, 1123 (2004). doi: 10.1086/421238 ADSCrossRefGoogle Scholar
  52. F. Fang, Y. Fan, S.W. McIntosh, Rotating solar jets in simulations of flux emergence with thermal conduction. Astrophys. J. Lett. 789, 19 (2014). doi: 10.1088/2041-8205/789/1/L19 ADSCrossRefGoogle Scholar
  53. L. Feng, B. Inhester, J. de Patoul et al., Particle kinetic analysis of a polar jet from SECCHI COR data. Astron. Astrophys. 538, 34 (2012). doi: 10.1051/0004-6361/201117071 ADSCrossRefGoogle Scholar
  54. B. Filippov, S. Koutchmy, E. Tavabi, Formation of a white-light jet within a quadrupolar magnetic configuration. Sol. Phys. 286, 143 (2013). doi: 10.1007/s11207-011-9911-6 ADSCrossRefGoogle Scholar
  55. G.P.S. Gibb, D.H. Mackay, L.M. Green, K.A. Meyer, Simulating the formation of a sigmoidal flux rope in AR10977 from SOHO/MDI magnetograms. Astrophys. J. 782, 71 (2014). doi: 10.1088/0004-637X/782/2/71 ADSCrossRefGoogle Scholar
  56. L. Glesener, S. Krucker, R.P. Lin, Hard X-ray observations of a jet and accelerated electrons in the corona. Astrophys. J. 754, 9 (2012). doi: 10.1088/0004-637X/754/1/9 ADSCrossRefGoogle Scholar
  57. L. Golub, E. Deluca, G. Austin et al., The X-ray telescope (XRT) for the Hinode mission. Sol. Phys. 243, 63 (2007). doi: 10.1007/s11207-007-0182-1 ADSCrossRefGoogle Scholar
  58. C. Gontikakis, V. Archontis, K. Tsinganos, Observations and 3D MHD simulations of a solar active region jet. Astron. Astrophys. 506, 45 (2009). doi: 10.1051/0004-6361/200913026 ADSCrossRefGoogle Scholar
  59. X.M. Gu, J. Lin, K.J. Li et al., Kinematic characteristics of the surge on March 19, 1989. Astron. Astrophys. 282, 240 (1994) ADSGoogle Scholar
  60. B.N. Handy, L.W. Acton, C.C. Kankelborg et al., The transition region and coronal explorer. Sol. Phys. 187, 229 (1999). doi: 10.1023/A:1005166902804 ADSCrossRefGoogle Scholar
  61. R.A. Harrison, E.C. Sawyer, M.K. Carter et al., The coronal diagnostic spectrometer for the solar and heliospheric observatory. Sol. Phys. 162, 233 (1995). doi: 10.1007/BF00733431 ADSCrossRefGoogle Scholar
  62. J. Heyvaerts, E.R. Priest, D.M. Rust, An emerging flux model for the solar flare phenomenon. Astrophys. J. 216, 123 (1977). doi: 10.1086/155453 ADSCrossRefGoogle Scholar
  63. J. Hong, Y. Jiang, R. Zheng et al., A micro coronal mass ejection associated blowout extreme-ultraviolet jet. Astrophys. J. Lett. 738, 20 (2011). doi: 10.1088/2041-8205/738/2/L20 ADSCrossRefGoogle Scholar
  64. J.-C. Hong, Y.-C. Jiang, J.-Y. Yang et al., Twist in a polar blowout jet. Res. Astron. Astrophys. 13, 253 (2013). doi: 10.1088/1674-4527/13/3/001 ADSCrossRefGoogle Scholar
  65. J. Hong, Y. Jiang, J. Yang et al., Coronal bright points associated with minifilament eruptions. Astrophys. J. 796, 73 (2014). doi: 10.1088/0004-637X/796/2/73 ADSCrossRefGoogle Scholar
  66. R.A. Howard, J.D. Moses, A. Vourlidas et al., Sun Earth connection coronal and heliospheric investigation (SECCHI). Space Sci. Rev. 136, 67 (2008). doi: 10.1007/s11214-008-9341-4 ADSCrossRefGoogle Scholar
  67. K.C. Hsieh, J.A. Simpson, The relative abundances and energy spectra of \(^{3}\mathrm{He}\) and \(^{4}\mathrm{He}\) from solar flares. Astrophys. J. Lett. 162, 191 (1970). doi: 10.1086/180652 ADSCrossRefGoogle Scholar
  68. D.E. Innes, R.H. Cameron, S.K. Solanki, EUV jets, type III radio bursts and sunspot waves investigated using SDO/AIA observations. Astron. Astrophys. 531, 13 (2011). doi: 10.1051/0004-6361/201117255 ADSCrossRefGoogle Scholar
  69. B.V. Jackson, A. Buffington, P.P. Hick et al., The solar mass-ejection imager (SMEI) mission. Sol. Phys. 225, 177 (2004). doi: 10.1007/s11207-004-2766-3 ADSCrossRefGoogle Scholar
  70. Y.C. Jiang, H.D. Chen, K.J. Li et al., The H\(\alpha\) surges and EUV jets from magnetic flux emergences and cancellations. Astron. Astrophys. 469, 331 (2007). doi: 10.1051/0004-6361:20053954 ADSCrossRefGoogle Scholar
  71. P. Jibben, R.C. Canfield, Twist propagation in H\(\alpha\) surges. Astrophys. J. 610, 1129 (2004). doi: 10.1086/421727 ADSCrossRefGoogle Scholar
  72. S.W. Kahler, N.R. Sheeley Jr., R.A. Howard et al., Associations between coronal mass ejections and solar energetic proton events. J. Geophys. Res. 89, 9683 (1984). doi: 10.1029/JA089iA11p09683 ADSCrossRefGoogle Scholar
  73. S.W. Kahler, R.P. Lin, D.V. Reames et al., Characteristics of solar coronal source regions producing He-3-rich particle events. Sol. Phys. 107, 385 (1987). doi: 10.1007/BF00152032 ADSCrossRefGoogle Scholar
