Advertisement

Space Science Reviews

, Volume 208, Issue 1–4, pp 339–374 | Cite as

MASCOT—The Mobile Asteroid Surface Scout Onboard the Hayabusa2 Mission

  • Tra-Mi Ho
  • Volodymyr Baturkin
  • Christian Grimm
  • Jan Thimo Grundmann
  • Catherin Hobbie
  • Eugen Ksenik
  • Caroline Lange
  • Kaname Sasaki
  • Markus Schlotterer
  • Maria Talapina
  • Nawarat Termtanasombat
  • Elisabet Wejmo
  • Lars Witte
  • Michael Wrasmann
  • Guido Wübbels
  • Johannes Rößler
  • Christian Ziach
  • Ross Findlay
  • Jens Biele
  • Christian Krause
  • Stephan Ulamec
  • Michael Lange
  • Olaf Mierheim
  • Roy Lichtenheldt
  • Maximilian Maier
  • Josef Reill
  • Hans-Jürgen Sedlmayr
  • Pierre Bousquet
  • Anthony Bellion
  • Olivier Bompis
  • Celine Cenac-Morthe
  • Muriel Deleuze
  • Stephane Fredon
  • Eric Jurado
  • Elisabet Canalias
  • Ralf Jaumann
  • Jean-Pierre Bibring
  • Karl Heinz Glassmeier
  • David Hercik
  • Matthias Grott
  • Luca Celotti
  • Federico Cordero
  • Jeffrey Hendrikse
  • Tatsuaki Okada
Article

Abstract

On December 3rd, 2014, the Japanese Space Agency (JAXA) launched successfully the Hayabusa2 (HY2) spacecraft to its journey to Near Earth asteroid (162173) Ryugu. Aboard this spacecraft is a compact landing package, MASCOT (Mobile Asteroid surface SCOuT), which was developed by the German Aerospace Centre (DLR) in collaboration with the Centre National d’Etudes Spatiales (CNES). Similar to the famous predecessor mission Hayabusa, Hayabusa2, will also study an asteroid and return samples to Earth. This time, however, the target is a C-type asteroid which is considered to be more primitive than (25143) Itokawa and provide insight into an even earlier stage of our Solar System.

Upon arrival at asteroid Ryugu in 2018, MASCOT will be released from the HY2 spacecraft and gently descend by free fall from an altitude of about 100 m to the surface of the asteroid. After a few bounces, the lander will come to rest at the surface and perform its scientific investigations of the surface structure and mineralogical composition, the thermal behaviour and the magnetic properties by operating its four scientific instruments. Those include an IR imaging spectrometer (MicrOmega, IAS Paris), a camera (MASCAM, DLR Berlin), a radiometer (MARA, DLR Berlin) and a magnetometer (MASMAG, TU Braunschweig).

In order to allow optimized payload operations the thermal design of MASCOT is required to cope with the contrasting requirements of the 4-year cruise in cold environment versus the hot conditions on the surface of the asteroid. Operations up to 2 asteroid days (∼16 hours) based on a primary battery are currently envisaged. A mobility mechanism allows locomotion on the surface. The mechanism is supported by an attitude and motion sensing system and an intelligent autonomy manager, which is implemented in the onboard software that enables MASCOT to operate fully independently when ground intervention is not available.

Keywords

Hayabusa2 MASCOT Surface science package Asteroid 

Abbreviations

ADC

Analog-to-Digital Converter

CFRP

Carbon-Fibre-Reinforced Plastic

CoG

Center of Gravity

DC

Direct Current

E-box

Electronic Box

EM

Engineering Model

EQM

Engineering Quantification Model

FM

Flight Model

FS

Flight Spare

FPGA

Field Programmable Gate Array

GNC

Guidance, Navigation and Control

HY2

Hayabusa2

LED

Light-Emitting Diode

MAM

MASCOT Autonomy Manager

MASCAM

MASCOT CAMera

MARA

MASCOT Radiometer

MASMAG

MASCOT MAGnetometer

MLI

Multi-Layer Insulation

MOSFET

Metal-Oxide-Semiconductor Field-Effect Transistor

MSC

MASCOT

NEA

Non Explosive Actuator

OBC

On-board Computer

OPS

Optical Proximity Sensor

PCDU

Power Conditioning and Distribution Unit

PCB

Printed Circuit Board

PEC

Photoelectric Cell Sensor

SAR

Safe Activation Reaction

SDVF

Software Design and Validation Facility

SLI

Single Layer Insulation

UMC

Umbilical Separation Connecter

Notes

Acknowledgements

MASCOT was developed and built under the leadership of the German Aerospace Center (DLR) with contributions (battery and PCDU subsystems) from the Centre National d’Études Spatiales (CNES) and Japan Aerospace Exploration Agency (JAXA).

