MASCOT—The Mobile Asteroid Surface Scout Onboard the Hayabusa2 Mission

Abstract

On December 3rd, 2014, the Japanese Space Agency (JAXA) launched successfully the Hayabusa2 (HY2) spacecraft to its journey to Near Earth asteroid (162173) Ryugu. Aboard this spacecraft is a compact landing package, MASCOT (Mobile Asteroid surface SCOuT), which was developed by the German Aerospace Centre (DLR) in collaboration with the Centre National d’Etudes Spatiales (CNES). Similar to the famous predecessor mission Hayabusa, Hayabusa2, will also study an asteroid and return samples to Earth. This time, however, the target is a C-type asteroid which is considered to be more primitive than (25143) Itokawa and provide insight into an even earlier stage of our Solar System.

Upon arrival at asteroid Ryugu in 2018, MASCOT will be released from the HY2 spacecraft and gently descend by free fall from an altitude of about 100 m to the surface of the asteroid. After a few bounces, the lander will come to rest at the surface and perform its scientific investigations of the surface structure and mineralogical composition, the thermal behaviour and the magnetic properties by operating its four scientific instruments. Those include an IR imaging spectrometer (MicrOmega, IAS Paris), a camera (MASCAM, DLR Berlin), a radiometer (MARA, DLR Berlin) and a magnetometer (MASMAG, TU Braunschweig).

In order to allow optimized payload operations the thermal design of MASCOT is required to cope with the contrasting requirements of the 4-year cruise in cold environment versus the hot conditions on the surface of the asteroid. Operations up to 2 asteroid days (∼16 hours) based on a primary battery are currently envisaged. A mobility mechanism allows locomotion on the surface. The mechanism is supported by an attitude and motion sensing system and an intelligent autonomy manager, which is implemented in the onboard software that enables MASCOT to operate fully independently when ground intervention is not available.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35

Abbreviations

ADC:

Analog-to-Digital Converter

CFRP:

Carbon-Fibre-Reinforced Plastic

CoG:

Center of Gravity

DC:

Direct Current

E-box:

Electronic Box

EM:

Engineering Model

EQM:

Engineering Quantification Model

FM:

Flight Model

FS:

Flight Spare

FPGA:

Field Programmable Gate Array

GNC:

Guidance, Navigation and Control

HY2:

Hayabusa2

LED:

Light-Emitting Diode

MAM:

MASCOT Autonomy Manager

MASCAM:

MASCOT CAMera

MARA:

MASCOT Radiometer

MASMAG:

MASCOT MAGnetometer

MLI:

Multi-Layer Insulation

MOSFET:

Metal-Oxide-Semiconductor Field-Effect Transistor

MSC:

MASCOT

NEA:

Non Explosive Actuator

OBC:

On-board Computer

OPS:

Optical Proximity Sensor

PCDU:

Power Conditioning and Distribution Unit

PCB:

Printed Circuit Board

PEC:

Photoelectric Cell Sensor

SAR:

Safe Activation Reaction

SDVF:

Software Design and Validation Facility

SLI:

Single Layer Insulation

UMC:

Umbilical Separation Connecter

References

  1. M. Abe, Y. Takagi, K. Kitazato, S. Abe, T. Hiroi, F. Vilas, B.E. Clark, B.P.A. Abell, S.M. Lederer, K.S. Jarvis, T. Nimura, Y. Ueda, A. Fujiwara, Near-infrared spectral results of asteroid Itokawa from the Hayabusa spacecraft. Science 312, 1334 (2006)

    ADS  Article  Google Scholar 

  2. A. Accomazzo, P. Ferri, S. Lodiot et al., Rosetta operations at the comet. Acta Astronaut. 115, 434–441 (2015)

    Article  Google Scholar 

  3. M.F. A’Hearn, M.J.S. Belton, A. Delamere, W.H. Blume, Deep Impact: a large-scale active experiment on a cometary nucleus. Space Sci. Rev. 117, 1 (2005a)

    ADS  Article  Google Scholar 

  4. M.F. A’Hearn, M.J.S. Belton, W.A. Delamere, J. Kissel, K.P. Klaasen, L.A. McFadden, K.J. Meech, H.J. Melosh, P.H. Schultz, J.M. Sunshine, P.C. Thomas, J. Veverka, D.K. Yeomans, M.W. Baca, I. Busko, C.J. Crockett, S.M. Collins, M. Desnoyer, C.A. Eberhardy, C.M. Ernst, F.L. Farnham, L. Feaga, O. Groussin, D. Hampton, S.I. Ipatov, J-Y. Li, D. Lindler, C.M. Lisse, C.N. Mastrodemos, W.M. Owen, J.E. Richardson, D.D. Wellnitz, R.L. White, Deep Impact: excavating comet Tempel 1. Science 310, 258 (2005b)