  74. S.W. Kahler, D.V. Reames, N.R. Sheeley Jr., Coronal mass ejections associated with impulsive solar energetic particle events. Astrophys. J. 562, 558 (2001). doi: 10.1086/323847 ADSCrossRefGoogle Scholar
  75. M.L. Kaiser, T.A. Kucera, J.M. Davila et al., The STEREO mission: an introduction. Space Sci. Rev. 136, 5 (2008). doi: 10.1007/s11214-007-9277-0 ADSCrossRefGoogle Scholar
  76. S. Kamio, H. Hara, T. Watanabe et al., Velocity structure of jets in a coronal hole. Publ. Astron. Soc. Jpn. 59, 757 (2007) ADSCrossRefGoogle Scholar
  77. S. Kamio, W. Curdt, L. Teriaca et al., Observations of a rotating macrospicule associated with an X-ray jet. Astron. Astrophys. 510, 1 (2010). doi: 10.1051/0004-6361/200913269 ADSCrossRefGoogle Scholar
  78. M. Karovska, B.E. Wood, J.W. Cook et al., Study of dynamical properties of coronal structures in the polar regions. Space Sci. Rev. 87, 219 (1999). doi: 10.1023/A:1005100618288 ADSCrossRefGoogle Scholar
  79. J.T. Karpen, S.K. Antiochos, C.R. DeVore, The role of magnetic reconnection in chromospheric eruptions. Astrophys. J. 450, 422 (1995). doi: 10.1086/176152 ADSCrossRefGoogle Scholar
  80. J.T. Karpen, S.K. Antiochos, C.R. DeVore, L. Golub, Dynamic responses to magnetic reconnection in solar arcades. Astrophys. J. 495, 491 (1998). doi: 10.1086/305252 ADSCrossRefGoogle Scholar
  81. J.T. Karpen, C.R. DeVore, S.K. Antiochos, E. Pariat, Reconnection-driven coronal-hole jets with gravity and solar wind. Astrophys. J. (2016, submitted) Google Scholar
  82. Y.-H. Kim, Y.-J. Moon, Y.-D. Park et al., Small-scale X-ray/EUV jets seen in Hinode XRT and TRACE. Publ. Astron. Soc. Jpn. 59, 763 (2007). doi: 10.1093/pasj/59.sp3.S763 ADSCrossRefGoogle Scholar
  83. Y.-K. Ko, J.C. Raymond, S.E. Gibson et al., Multialtitude observations of a coronal jet during the third whole Sun month campaign. Astrophys. J. 623, 519 (2005). doi: 10.1086/428479 ADSCrossRefGoogle Scholar
  84. J.L. Kohl, R. Esser, L.D. Gardner et al., The ultraviolet coronagraph spectrometer for the solar and heliospheric observatory. Sol. Phys. 162, 313 (1995). doi: 10.1007/BF00733433 ADSCrossRefGoogle Scholar
  85. T. Kosugi, K. Matsuzaki, T. Sakao et al., The Hinode (Solar-B) mission: an overview. Sol. Phys. 243, 3 (2007). doi: 10.1007/s11207-007-9014-6 ADSCrossRefGoogle Scholar
  86. S. Krucker, P. Saint-Hilaire, S. Christe et al., Coronal hard X-ray emission associated with radio type III bursts. Astrophys. J. 681, 644 (2008). doi: 10.1086/588549 ADSCrossRefGoogle Scholar
  87. M.R. Kundu, J.P. Raulin, N. Nitta et al., Detection of nonthermal radio emission from coronal X-ray jets. Astrophys. J. Lett. 447, 135 (1995). doi: 10.1086/309567 ADSCrossRefGoogle Scholar
  88. H. Kurokawa, Y. Hanaoka, K. Shibata, Y. Uchida, Rotating eruption of an untwisting filament triggered by the 3B flare of 25 April, 1984. Sol. Phys. 108, 251 (1987). doi: 10.1007/BF00214165 ADSCrossRefGoogle Scholar
  89. Y.-T. Lau, J.M. Finn, Three-dimensional kinematic reconnection in the presence of field nulls and closed field lines. Astrophys. J. 350, 672 (1990). doi: 10.1086/168419 ADSMathSciNetCrossRefGoogle Scholar
  90. J.E. Leake, M.G. Linton, T. Török, Simulations of emerging magnetic flux. I. The formation of stable coronal flux ropes. Astrophys. J. 778, 99 (2013). doi: 10.1088/0004-637X/778/2/99 ADSCrossRefGoogle Scholar
  91. K.-S. Lee, D.E. Innes, Y.-J. Moon et al., Fast extreme-ultraviolet dimming associated with a coronal jet seen in multi-wavelength and stereoscopic observations. Astrophys. J. 766, 1 (2013). doi: 10.1088/0004-637X/766/1/1 ADSCrossRefGoogle Scholar
  92. E.J. Lee, V. Archontis, A.W. Hood, Helical blowout jets in the Sun: untwisting and propagation of waves. Astrophys. J. Lett. 798, 10 (2015). doi: 10.1088/2041-8205/798/1/L10 ADSCrossRefGoogle Scholar
  93. J.R. Lemen, A.M. Title, D.J. Akin et al., The atmospheric imaging assembly (AIA) on the solar dynamics observatory (SDO). Sol. Phys. 275, 17 (2012). doi: 10.1007/s11207-011-9776-8 ADSCrossRefGoogle Scholar
  94. R.P. Lin, B.R. Dennis, G.J. Hurford et al., The Reuven Ramaty high-energy solar spectroscopic imager (RHESSI). Sol. Phys. 210, 3 (2002). doi: 10.1023/A:1022428818870 ADSCrossRefGoogle Scholar
  95. M.G. Linton, R.B. Dahlburg, S.K. Antiochos, Reconnection of twisted flux tubes as a function of contact angle. Astrophys. J. 553, 905 (2001). doi: 10.1086/320974 ADSCrossRefGoogle Scholar