References

  1. M. Abe, Y. Takagi, K. Kitazato, S. Abe, T. Hiroi, F. Vilas, B.E. Clark, B.P.A. Abell, S.M. Lederer, K.S. Jarvis, T. Nimura, Y. Ueda, A. Fujiwara, Near-infrared spectral results of asteroid Itokawa from the Hayabusa spacecraft. Science 312, 1334 (2006) ADSCrossRefGoogle Scholar
  2. A. Accomazzo, P. Ferri, S. Lodiot et al., Rosetta operations at the comet. Acta Astronaut. 115, 434–441 (2015) CrossRefGoogle Scholar
  3. M.F. A’Hearn, M.J.S. Belton, A. Delamere, W.H. Blume, Deep Impact: a large-scale active experiment on a cometary nucleus. Space Sci. Rev. 117, 1 (2005a) ADSCrossRefGoogle Scholar
  4. M.F. A’Hearn, M.J.S. Belton, W.A. Delamere, J. Kissel, K.P. Klaasen, L.A. McFadden, K.J. Meech, H.J. Melosh, P.H. Schultz, J.M. Sunshine, P.C. Thomas, J. Veverka, D.K. Yeomans, M.W. Baca, I. Busko, C.J. Crockett, S.M. Collins, M. Desnoyer, C.A. Eberhardy, C.M. Ernst, F.L. Farnham, L. Feaga, O. Groussin, D. Hampton, S.I. Ipatov, J-Y. Li, D. Lindler, C.M. Lisse, C.N. Mastrodemos, W.M. Owen, J.E. Richardson, D.D. Wellnitz, R.L. White, Deep Impact: excavating comet Tempel 1. Science 310, 258 (2005b) ADSCrossRefGoogle Scholar
  5. M.A. Barucci, A.F. Cheng, P. Michel, L.A.M. Benner, R.P. Binzel, P.A. Bland, H. Böhnhardt, J.R. Brucato, A. Campo Bagatin, P. Cerroni, E. Dotto, A. Fitzsimmons, I. Franchi, S.F. Green, L.-M. Lara, J. Licandro, B. Marty, K. Muinonen, A. Nathues, J. Oberst, A.S. Rivkin, F. Robert, R. Saladino, J.M. Trigo-Rodriguez, S. Ulamec, M. Zolensky, MarcoPolo-R near Earth asteroid sample return mission. Exp. Astron. 33(2–3), 645–684 (2012) ADSCrossRefGoogle Scholar
  6. J. Biele, S. Ulamec, Capabilities of Philae, the Rosetta lander. Space Sci. Rev. 138, 275–289 (2008) ADSCrossRefGoogle Scholar
  7. J. Biele, S. Ulamec, M. Maibaum, R. Roll, L. Witte, J. Pablo Muñoz, W. Arnold, H.-U. Auster, C. Casas, C. Faber, C. Fantinati, F. Finke, H.-H. Fischer, K. Geurts, C. Güttler, P. Heinisch, A. Herique, S. Hviid, G. Kargl, M. Knapmeyer, J. Knollenberg, W. Kofman, N. Kömle, E. Kührt, V. Lommatsch, S. Mottola, R.P. de Santayana, E. Remetean, F. Scholten, K. Seidensticker, H. Sierks, T. Spohn, The landing(s) of Philae and inferences about comet surface mechanical properties. Science 349, 9816 (2015) CrossRefGoogle Scholar
  8. D.E. Brownlee, F. Horz, R.L. Newburn, M. Zolensky, T. Duxbury, C. Thomas, S. Sandford, Z. Sekanina, P. Tsou, M. Hanner, M.B.C. Clark, S.F. Green, J. Kissel, Surface of young Jupiter family comet 81 P/Wild 2: view from the Stardust spacecraft. Science 304, 1764 (2004) ADSCrossRefGoogle Scholar
  9. Y.I. Cho, Thermal modelling of high rate Li-SOCl2 primary cylindrical cells. J. Electrochem. Soc. 134(4), 771–779 (1987) ADSCrossRefGoogle Scholar
  10. E.T. Eisenmann, Lithium–thionyl chloride battery. State-of-the-art assessment, Sandia report SAND96-0839•UC-400, March 1996 Google Scholar
  11. T. Evans, T. Nguyen et al., A mathematical model of a lithium/thionyl chloride primary cell. J. Electrochem. Soc. 136(2), 328–339 (1989) CrossRefGoogle Scholar
  12. M. Grott, J. Knollenber, B. Borgs, F. Hänschke, E. Kessler, J. Helbert, A. Maturilli, N. Müller. The MASCOT radiometer MARA for the Hayabusa 2 mission, this special issue (2016) Google Scholar