    ADS  Article  Google Scholar 

  5. M.A. Barucci, A.F. Cheng, P. Michel, L.A.M. Benner, R.P. Binzel, P.A. Bland, H. Böhnhardt, J.R. Brucato, A. Campo Bagatin, P. Cerroni, E. Dotto, A. Fitzsimmons, I. Franchi, S.F. Green, L.-M. Lara, J. Licandro, B. Marty, K. Muinonen, A. Nathues, J. Oberst, A.S. Rivkin, F. Robert, R. Saladino, J.M. Trigo-Rodriguez, S. Ulamec, M. Zolensky, MarcoPolo-R near Earth asteroid sample return mission. Exp. Astron. 33(2–3), 645–684 (2012)

    ADS  Article  Google Scholar 

  6. J. Biele, S. Ulamec, Capabilities of Philae, the Rosetta lander. Space Sci. Rev. 138, 275–289 (2008)

    ADS  Article  Google Scholar 

  7. J. Biele, S. Ulamec, M. Maibaum, R. Roll, L. Witte, J. Pablo Muñoz, W. Arnold, H.-U. Auster, C. Casas, C. Faber, C. Fantinati, F. Finke, H.-H. Fischer, K. Geurts, C. Güttler, P. Heinisch, A. Herique, S. Hviid, G. Kargl, M. Knapmeyer, J. Knollenberg, W. Kofman, N. Kömle, E. Kührt, V. Lommatsch, S. Mottola, R.P. de Santayana, E. Remetean, F. Scholten, K. Seidensticker, H. Sierks, T. Spohn, The landing(s) of Philae and inferences about comet surface mechanical properties. Science 349, 9816 (2015)

    Article  Google Scholar 

  8. D.E. Brownlee, F. Horz, R.L. Newburn, M. Zolensky, T. Duxbury, C. Thomas, S. Sandford, Z. Sekanina, P. Tsou, M. Hanner, M.B.C. Clark, S.F. Green, J. Kissel, Surface of young Jupiter family comet 81 P/Wild 2: view from the Stardust spacecraft. Science 304, 1764 (2004)

    ADS  Article  Google Scholar 

  9. Y.I. Cho, Thermal modelling of high rate Li-SOCl2 primary cylindrical cells. J. Electrochem. Soc. 134(4), 771–779 (1987)

    ADS  Article  Google Scholar 

  10. E.T. Eisenmann, Lithium–thionyl chloride battery. State-of-the-art assessment, Sandia report SAND96-0839•UC-400, March 1996

  11. T. Evans, T. Nguyen et al., A mathematical model of a lithium/thionyl chloride primary cell. J. Electrochem. Soc. 136(2), 328–339 (1989)

    Article  Google Scholar 

  12. M. Grott, J. Knollenber, B. Borgs, F. Hänschke, E. Kessler, J. Helbert, A. Maturilli, N. Müller. The MASCOT radiometer MARA for the Hayabusa 2 mission, this special issue (2016)

  13. A. Fujiwara, J. Kawaguchi, D.K. Yeomans, M. Abe, T. Mukai, T. Okada, J. Saito, H. Yano, M. Yoshikawa, D.J. Scheeres, O. Barnouin-Jha, A.F. Cheng, H. Demura, R.W. Gaskell, N. Hirata, H. Ikeda, T. Kominato, H. Miyamoto, A.M. Nakamura, R. Nakamura, S. Sasaki, K. Uesugi, The rubble-pile asteroid Itokawa as observed by Hayabusa. Science 312, 1330 (2006)

    ADS  Article  Google Scholar 

  14. K.-H. Glassmeier, H. Boöhnhardt, D. Koschny, E. Kuü hrt, I. Richter, The Rosetta mission: flying towards the origins of the Solar System. Space Sci. Rev. 128, 1–21 (2007)

    ADS  Article  Google Scholar 

  15. J.T. Grundmann, J. Biele, R. Findlay, S. Fredon, T.-M. Ho, C. Krause, S. Ulamec, C. Ziach, One shot to an asteroid—MASCOT and the design of an exclusively battery powered small spacecraft in hardware design examples and operational consideration, in European Space Power Conference, #3051 (2014),

    Google Scholar 

  16. D. Herčik, H.-U. Auster, J. Blum, K.-H. Fornacon, M. Fujimoto, K. Gebauer, C. Guttler, O. Hillenmaier, A. Hördt, I. Richter, B. Stoll, B. Weiss, K.-H. Glaßmeier, MasMag: the MASCOT magnetometer experiment, this special issue (2016)

  17. R. Jaumann, J.P. Bibring, K.H. Glassmeier, M. Grott, T.M. Ho, S. Ulamec, N. Schmitz, H.U. Auster, J. Biele, H. Kuninaka, T. Okada, M. Yoshikawa, S. Watanabe, M. Fujimoto, T. Spohn, A. Koncz, A Mobile Asteroid Surface Scout (MASCOT) for the Hayabusa 2 mission, in LPSC, vol. 1777 (2014), p. 1817