  96. R. Lionello, J.A. Linker, Z. Mikic, Multispectral emission of the Sun during the first whole Sun month: magnetohydrodynamic simulations. Astrophys. J. 690, 902 (2009). doi: 10.1088/0004-637X/690/1/902 ADSCrossRefGoogle Scholar
  97. R. Lionello, C. Downs, J.A. Linker et al., Magnetohydrodynamic simulations of interplanetary coronal mass ejections. Astrophys. J. 777, 76 (2013). doi: 10.1088/0004-637X/777/1/76 ADSCrossRefGoogle Scholar
  98. Y. Liu, H. Kurokawa, On a surge: properties of an emerging flux region. Astrophys. J. 610, 1136 (2004). doi: 10.1086/421715 ADSCrossRefGoogle Scholar
  99. C. Liu, J. Qiu, D.E. Gary et al., Studies of microflares in RHESSI hard X-ray, big bear solar observatory H\(\alpha\), and Michelson Doppler imager magnetograms. Astrophys. J. 604, 442 (2004). doi: 10.1086/381799 ADSCrossRefGoogle Scholar
  100. W. Liu, T.E. Berger, A.M. Title, T.D. Tarbell, An intriguing chromospheric jet observed by Hinode: fine structure kinematics and evidence of unwinding twists. Astrophys. J. Lett. 707, 37 (2009). doi: 10.1088/0004-637X/707/1/L37 ADSCrossRefGoogle Scholar
  101. W. Liu, T.E. Berger, A.M. Title et al., Chromospheric jet and growing “loop” observed by Hinode: new evidence of fan-spine magnetic topology resulting from flux emergence. Astrophys. J. 728, 103 (2011a). doi: 10.1088/0004-637X/728/2/103 ADSCrossRefGoogle Scholar
  102. C. Liu, N. Deng, R. Liu et al., A standard-to-blowout jet. Astrophys. J. Lett. 735, 18 (2011b). doi: 10.1088/2041-8205/735/1/L18 ADSCrossRefGoogle Scholar
  103. J. Liu, Y. Wang, R. Liu et al., When and how does a prominence-like jet gain kinetic energy? Astrophys. J. 782, 94 (2014). doi: 10.1088/0004-637X/782/2/94 ADSCrossRefGoogle Scholar
  104. A. Luhn, B. Kleckler, D. Hovestadt, E. Moebius, The mean ionic charge of silicon in He-3-rich solar flares. Astrophys. J. 317, 951 (1987). doi: 10.1088/0004-637X/782/2/94 ADSCrossRefGoogle Scholar
  105. M.S. Madjarska, Dynamics and plasma properties of an X-ray jet from SUMER, EIS, XRT, and EUVI A & B simultaneous observations. Astron. Astrophys. 526, 19 (2011). doi: 10.1051/0004-6361/201015269 ADSCrossRefGoogle Scholar
  106. W. Manchester IV., T. Gombosi, D. DeZeeuw, Y. Fan, Eruption of a buoyantly emerging magnetic flux rope. Astrophys. J. 610, 588 (2004). doi: 10.1086/421516 ADSCrossRefGoogle Scholar
  107. Y. Matsui, T. Yokoyama, N. Kitagawa, S. Imada, Multi-wavelength spectroscopic observation of extreme-ultraviolet jet in AR 10960. Astrophys. J. 759, 15 (2012). doi: 10.1088/0004-637X/759/1/15 ADSCrossRefGoogle Scholar
  108. K. Meyer, A. Savcheva, E.E. DeLuca, D. Mackay, Non-linear force-free field modelling of solar coronal jets in theoretical configurations. Astrophys. J. (2016, submitted) Google Scholar
  109. R. Michard, Spicules and their surroundings, in Chromospheric Fine Structure, ed. by R.G. Athay. IAU Symp., vol. 56 (1974), pp. 3–22 CrossRefGoogle Scholar
  110. T. Miyagoshi, T. Yokoyama, Magnetohydrodynamic simulation of solar coronal chromospheric evaporation jets caused by magnetic reconnection associated with magnetic flux emergence. Astrophys. J. 614, 1042 (2004). doi: 10.1086/423731 ADSCrossRefGoogle Scholar
  111. R.L. Moore, J.W. Cirtain, A.C. Sterling, D.A. Falconer, Dichotomy of solar coronal jets: standard jets and blowout jets. Astrophys. J. 720, 757 (2010). doi: 10.1088/0004-637X/720/1/757 ADSCrossRefGoogle Scholar
  112. R.L. Moore, A.C. Sterling, D.A. Falconer, D. Robe, The cool component and the dichotomy, lateral expansion, and axial rotation of solar X-ray jets. Astrophys. J. 769, 134 (2013). doi: 10.1088/0004-637X/769/2/134 ADSCrossRefGoogle Scholar
  113. F. Moreno-Insertis, K. Galsgaard, Plasma jets and eruptions in solar coronal holes: a three-dimensional flux emergence experiment. Astrophys. J. 771, 20 (2013). doi: 10.1088/0004-637X/771/1/20 ADSCrossRefGoogle Scholar
  114. F. Moreno-Insertis, K. Galsgaard, I. Ugarte-Urra, Jets in coronal holes: Hinode observations and three-dimensional computer modeling. Astrophys. J. Lett. 673, 211 (2008). doi: 10.1086/527560 ADSCrossRefGoogle Scholar
  115. R.J. Morton, A.K. Srivastava, R. Erdélyi, Observations of quasi-periodic phenomena associated with a large blowout solar jet. Astron. Astrophys. 542, 70 (2012). doi: 10.1051/0004-6361/201117218 ADSCrossRefGoogle Scholar
  116. S.P. Moschou, K. Tsinganos, A. Vourlidas, V. Archontis, SDO observations of solar jets. Sol. Phys. 284, 427 (2013). doi: 10.1007/s11207-012-0190-7 ADSCrossRefGoogle Scholar