  13. A. Fujiwara, J. Kawaguchi, D.K. Yeomans, M. Abe, T. Mukai, T. Okada, J. Saito, H. Yano, M. Yoshikawa, D.J. Scheeres, O. Barnouin-Jha, A.F. Cheng, H. Demura, R.W. Gaskell, N. Hirata, H. Ikeda, T. Kominato, H. Miyamoto, A.M. Nakamura, R. Nakamura, S. Sasaki, K. Uesugi, The rubble-pile asteroid Itokawa as observed by Hayabusa. Science 312, 1330 (2006) ADSCrossRefGoogle Scholar
  14. K.-H. Glassmeier, H. Boöhnhardt, D. Koschny, E. Kuü hrt, I. Richter, The Rosetta mission: flying towards the origins of the Solar System. Space Sci. Rev. 128, 1–21 (2007) ADSCrossRefGoogle Scholar
  15. J.T. Grundmann, J. Biele, R. Findlay, S. Fredon, T.-M. Ho, C. Krause, S. Ulamec, C. Ziach, One shot to an asteroid—MASCOT and the design of an exclusively battery powered small spacecraft in hardware design examples and operational consideration, in European Space Power Conference, #3051 (2014), Google Scholar
  16. D. Herčik, H.-U. Auster, J. Blum, K.-H. Fornacon, M. Fujimoto, K. Gebauer, C. Guttler, O. Hillenmaier, A. Hördt, I. Richter, B. Stoll, B. Weiss, K.-H. Glaßmeier, MasMag: the MASCOT magnetometer experiment, this special issue (2016) Google Scholar
  17. R. Jaumann, J.P. Bibring, K.H. Glassmeier, M. Grott, T.M. Ho, S. Ulamec, N. Schmitz, H.U. Auster, J. Biele, H. Kuninaka, T. Okada, M. Yoshikawa, S. Watanabe, M. Fujimoto, T. Spohn, A. Koncz, A Mobile Asteroid Surface Scout (MASCOT) for the Hayabusa 2 mission, in LPSC, vol. 1777 (2014), p. 1817 Google Scholar
  18. R. Jaumann, N. Schmitz, A. Koncz, H. Michaelis, S. Schroeder, S. Mottola, F. Trauthan, H. Hoffmann, T. Roatsch, D. Jobs, J. Kachlicki, B. Pforte, R. Terzer, M. Tschentscher, S. Weisse, U. Mueller, T.-M. Ho, M. Grott, J.P. Bibring, J. Biele, S. Ulamec, B. Broll, A. Kruselburger, L. Perez-Prieto. The camera of the MASCOT asteroid lander on board Hayabusa-2, this special issue (2016) Google Scholar
  19. H.-D. Joos, J. Bals, G. Looye, K. Schnepper, A. Varga, A multiobjective optimisation-based software environment for control systems design, in IEEE International Conference on Control Applications and International Symposium on Computer Aided Control Systems Design, Glasgow, Scotland, UK (2002), pp. 7–14 Google Scholar
  20. H.U. Keller, C. Arpigny, C. Barbieri, R.M. Bonnet, S. Cazes, M. Coradini, C.B. Cosmovici, W.A. Delamere, W.F. Huebner, D.W. Hughes, C. Jamar, D. Malaise, H.J. Reitsema, H.U. Schmidt, W.K.H. Schmidt, P. Seige, F.L. Whipple, K. Wilhelm, First Halley multicolour camera imaging results from Giotto. Nature 321, 326 (1986) ADSCrossRefGoogle Scholar
  21. M. Lange, O. Mierheim, C.H. Hühne, MASCOT—structures design and qualification of an “organic” mobile lander platform for low gravity bodies, in Proc. of 13th European Conference on Space Structures, Materials & Environmental Testing. ESA SP-727, Braunschweig, Germany (2014) Google Scholar
  22. M. Lange et al., MASCOT—a lightweight multi-purpose lander platform, in Proc. of 12th European Conference on Space Structures, Materials & Environmental Testing, ESA, SP-691, Noordwijk, The Netherlands (2012) Google Scholar
  23. D.S. Lauretta (The OSIRIS-REx Team), An overview of the OSIRIS-Rex asteroid sample return mission, in 43rd Lunar and Planetary Science Conference, #2491 (2012) Google Scholar