    Google Scholar 

  18. R. Jaumann, N. Schmitz, A. Koncz, H. Michaelis, S. Schroeder, S. Mottola, F. Trauthan, H. Hoffmann, T. Roatsch, D. Jobs, J. Kachlicki, B. Pforte, R. Terzer, M. Tschentscher, S. Weisse, U. Mueller, T.-M. Ho, M. Grott, J.P. Bibring, J. Biele, S. Ulamec, B. Broll, A. Kruselburger, L. Perez-Prieto. The camera of the MASCOT asteroid lander on board Hayabusa-2, this special issue (2016)

  19. H.-D. Joos, J. Bals, G. Looye, K. Schnepper, A. Varga, A multiobjective optimisation-based software environment for control systems design, in IEEE International Conference on Control Applications and International Symposium on Computer Aided Control Systems Design, Glasgow, Scotland, UK (2002), pp. 7–14

    Google Scholar 

  20. H.U. Keller, C. Arpigny, C. Barbieri, R.M. Bonnet, S. Cazes, M. Coradini, C.B. Cosmovici, W.A. Delamere, W.F. Huebner, D.W. Hughes, C. Jamar, D. Malaise, H.J. Reitsema, H.U. Schmidt, W.K.H. Schmidt, P. Seige, F.L. Whipple, K. Wilhelm, First Halley multicolour camera imaging results from Giotto. Nature 321, 326 (1986)

    ADS  Article  Google Scholar 

  21. M. Lange, O. Mierheim, C.H. Hühne, MASCOT—structures design and qualification of an “organic” mobile lander platform for low gravity bodies, in Proc. of 13th European Conference on Space Structures, Materials & Environmental Testing. ESA SP-727, Braunschweig, Germany (2014)

    Google Scholar 

  22. M. Lange et al., MASCOT—a lightweight multi-purpose lander platform, in Proc. of 12th European Conference on Space Structures, Materials & Environmental Testing, ESA, SP-691, Noordwijk, The Netherlands (2012)

    Google Scholar 

  23. D.S. Lauretta (The OSIRIS-REx Team), An overview of the OSIRIS-Rex asteroid sample return mission, in 43rd Lunar and Planetary Science Conference, #2491 (2012)

    Google Scholar 

  24. R. Lichtenheldt, B. Schäfer, Hammering beneath the surface of Mars—Modellbildung und Optimierung des HP3-Mole, in Kolloquium Getriebetechnik, vol. 10, ed. by L. Zentner, Ilmenau (2013), pp. 169–186. ISBN 978-3-86360-065-5

    Google Scholar 

  25. R. Lichtenheldt, J. Spytek, J. Reill, Coaching MASCOT for broad-jumping: multi-criterial optimization of the arm trajectories for MASCOT’s hopping locomotion, in 11th Low-Cost Planetary Mission Conference, Berlin (2015)

    Google Scholar 

  26. T. Okada, K. Shirai, Y. Yamamoto, T. Arai, K. Ogawa, K. Hosono, M. Kato, X-ray fluorescence spectrometry of asteroid Itokawa by Hayabusa. Science 312, 1338 (2006)

    ADS  Article  Google Scholar 

  27. R. Reinhard, The Giotto encounter with comet Halley. Nature 321, 313 (1986)

    ADS  Article  Google Scholar 

  28. J. Saito, H. Miyamoto, R. Nakamura, M. Ishiguro, T. Michikami, A.M. Nakamura, H. Demura, S. Sasaki, N. Hirata, C. Honda, A. Yamamoto, Y. Yokota, T. Fuse, F. Yoshida, D.J. Tholen, R.W. Gaskell, T. Hashimoto, T. Kubota, Y. Higuchi, T. Nakamura, P. Smith, K. Hiraoka, T. Honda, S. Kobayashi, M. Furuya, N. Matsumoto, E. Nemoto, A. Yukishita, K. Kitazato, B. Dermawan, A. Sogame, J. Terazono, C. Shinohara, H. Akiyama, Detailed images of asteroid 25143 Itokawa from Hayabusa. Science 312, 1341 (2006)

    ADS  Article  Google Scholar 

  29. R. Schulz, C. Alexander, H. Böhnhardt, K.-H. Glaßmeier (eds.), Rosetta—ESA’s Mission to the Origin of the Solar System (Springer, Berlin, 2009). ISBN 978-0-387-77517-3

    Google Scholar 

  30. M. Schlotterer, R. Findlay Ross, T.M. Ho, L. Witte, C. Ziach, Histogram filter for attitude determination of small asteroid lander, in 9th International ESA Conference on Guidance, Navigation & Control Systems. 2.–6. Juni 2014, Porto, Portugal (2014)