  117. M. Neugebauer, Evidence for polar X-ray jets as sources of microstream peaks in the solar wind. Astrophys. J. 750, 50 (2012). doi: 10.1088/0004-637X/750/1/50 ADSCrossRefGoogle Scholar
  118. M. Neugebauer, B.E. Goldstein, D.J. McComas et al., Ulysses observations of microstreams in the solar wind from coronal holes. J. Geophys. Res. 100, 23389 (1995). doi: 10.1029/95JA02723 ADSCrossRefGoogle Scholar
  119. N. Nishizuka, M. Shimizu, T. Nakamura et al., Giant chromospheric anemone jet observed with Hinode and comparison with magnetohydrodynamic simulations: evidence of propagating Alfvén waves and magnetic reconnection. Astrophys. J. Lett. 683, 83 (2008). doi: 10.1086/591445 ADSCrossRefGoogle Scholar
  120. G. Nisticò, V. Bothmer, S. Patsourakos, G. Zimbardo, Characteristics of EUV coronal jets observed with STEREO/SECCHI. Sol. Phys. 259, 87 (2009). doi: 10.1007/s11207-009-9424-8 ADSCrossRefGoogle Scholar
  121. G. Nisticò, V. Bothmer, S. Patsourakos, G. Zimbardo, Observational features of equatorial coronal hole jets. Ann. Geophys. 28, 687 (2010). doi: 10.5194/angeo-28-687-2010 ADSCrossRefGoogle Scholar
  122. G. Nisticò, S. Patsourakos, V. Bothmer, G. Zimbardo, Determination of temperature maps of EUV coronal hole jets. Adv. Space Res. 48, 1490 (2011). doi: 10.1016/j.asr.2011.07.003 ADSCrossRefGoogle Scholar
  123. G. Nisticò, G. Zimbardo, S. Patsourakos et al., North-South asymmetry in the magnetic deflection of polar coronal hole jets. Astrophys. J. 583, A127 (2015). doi: 10.1051/0004-6361/201525731 Google Scholar
  124. N.V. Nitta, D.V. Reames, M.L. De Rosa et al., Solar sources of impulsive solar energetic particle events and their magnetic field connection to the Earth. Astrophys. J. 650, 438 (2006). doi: 10.1086/507442 ADSCrossRefGoogle Scholar
  125. N.V. Nitta, G.M. Mason, M.E. Wiedenbeck et al., Coronal jet observed by Hinode as the source of a \(^{3}\mathrm{He}\)-rich solar energetic particle event. Astrophys. J. Lett. 675, 125 (2008). doi: 10.1086/533438 ADSCrossRefGoogle Scholar
  126. Y. Ogawara, T. Takano, T. Kato et al., The SOLAR-a mission—an overview. Sol. Phys. 136, 1 (1991). doi: 10.1007/BF00151692 ADSCrossRefGoogle Scholar
  127. Y. Öhman, G. Hosinsky, U. Kusoffsky, in Mass Motions in Solar Flares and Related Phenomena. Nobel Symp., vol. 9 (1968), p. 95 Google Scholar
  128. A.R. Paraschiv, D.A. Lacatus, T. Badescu et al., Study of coronal jets during solar minimum based on STEREO/SECCHI observations. Sol. Phys. 264, 365 (2010). doi: 10.1007/s11207-010-9584-6 ADSCrossRefGoogle Scholar
  129. E. Pariat, S.K. Antiochos, C.R. DeVore, A model for solar polar jets. Astrophys. J. 691, 61 (2009). doi: 10.1088/0004-637X/691/1/61 ADSCrossRefGoogle Scholar
  130. E. Pariat, S.K. Antiochos, C.R. DeVore, Three-dimensional modeling of quasi-homologous solar jets. Astrophys. J. 714, 1762 (2010). doi: 10.1088/0004-637X/714/2/1762 ADSCrossRefGoogle Scholar
  131. E. Pariat, K. Dalmasse, C.R. DeVore et al., Model for straight and helical solar jets. I. Parametric studies of the magnetic field geometry. Astron. Astrophys. 573, 130 (2015). doi: 10.1051/0004-6361/201424209 ADSCrossRefGoogle Scholar
  132. S. Patsourakos, E. Pariat, A. Vourlidas et al., STEREO SECCHI stereoscopic observations constraining the initiation of polar coronal jets. Astrophys. J. Lett. 680, 73 (2008). doi: 10.1086/589769 ADSCrossRefGoogle Scholar
  133. Patsourakos, Raouafi (2016, in preparation) Google Scholar
  134. W.D. Pesnell, B.J. Thompson, P.C. Chamberlin, The solar dynamics observatory (SDO). Sol. Phys. 275, 3 (2012). doi: 10.1007/s11207-011-9841-3 ADSCrossRefGoogle Scholar
  135. M. Pick, G.M. Mason, Y.-M. Wang et al., Solar source regions for \(^{3}\mathrm{He}\)-rich solar energetic particle events identified using imaging radio, optical, and energetic particle observations. Astrophys. J. 648, 1247 (2006). doi: 10.1086/505926 ADSCrossRefGoogle Scholar
  136. C.D. Pike, R.A. Harrison, EUV observations of a macrospicule: evidence for solar wind acceleration? Sol. Phys. 175, 457 (1997). doi: 10.1023/A:1004987505422 ADSCrossRefGoogle Scholar
  137. C.D. Pike, H.E. Mason, Rotating transition region features observed with the SOHO coronal diagnostic spectrometer. Sol. Phys. 182, 333 (1998). doi: 10.1023/A:1005065704108 ADSCrossRefGoogle Scholar
  138. M.D. Popescu, L.D. Xia, D. Banerjee, J.G. Doyle, A study of a macro-spicule and a transition region explosive event in a solar coronal hole. Adv. Space Res. 40, 1021 (2007). doi: 10.1016/j.asr.2007.06.068 ADSCrossRefGoogle Scholar