  24. R. Lichtenheldt, B. Schäfer, Hammering beneath the surface of Mars—Modellbildung und Optimierung des HP3-Mole, in Kolloquium Getriebetechnik, vol. 10, ed. by L. Zentner, Ilmenau (2013), pp. 169–186. ISBN 978-3-86360-065-5 Google Scholar
  25. R. Lichtenheldt, J. Spytek, J. Reill, Coaching MASCOT for broad-jumping: multi-criterial optimization of the arm trajectories for MASCOT’s hopping locomotion, in 11th Low-Cost Planetary Mission Conference, Berlin (2015) Google Scholar
  26. T. Okada, K. Shirai, Y. Yamamoto, T. Arai, K. Ogawa, K. Hosono, M. Kato, X-ray fluorescence spectrometry of asteroid Itokawa by Hayabusa. Science 312, 1338 (2006) ADSCrossRefGoogle Scholar
  27. R. Reinhard, The Giotto encounter with comet Halley. Nature 321, 313 (1986) ADSCrossRefGoogle Scholar
  28. J. Saito, H. Miyamoto, R. Nakamura, M. Ishiguro, T. Michikami, A.M. Nakamura, H. Demura, S. Sasaki, N. Hirata, C. Honda, A. Yamamoto, Y. Yokota, T. Fuse, F. Yoshida, D.J. Tholen, R.W. Gaskell, T. Hashimoto, T. Kubota, Y. Higuchi, T. Nakamura, P. Smith, K. Hiraoka, T. Honda, S. Kobayashi, M. Furuya, N. Matsumoto, E. Nemoto, A. Yukishita, K. Kitazato, B. Dermawan, A. Sogame, J. Terazono, C. Shinohara, H. Akiyama, Detailed images of asteroid 25143 Itokawa from Hayabusa. Science 312, 1341 (2006) ADSCrossRefGoogle Scholar
  29. R. Schulz, C. Alexander, H. Böhnhardt, K.-H. Glaßmeier (eds.), Rosetta—ESA’s Mission to the Origin of the Solar System (Springer, Berlin, 2009). ISBN 978-0-387-77517-3 Google Scholar
  30. M. Schlotterer, R. Findlay Ross, T.M. Ho, L. Witte, C. Ziach, Histogram filter for attitude determination of small asteroid lander, in 9th International ESA Conference on Guidance, Navigation & Control Systems. 2.–6. Juni 2014, Porto, Portugal (2014) Google Scholar
  31. P.H. Schultz, C.A. Eberhardy, C.M. Ernst, M.F. A’Hearn, J.M. Sunshine, C.M. Lisse, The Deep Impact oblique impact cratering experiment. Icarus 191, 84 (2007) ADSCrossRefGoogle Scholar
  32. H. Sierks, C. Barbieri, P.L. Lamy, R. Rodrigo, D. Koschny, H. Rickman, H.U. Keller, J. Agarwal, M.F. A’Hearn, F. Angrilli, A.-T. Auger, M.A. Barucci, J.-L. Bertaux, I. Bertini, S. Besse, D. Bodewits, C. Capanna, G. Cremonese, V. Da Deppo, B. Davidsson, S. Debei, M. De Cecco, F. Ferri, S. Fornasier, M. Fulle, R. Gaskell, L. Giacomini, O. Groussin, P. Gutierrez-Marques, P.J. Gutiérrez, C. Güttler, N. Hoekzema, S.F. Hviid, W.-H. Ip, L. Jorda, J. Knollenberg, G. Kovacs, J.R. Kramm, E. Kührt, M. Küppers, F. La Forgia, L.M. Lara, M. Lazzarin, C. Leyrat, J.J. Lopez Moreno, S. Magrin, S. Marchi, F. Marzari, M. Massironi, H. Michalik, R. Moissl, S. Mottola, G. Naletto, N. Oklay, M. Pajola, M. Pertile, F. Preusker, L. Sabau, F. Scholten, C. Snodgrass, N. Thomas, C. Tubiana, J.B. Vincent, K.P. Wenzel, M. Zaccariotto, M. Pätzold, On the nucleus structure and activity of comet 67P/Churyumov–Gerasimenko. Science 347, 6220 (2015) CrossRefGoogle Scholar
  33. R.M. Spotnitz, G.S. Yeduvaka, G. Nagasubramanian, R. Jungst, Modeling self-discharge of Li/SOCl2 cells. J. Power Sources 163, 578 (2006) ADSCrossRefGoogle Scholar
  34. J.M. Sunshine, O. Groussin, P.H. Schultz, M.F. A’Hearn, L.M. Feaga, T.L. Farnham, K.P. Klaasen, The distribution of water ice in the interior of comet Tempel 1. Icarus 191, 73 (2007) ADSCrossRefGoogle Scholar