    Google Scholar 

  31. P.H. Schultz, C.A. Eberhardy, C.M. Ernst, M.F. A’Hearn, J.M. Sunshine, C.M. Lisse, The Deep Impact oblique impact cratering experiment. Icarus 191, 84 (2007)

    ADS  Article  Google Scholar 

  32. H. Sierks, C. Barbieri, P.L. Lamy, R. Rodrigo, D. Koschny, H. Rickman, H.U. Keller, J. Agarwal, M.F. A’Hearn, F. Angrilli, A.-T. Auger, M.A. Barucci, J.-L. Bertaux, I. Bertini, S. Besse, D. Bodewits, C. Capanna, G. Cremonese, V. Da Deppo, B. Davidsson, S. Debei, M. De Cecco, F. Ferri, S. Fornasier, M. Fulle, R. Gaskell, L. Giacomini, O. Groussin, P. Gutierrez-Marques, P.J. Gutiérrez, C. Güttler, N. Hoekzema, S.F. Hviid, W.-H. Ip, L. Jorda, J. Knollenberg, G. Kovacs, J.R. Kramm, E. Kührt, M. Küppers, F. La Forgia, L.M. Lara, M. Lazzarin, C. Leyrat, J.J. Lopez Moreno, S. Magrin, S. Marchi, F. Marzari, M. Massironi, H. Michalik, R. Moissl, S. Mottola, G. Naletto, N. Oklay, M. Pajola, M. Pertile, F. Preusker, L. Sabau, F. Scholten, C. Snodgrass, N. Thomas, C. Tubiana, J.B. Vincent, K.P. Wenzel, M. Zaccariotto, M. Pätzold, On the nucleus structure and activity of comet 67P/Churyumov–Gerasimenko. Science 347, 6220 (2015)

    Article  Google Scholar 

  33. R.M. Spotnitz, G.S. Yeduvaka, G. Nagasubramanian, R. Jungst, Modeling self-discharge of Li/SOCl2 cells. J. Power Sources 163, 578 (2006)

    ADS  Article  Google Scholar 

  34. J.M. Sunshine, O. Groussin, P.H. Schultz, M.F. A’Hearn, L.M. Feaga, T.L. Farnham, K.P. Klaasen, The distribution of water ice in the interior of comet Tempel 1. Icarus 191, 73 (2007)

    ADS  Article  Google Scholar 

  35. Y. Tsuda, M. Yoshikawa, M. Abe, H. Minamino, S. Nakazawa, System design of the Hayabusa2—asteroid sample return mission to 1999JU3. Acta Astronaut. 91, 356–362 (2013)

    ADS  Article  Google Scholar 

  36. S. Ulamec, J. Biele, Surface elements and landing strategies for small bodies missions—Philae and beyond. Adv. Space Res. 47, 847–858 (2009)

    ADS  Article  Google Scholar 

  37. S. Ulamec, J. Biele, P.-W. Bousquet, P. Gaudon, K. Geurts, T.-M. Ho, C. Krause, C. Lange, R. Willnecker, L. Witte, Landing on small bodies: from the Rosetta lander to MASCOT and beyond. Acta Astronaut. 93, 460–466 (2014)

    ADS  Article  Google Scholar 

  38. S. Ulamec, J. Biele, A. Blazquez, B. Cozzoni, C. Fantinati, P. Gaudon, K. Geurts, E. Jurado, O. Küchemann, V. Lommatsch, M. Maibaum, H. Sierks, L. Witte, Rosetta lander—Philae: landing preparations. Acta Astron. 107, 79–86 (2015)

    Article  Google Scholar 

  39. J. Veverka, M. Belton, K. Klaasen, C. Chapman, Galileo’s encounter with 951 Gaspra: overview. Icarus 107(1), 2–17 (1994)

    ADS  Article  Google Scholar 

  40. T. Yoshimitsu, T. Kubota, I. Nakatani, The operation and scientific data of MINERVA rover in Hayabusa mission, in 36th COSPAR Scientific Assembly, #2987 (2006)

    Google Scholar 

Download references

Acknowledgements

MASCOT was developed and built under the leadership of the German Aerospace Center (DLR) with contributions (battery and PCDU subsystems) from the Centre National d’Études Spatiales (CNES) and Japan Aerospace Exploration Agency (JAXA).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tra-Mi Ho.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ho, T., Baturkin, V., Grimm, C. et al. MASCOT—The Mobile Asteroid Surface Scout Onboard the Hayabusa2 Mission. Space Sci Rev 208, 339–374 (2017). https://doi.org/10.1007/s11214-016-0251-6

Download citation

Keywords

  • Hayabusa2
  • MASCOT
  • Surface science package
  • Asteroid