  139. K.G. Powell, P.L. Roe, T.J. Linde et al., A solution-adaptive upwind scheme for ideal magnetohydrodynamics. J. Comput. Phys. 154, 284 (1999). doi: 10.1006/jcph.1999.6299 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  140. S. Pucci, G. Poletto, A.C. Sterling, M. Romoli, Physical parameters of standard and blowout jets. Astrophys. J. 776, 16 (2013). doi: 10.1088/0004-637X/776/1/16 ADSCrossRefGoogle Scholar
  141. L.A. Rachmeler, E. Pariat, C.E. DeForest et al., Symmetric coronal jets: a reconnection-controlled study. Astrophys. J. 715, 1556 (2010). doi: 10.1088/0004-637X/715/2/1556 ADSCrossRefGoogle Scholar
  142. N.-E. Raouafi, On the relationship between polar coronal jets and plumes, in The Second Hinode Science Meeting: Beyond Discovery-Toward Understanding. ASP Conf. Ser., vol. 415 (2009), p. 144 Google Scholar
  143. N.-E. Raouafi, G. Stenborg, Role of transients in the sustainability of solar coronal plumes. Astrophys. J. 787, 118 (2014). doi: 10.1088/0004-637X/787/2/118 ADSCrossRefGoogle Scholar
  144. N.-E. Raouafi, G.J.D. Petrie, A.A. Norton et al., Evidence for polar jets as precursors of polar plume formation. Astrophys. J. Lett. 682, 137 (2008). doi: 10.1086/591125 ADSCrossRefGoogle Scholar
  145. N.-E. Raouafi, M.K. Georgoulis, D.M. Rust, P.N. Bernasconi, Micro-sigmoids as progenitors of coronal jets: is eruptive activity self-similarly multi-scaled? Astrophys. J. 718, 981 (2010). doi: 10.1088/0004-637X/718/2/981 ADSCrossRefGoogle Scholar
  146. J.P. Raulin, M.R. Kundu, H.S. Hudson et al., Metric type III bursts associated with soft X-ray jets. Astron. Astrophys. 306, 299 (1996) ADSGoogle Scholar
  147. D.V. Reames, Particle acceleration at the Sun and in the heliosphere. Space Sci. Rev. 90, 413 (1999). doi: 10.1023/A:1005105831781 ADSCrossRefGoogle Scholar
  148. D.V. Reames, C.K. Ng, Heavy-element abundances in solar energetic particle events. Astrophys. J. 610, 510 (2004). doi: 10.1086/421518 ADSCrossRefGoogle Scholar
  149. D.V. Reames, B.R. Dennis, R.G. Stone, R.P. Lin, X-ray and radio properties of solar (He-3) rich events. Astrophys. J. 327, 998 (1988). doi: 10.1086/166257 ADSCrossRefGoogle Scholar
  150. J.-R. Roy, F. Tang, Slow X-ray bursts and flares with filament disruption. Sol. Phys. 42, 425 (1975). doi: 10.1007/BF00149923 ADSCrossRefGoogle Scholar
  151. D.M. Rust, A. Kumar, Evidence for helically kinked magnetic flux ropes in solar eruptions. Astrophys. J. Lett. 464, 199 (1996). doi: 10.1086/310118 ADSCrossRefGoogle Scholar
  152. P. Saint-Hilaire, S. Krucker, S. Christe, R.P. Lin, The X-ray detectability of electron beams escaping from the Sun. Astrophys. J. 696, 941 (2009). doi: 10.1088/0004-637X/696/1/941 ADSCrossRefGoogle Scholar
  153. N. Sako, Statistical study of X-ray jets using Hinode/XRT. Ph.D. thesis, The Graduate University for Advanced Studies, Mitaka, Tokyo, Japan (2014) Google Scholar
  154. N. Sako, M. Shimojo, T. Watanabe, T. Sekii, A statistical study of coronal active events in the North polar region. Astrophys. J. 775, 22 (2013). doi: 10.1088/0004-637X/775/1/22 ADSCrossRefGoogle Scholar
  155. A. Savcheva, J. Cirtain, E.E. Deluca et al., A study of polar jet parameters based on Hinode XRT observations. Publ. Astron. Soc. Jpn. 59, 771 (2007). doi: 10.1093/pasj/59.sp3.S771 ADSCrossRefGoogle Scholar
  156. A. Savcheva, J.W. Cirtain, E.E. DeLuca, L. Golub, Does a polar coronal hole’s flux emergence follow a hale-like law? Astrophys. J. Lett. 702, 32 (2009). doi: 10.1088/0004-637X/702/1/L32 ADSCrossRefGoogle Scholar
  157. A. Savcheva, E. Pariat, A. van Ballegooijen et al., Sigmoidal active region on the Sun: comparison of a magnetohydrodynamical simulation and a nonlinear force-free field model. Astrophys. J. 750, 15 (2012). doi: 10.1088/0004-637X/750/1/15 ADSCrossRefGoogle Scholar
  158. A. Savcheva, K. Meyer, H. Tian et al., Interpreting IRIS jet observations with a magnetofrictional simulation. Astrophys. J. (2016, in preparation) Google Scholar
  159. P.H. Scherrer, R.S. Bogart, R.I. Bush et al., The solar oscillations investigation—Michelson Doppler imager. Sol. Phys. 162, 129 (1995). doi: 10.1007/BF00733429 ADSCrossRefGoogle Scholar
  160. P.H. Scherrer, J. Schou, R.I. Bush et al., The helioseismic and magnetic imager (HMI) investigation for the solar dynamics observatory (SDO). Sol. Phys. 275, 207 (2012). doi: 10.1007/s11207-011-9834-2 ADSCrossRefGoogle Scholar
  161. B. Schmieder, Y. Guo, F. Moreno-Insertis et al., Twisting solar coronal jet launched at the boundary of an active region. Astron. Astrophys. 559, 1 (2013). doi: 10.1051/0004-6361/201322181 ADSCrossRefGoogle Scholar