  35. Y. Tsuda, M. Yoshikawa, M. Abe, H. Minamino, S. Nakazawa, System design of the Hayabusa2—asteroid sample return mission to 1999JU3. Acta Astronaut. 91, 356–362 (2013) ADSCrossRefGoogle Scholar
  36. S. Ulamec, J. Biele, Surface elements and landing strategies for small bodies missions—Philae and beyond. Adv. Space Res. 47, 847–858 (2009) ADSCrossRefGoogle Scholar
  37. S. Ulamec, J. Biele, P.-W. Bousquet, P. Gaudon, K. Geurts, T.-M. Ho, C. Krause, C. Lange, R. Willnecker, L. Witte, Landing on small bodies: from the Rosetta lander to MASCOT and beyond. Acta Astronaut. 93, 460–466 (2014) ADSCrossRefGoogle Scholar
  38. S. Ulamec, J. Biele, A. Blazquez, B. Cozzoni, C. Fantinati, P. Gaudon, K. Geurts, E. Jurado, O. Küchemann, V. Lommatsch, M. Maibaum, H. Sierks, L. Witte, Rosetta lander—Philae: landing preparations. Acta Astron. 107, 79–86 (2015) CrossRefGoogle Scholar
  39. J. Veverka, M. Belton, K. Klaasen, C. Chapman, Galileo’s encounter with 951 Gaspra: overview. Icarus 107(1), 2–17 (1994) ADSCrossRefGoogle Scholar
  40. T. Yoshimitsu, T. Kubota, I. Nakatani, The operation and scientific data of MINERVA rover in Hayabusa mission, in 36th COSPAR Scientific Assembly, #2987 (2006) Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Tra-Mi Ho
    • 1
  • Volodymyr Baturkin
    • 1
  • Christian Grimm
    • 1
  • Jan Thimo Grundmann
    • 1
  • Catherin Hobbie
    • 1
  • Eugen Ksenik
    • 1
  • Caroline Lange
    • 1
  • Kaname Sasaki
    • 1
  • Markus Schlotterer
    • 1
  • Maria Talapina
    • 1
  • Nawarat Termtanasombat
    • 1
  • Elisabet Wejmo
    • 1
  • Lars Witte
    • 1
  • Michael Wrasmann
    • 1
  • Guido Wübbels
    • 1
  • Johannes Rößler
    • 1
  • Christian Ziach
    • 1
  • Ross Findlay
    • 2
  • Jens Biele
    • 3
  • Christian Krause
    • 3
  • Stephan Ulamec
    • 3
  • Michael Lange
    • 4
  • Olaf Mierheim
    • 4
  • Roy Lichtenheldt
    • 5
  • Maximilian Maier
    • 5
  • Josef Reill
    • 5
  • Hans-Jürgen Sedlmayr
    • 5
  • Pierre Bousquet
    • 6
  • Anthony Bellion
    • 6
  • Olivier Bompis
    • 6
  • Celine Cenac-Morthe
    • 6
  • Muriel Deleuze
    • 6
  • Stephane Fredon
    • 6
  • Eric Jurado
    • 6
  • Elisabet Canalias
    • 6
  • Ralf Jaumann
    • 7
  • Jean-Pierre Bibring
    • 8
  • Karl Heinz Glassmeier
    • 9
  • David Hercik
    • 9
  • Matthias Grott
    • 7
  • Luca Celotti
    • 10
  • Federico Cordero
    • 11
  • Jeffrey Hendrikse
    • 12
  • Tatsuaki Okada
    • 13
  1. 1.Institute of Space SystemsDLR (German Aerospace Center)BremenGermany
  2. 2.DLRBonnGermany
  3. 3.Space Operations and Astronaut Training, MUSCDLRKölnGermany
  4. 4.Institute of Composite Structures and Adaptive SystemsDLRBraunschweigGermany
  5. 5.Robotic and Mechatronics CenterDLROberpfaffenhofen-WesslingGermany
  6. 6.CNESToulouseFrance
  7. 7.Institute of Planetary ResearchDLRBerlin-AdlershofGermany
  8. 8.IASUniversité Paris SudOrsay cedexFrance
  9. 9.Technische Universität BraunschweigBraunschweigGermany
  10. 10.Active Space Technologies GmbHBerlinGermany
  11. 11.Telespazio-VegaDarmstadtGermany
  12. 12.Airbus DSFriedrichshafenGermany
  13. 13.ISAS/JAXASagamiharaJapan

Personalised recommendations