  162. Y. Shen, Y. Liu, J. Su, A. Ibrahim, Kinematics and fine structure of an unwinding polar jet observed by the solar dynamic observatory/atmospheric imaging assembly. Astrophys. J. Lett. 735, 43 (2011). doi: 10.1088/2041-8205/735/2/L43 ADSCrossRefGoogle Scholar
  163. Y. Shen, Y. Liu, J. Su, Y. Deng, On a coronal blowout jet: the first observation of a simultaneously produced bubble-like CME and a jet-like CME in a solar event. Astrophys. J. 745, 164 (2012). doi: 10.1088/0004-637X/745/2/164 ADSCrossRefGoogle Scholar
  164. K. Shibata, Solar X-ray jets, in Encyclopedia of Astronomy and Astrophysics (2000) Google Scholar
  165. K. Shibata, Y. Uchida, Sweeping-magnetic-twist mechanism for the acceleration of jets in the solar atmosphere. Sol. Phys. 103, 299 (1986). doi: 10.1007/BF00147831 ADSCrossRefGoogle Scholar
  166. K. Shibata, Y. Ishido, L.W. Acton et al., Observations of X-ray jets with the YOHKOH soft X-ray telescope. Publ. Astron. Soc. Jpn. 44, 173 (1992) ADSGoogle Scholar
  167. K. Shibata, N. Nitta, K.T. Strong et al., A gigantic coronal jet ejected from a compact active region in a coronal hole. Astrophys. J. Lett. 431, 51 (1994). doi: 10.1086/187470 ADSCrossRefGoogle Scholar
  168. M. Shimojo, K. Shibata, Physical parameters of solar X-ray jets. Astrophys. J. 542, 1100 (2000). doi: 10.1086/317024 ADSCrossRefGoogle Scholar
  169. M. Shimojo, S. Hashimoto, K. Shibata et al., Statistical study of solar X-ray jets observed with the YOHKOH soft X-ray telescope. Publ. Astron. Soc. Jpn. 48, 123 (1996). doi: 10.1093/pasj/48.1.123 ADSCrossRefGoogle Scholar
  170. M. Shimojo, K. Shibata, K.L. Harvey, Magnetic field properties of solar X-ray jets. Sol. Phys. 178, 379 (1998). doi: 10.1023/A:1005091905214 ADSCrossRefGoogle Scholar
  171. M. Shimojo, K. Shibata, T. Yokoyama, K. Hori, One-dimensional and pseudo-two-dimensional hydrodynamic simulations of solar X-ray jets. Astrophys. J. 550, 1051 (2001). doi: 10.1086/319788 ADSCrossRefGoogle Scholar
  172. M. Shimojo, N. Narukage, R. Kano et al., Fine structures of solar X-ray jets observed with the X-ray telescope aboard Hinode. Publ. Astron. Soc. Jpn. 59, 745 (2007). doi: 10.1093/pasj/59.sp3.S745 ADSCrossRefGoogle Scholar
  173. A.K. Srivastava, K. Murawski, Observations of a pulse-driven cool polar jet by SDO/AIA. Astron. Astrophys. 534, 62 (2011). doi: 10.1051/0004-6361/201117359 ADSCrossRefGoogle Scholar
  174. A.C. Sterling, Solar spicules: a review of recent models and targets for future observations (Invited review). Sol. Phys. 196, 79 (2000). doi: 10.1023/A:1005213923962 ADSCrossRefGoogle Scholar
  175. A.C. Sterling, R.L. Moore, Slow-rise and fast-rise phases of an erupting solar filament, and flare emission onset. Astrophys. J. 630, 1148 (2005). doi: 10.1086/432044 ADSCrossRefGoogle Scholar
  176. A.C. Sterling, R.L. Moore, D.A. Falconer, M. Adams, Small-scale filament eruptions as the driver of X-ray jets in solar coronal holes. Nature 523, 437 (2015). doi: 10.1038/nature14556 ADSCrossRefGoogle Scholar
  177. K.T. Strong, K. Harvey, T. Hirayama et al., Observations of the variability of coronal bright points by the soft X-ray telescope on YOHKOH. Publ. Astron. Soc. Jpn. 44, 161 (1992) ADSGoogle Scholar
  178. S. Subramanian, M.S. Madjarska, J.G. Doyle, Coronal hole boundaries evolution at small scales. II. XRT view. Can small-scale outflows at CHBs be a source of the slow solar wind. Astron. Astrophys. 516, 50 (2010). doi: 10.1051/0004-6361/200913624 ADSCrossRefGoogle Scholar
  179. H. Tian, E.E. DeLuca, S.R. Cranmer et al., Prevalence of small-scale jets from the networks of the solar transition region and chromosphere. Science 346, 1255711 (2014). doi: 10.1126/science.1255711 CrossRefGoogle Scholar
  180. V.S. Titov, P. Démoulin, Basic topology of twisted magnetic configurations in solar flares. Astron. Astrophys. 351, 707 (1999) ADSGoogle Scholar
  181. T. Török, B. Kliem, Confined and ejective eruptions of kink-unstable flux ropes. Astrophys. J. Lett. 630, 97 (2005). doi: 10.1086/462412 ADSCrossRefGoogle Scholar
  182. T. Török, G. Aulanier, B. Schmieder et al., Fan-spine topology formation through two-step reconnection driven by twisted flux emergence. Astrophys. J. 704, 485 (2009). doi: 10.1088/0004-637X/704/1/485 ADSCrossRefGoogle Scholar
  183. T. Török, R. Lionello, V.S. Titov et al., Modeling jets in the corona and solar wind, in Ground-Based Solar Observations in the Space Instrumentation. ASP Conf. Ser., vol. 504 (2016), p. 185 Google Scholar
  184. G. Tóth, B. van der Holst, I.V. Sokolov et al., Adaptive numerical algorithms in space weather modeling. J. Comput. Phys. 231, 870–903 (2012). doi: 10.1016/ ADSMathSciNetCrossRefGoogle Scholar
  185. G. Tsiropoula, K. Tziotziou, I. Kontogiannis et al., Solar fine-scale structures. I. Spicules and other small-scale, jet-like events at the chromospheric level: observations and physical parameters. Space Sci. Rev. 169, 181 (2012). doi: 10.1007/s11214-012-9920-2 ADSCrossRefGoogle Scholar
  186. S. Tsuneta, L. Acton, M. Bruner et al., The soft X-ray telescope for the SOLAR-a mission. Sol. Phys. 136, 37 (1991). doi: 10.1007/BF00151694 ADSCrossRefGoogle Scholar
  187. A.A. van Ballegooijen, Observations and modeling of a filament on the Sun. Astrophys. J. 612, 519 (2004). doi: 10.1086/422512 ADSCrossRefGoogle Scholar
  188. A.A. van Ballegooijen, E.R. Priest, D.H. Mackay, Mean field model for the formation of filament channels on the Sun. Astrophys. J. 539, 983 (2000). doi: 10.1086/309265 ADSCrossRefGoogle Scholar
  189. T.T. von Rosenvinge, L.M. Barbier, J. Karsch et al., The energetic particles: acceleration, composition, and transport (EPACT) investigation on the WIND spacecraft. Space Sci. Rev. 71, 155 (1995). doi: 10.1007/BF00751329 ADSCrossRefGoogle Scholar
  190. Y.-M. Wang, Polar plumes and the solar wind. Astrophys. J. Lett. 435, 153 (1994). doi: 10.1086/187617 ADSCrossRefGoogle Scholar
  191. Y.-M. Wang, Network activity and the evaporative formation of polar plumes. Astrophys. J. Lett. 501, 145 (1998). doi: 10.1086/311445 ADSCrossRefGoogle Scholar
  192. H. Wang, C. Liu, Circular ribbon flares and homologous jets. Astrophys. J. 760, 101 (2012). doi: 10.1088/0004-637X/760/2/101 ADSCrossRefGoogle Scholar
  193. Y.-M. Wang, N.R. Sheeley Jr., Coronal white-light jets near sunspot maximum. Astrophys. J. 575, 542 (2002). doi: 10.1086/341145 ADSCrossRefGoogle Scholar
  194. Y.-M. Wang, N.R. Sheeley Jr., D.G. Socker et al., Observations of correlated white-light and extreme-ultraviolet jets from polar coronal holes. Astrophys. J. 508, 899 (1998). doi: 10.1086/306450 ADSCrossRefGoogle Scholar
  195. Y.-M. Wang, M. Pick, G.M. Mason, Coronal holes, jets, and the origin of \(^{3}\mathrm{He}\)-rich particle events. Astrophys. J. 639, 495 (2006). doi: 10.1086/499355 ADSCrossRefGoogle Scholar
  196. K. Wilhelm, Solar coronal-hole plasma densities and temperatures. Astron. Astrophys. 455, 697 (2006). doi: 10.1051/0004-6361:20054693 ADSCrossRefGoogle Scholar
  197. K. Wilhelm, W. Curdt, E. Marsch et al., SUMER—solar ultraviolet measurements of emitted radiation. Sol. Phys. 162, 189 (1995). doi: 10.1007/BF00733430 ADSCrossRefGoogle Scholar
  198. K. Wilhelm, I.E. Dammasch, D.M. Hassler, Transition region and coronal plasmas: instrumentation and spectral analysis. Astrophys. Space Sci. 282, 189 (2002a). doi: 10.1023/A:1021158705329 ADSCrossRefGoogle Scholar
  199. K. Wilhelm, B. Inhester, J.S. Newmark, The inner solar corona seen by SUMER, LASCO/C1, and EIT: electron densities and temperatures during the rise of the new solar cycle. Astron. Astrophys. 382, 328 (2002b). doi: 10.1051/0004-6361:20011608 ADSCrossRefGoogle Scholar
  200. K. Wilhelm, L. Abbo, F. Auchere et al., Morphology, dynamics and plasma parameters of plumes and inter-plume regions in solar coronal holes. Astron. Astrophys. Rev. 19, 35 (2011). doi: 10.1007/s00159-011-0035-7 ADSCrossRefGoogle Scholar
  201. G.L. Withbroe, D.T. Jaffe, P.V. Foukal et al., Extreme-ultraviolet transients observed at the solar pole. Astrophys. J. 203, 528 (1976). doi: 10.1086/154108 ADSCrossRefGoogle Scholar
  202. B.E. Wood, M. Karovska, J.W. Cook et al., Kinematic measurements of polar jets observed by the large-angle spectrometric coronagraph. Astrophys. J. 523, 444 (1999). doi: 10.1086/307721 ADSCrossRefGoogle Scholar
  203. J.-P. Wuelser, J.R. Lemen, T.D. Tarbell et al., EUVI: the STEREO-SECCHI extreme ultraviolet imager, in Telescopes and Instrumentation for Solar Astrophysics. SPIE Conf. Ser., vol. 5171 (2004), pp. 111–122. doi: 10.1117/12.506877 CrossRefGoogle Scholar
  204. A.-A. Xu, J.-P. Ding, S.-Y. Yin, Rotating motion in solar surges. Chin. Astron. Astrophys. 8, 294 (1984). doi: 10.1016/0275-1062(84)90056-0 ADSCrossRefGoogle Scholar
  205. S. Yang, J. Zhang, T. Li, Y. Liu, SDO observations of magnetic reconnection at coronal hole boundaries. Astrophys. J. Lett. 732, 7 (2011). doi: 10.1088/2041-8205/732/1/L7 ADSCrossRefGoogle Scholar
  206. L. Yang, J. He, H. Peter et al., Numerical simulations of chromospheric anemone jets associated with moving magnetic features. Astrophys. J. 777, 16 (2013). doi: 10.1088/0004-637X/777/1/16 ADSCrossRefGoogle Scholar
  207. S. Yashiro, N. Gopalswamy, E.W. Cliver et al., Association of coronal mass ejections and type II radio bursts with impulsive solar energetic particle events, in The Solar-B Mission and the Forefront of Solar Physics. ASP Conf. Ser., vol. 325 (2004), p. 401 Google Scholar
  208. T. Yokoyama, K. Shibata, What is the condition for fast magnetic reconnection? Astrophys. J. Lett. 436, 197 (1994). doi: 10.1086/187666 ADSCrossRefGoogle Scholar
  209. T. Yokoyama, K. Shibata, Magnetic reconnection as the origin of X-ray jets and H\(\alpha\) surges on the Sun. Nature 375, 42 (1995). doi: 10.1038/375042a0 ADSCrossRefGoogle Scholar
  210. T. Yokoyama, K. Shibata, Numerical simulation of solar coronal X-ray jets based on the magnetic reconnection model. Publ. Astron. Soc. Jpn. 48, 353 (1996). doi: 10.1093/pasj/48.2.353 ADSCrossRefGoogle Scholar
  211. T. Yokoyama, K. Shibata, Magnetohydrodynamic simulation of a solar flare with chromospheric evaporation effect based on the magnetic reconnection model. Astrophys. J. 549, 1160 (2001). doi: 10.1086/319440 ADSCrossRefGoogle Scholar
  212. P.R. Young, Dark jets in solar coronal holes. Astrophys. J. 801, 124 (2015). doi: 10.1088/0004-637X/801/2/124 ADSCrossRefGoogle Scholar
  213. P.R. Young, K. Muglach, Solar dynamics observatory and Hinode observations of a blowout jet in a coronal hole. Sol. Phys. 289, 3313 (2014a). doi: 10.1007/s11207-014-0484-z ADSCrossRefGoogle Scholar
  214. P.R. Young, K. Muglach, A coronal hole jet observed with Hinode and the solar dynamics observatory. Publ. Astron. Soc. Jpn. 66, 12 (2014b). doi: 10.1093/pasj/psu088 ADSCrossRefGoogle Scholar
  215. P.R. Young, G. Del Zanna, H.E. Mason et al., EUV emission lines and diagnostics observed with Hinode/EIS. Publ. Astron. Soc. Jpn. 59, 857 (2007) ADSCrossRefGoogle Scholar
  216. H.-S. Yu, B.V. Jackson, A. Buffington et al., The three-dimensional analysis of Hinode polar jets using images from LASCO C2, the stereo COR2 coronagraphs, and SMEI. Astrophys. J. 784, 166 (2014). doi: 10.1088/0004-637X/784/2/166 ADSCrossRefGoogle Scholar
  217. Q.M. Zhang, H.S. Ji, Blobs in recurring extreme-ultraviolet jets. Astron. Astrophys. 567, 11 (2014a). doi: 10.1051/0004-6361/201423698 ADSCrossRefGoogle Scholar
  218. Q.M. Zhang, H.S. Ji, A swirling flare-related EUV jet. Astron. Astrophys. 561, 134 (2014b). doi: 10.1051/0004-6361/201322616 ADSCrossRefGoogle Scholar
  219. Q.M. Zhang, P.F. Chen, Y. Guo et al., Two types of magnetic reconnection in coronal bright points and the corresponding magnetic configuration. Astrophys. J. 746, 19 (2012). doi: 10.1088/0004-637X/746/1/19 ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • N. E. Raouafi
    • 1
    Email author
  • S. Patsourakos
    • 2
  • E. Pariat
    • 3
  • P. R. Young
    • 4
    • 5
  • A. C. Sterling
    • 6
  • A. Savcheva
    • 7
  • M. Shimojo
    • 8
  • F. Moreno-Insertis
    • 9
  • C. R. DeVore
    • 10
  • V. Archontis
    • 11
  • T. Török
    • 12
  • H. Mason
    • 13
  • W. Curdt
    • 14
  • K. Meyer
    • 15
  • K. Dalmasse
    • 16
    • 3
  • Y. Matsui
    • 17
  1. 1.The Johns Hopkins University Applied Physics LaboratoryLaurelUSA
  2. 2.Department of PhysicsUniversity of IoanninaIoanninaGreece
  3. 3.LESIAObservatoire de ParisMeudonFrance
  4. 4.College of ScienceGeorge Mason UniversityFairfaxUSA
  5. 5.NASA/Goddard Space Flight CenterGreenbeltUSA
  6. 6.NASA/Marshall Space Flight CenterHuntsvilleUSA
  7. 7.Harvard-Smithsonian Center for AstrophysicsCambridgeUSA
  8. 8.National Astronomical Observatory of JapanMitakaJapan
  9. 9.Instituto de Astrofísica de CanariasLa LagunaSpain
  10. 10.Heliophysics Science DivisionNASA Goddard Space Flight CenterGreenbeltUSA
  11. 11.School of Mathematics and StatisticsUniversity of St. AndrewsSt. AndrewsUK
  12. 12.Predictive Science Inc.San DiegoUSA
  13. 13.DAMTP, Centre for Mathematical SciencesUniversity of CambridgeCambridgeUK
  14. 14.Max-Planck-Institut für SonnensystemforschungGöttingenGermany
  15. 15.Division of Computing and MathematicsAbertay UniversityDundeeUK
  16. 16.CISL/HAONCARBoulderUSA
  17. 17.Department of Earth and Planetary ScienceUniversity of TokyoTokyoJapan

Personalised recommendations