Orbital Observations of Dust Lofted by Daytime Convective Turbulence

Abstract

Over the past several decades, orbital observations of lofted dust have revealed the importance of mineral aerosols as a climate forcing mechanism on both Earth and Mars. Increasingly detailed and diverse data sets have provided an ever-improving understanding of dust sources, transport pathways, and sinks on both planets, but the role of dust in modulating atmospheric processes is complex and not always well understood. We present a review of orbital observations of entrained dust on Earth and Mars, particularly that produced by the dust-laden structures produced by daytime convective turbulence called “dust devils”. On Earth, dust devils are thought to contribute only a small fraction of the atmospheric dust budget; accordingly, there are not yet any published accounts of their occurrence from orbit. In contrast, dust devils on Mars are thought to account for several tens of percent of the planet’s atmospheric dust budget; the literature regarding martian dust devils is quite rich. Because terrestrial dust devils may temporarily contribute significantly to local dust loading and lowered air quality, we suggest that martian dust devil studies may inform future studies of convectively-lofted dust on Earth.

As on Earth, martian dust devils form most commonly when the insolation reaches its daily and seasonal peak and where a source of loose dust is plentiful. However this pattern is modulated by variations in weather, albedo, or topography, which produce turbulence that can either enhance or suppress dust devil formation. For reasons not well understood, when measured from orbit, martian dust devil characteristics (dimensions, and translational and rotational speeds) are often much larger than those measured from the ground on both Earth and Mars. Studies connecting orbital observations to those from the surface are needed to bridge this gap in understanding. Martian dust devils have been used to remotely probe conditions in the PBL (e.g., CBL depth, wind velocity); the same could be done in remote locations on Earth. Finally, martian dust devils appear to play a major role in the dust cycle, waxing and waning in relative importance and spatial patterns of occurrence with the planet’s orbital state. Orbital studies of terrestrial dust devils would provide a basis for comparative planetology that would broaden the understanding of these dusty vortices on both planets.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Abbreviations

ADEOS:

Advanced Earth Observing Satellite

AOT:

aerosol optical thickness

ASTER:

Advanced Spaceborne Thermal Emission Spectrometer

AVHRR:

Advanced Very High Resolution Radiometer

CALIOP:

Cloud-Aerosol Lidar with Orthogonal Polarization

CALIPSO:

Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations

CBL:

convective boundary layer

CTX:

Context Camera

DD:

dust devil

DOD:

dust optical depth

DOT:

dust optical thickness

EPF:

emission phase function

EY:

Earth year

FOV:

field of view

GCM:

global circulation model

GLAS:

Geoscience Laser Altimeter System

GLI:

Global Imager

GOCART:

Goddard Chemistry Aerosol Radiation and Transport

HiRISE:

High Resolution Imaging Science Experiment

HRSC:

High Resolution Stereo Camera

ICESat:

Ice, Cloud and land Elevation Satellite

IR:

infrared

IRIS:

Infrared Interferometric Spectrometer

IRTM:

Infrared Thermal Mapper

LITE:

Lidar In-Space Technology Experiment

LW:

long wave

MARCI:

Mars Reconnaissance Orbiter Mars Color Imager

MCS:

Mars Climate Sounder

MEX:

Mars Express

MGS:

Mars Global Surveyor

MOC NA:

Mars Orbiter Camera Narrow Angle

MOC WA:

Mars Orbiter Camera Wide Angle

MODIS:

Moderate-resolution Imaging Spectro-radiometer

MOLA:

Mars Orbiter Laser Altimeter

MRO:

Mars Reconnaissance Orbiter

MSG:

Meteosat Second Generation

MSL:

Mars Science Laboratory Multi-angle Imaging Spectro-Radiometer

MY:

Mars Year

MVIRI:

Meteosat Visible Infra-Red Imager

NOAA:

National Oceanic and Atmospheric Administration

ODY:

Mars Odyssey

PBL:

planetary boundary layer

POLDER:

Polarization and Directionality of the Earth’s Reflectances

PSD:

particle size distribution

SeaWiFS:

Sea-viewing Wide Field of view Sensor

SRC:

Super-resolution Camera

SEVIRI:

Spinning Enhanced Visible Infra-Red Imager

SPICAM:

Spectroscopy for Investigation of Characteristics of the Atmosphere of Mars

SW:

short wave

TES:

Thermal Emission Spectrometer

THEMIS IR:

Thermal Emission Imaging System, Infrared camera

THEMIS VIS:

THEMIS Visible camera

TIROS:

Television and Infra-Red Observation Satellite

UV:

ultraviolet

VCS-MA:

Vidicon Camera System—Medium Angle

VIS: TOMS:

Total Ozone Mapping Spectrometer Visual Imaging Subsystems

VL1:

Viking Lander 1

VL2:

Viking Lander 2

VO1:

Viking Orbiter 1

VO2:

Viking Orbiter 2

References

  1. A. Ansmann, M. Tesche, P. Knippertz, E. Bierwirth, D. Althausen, D. Müller, O. Schulz, Vertical profiling of convective dust plumes in southern Morocco during SAMUM. Tellus B 61, 340–353 (2009). doi:10.1111/j.1600-0889.2008.00384.x

    ADS  Article  Google Scholar 

  2. M.R. Balme, P.L. Whelley, R. Greeley, Mars: dust devil track survey in Argyre Planitia and Hellas Basin. J. Geophys. Res. 108, 5086 (2003). doi:10.1029/2003JE002096

    Article  Google Scholar 

  3. M. Balme, R. Greeley, Dust devils on Earth and Mars. Rev. Geophys. 44, RG3003 (2006). doi:10.1029/2005RG000188

    ADS  Article  Google Scholar 

  4. M.R. Balme, A. Pathare, S.M. Metzger, M.C. Towner, S.R. Lewis, A. Spiga, L. Fenton, N.O. Renno, H.M. Elliott, F.A. Saca, T. Michaels, P. Russell, J. Verdasca, Field measurements of horizontal forward motion velocities of terrestrial dust devils: towards a proxy for ambient winds on Mars and Earth. Icarus 221, 632–645 (2012). doi:10.1016/j.Icarus2012.08.021

    ADS  Article  Google Scholar 

  5. J.R. Banks, H.E. Brindley, Evaluation of MSG-SEVIRI mineral dust retrieval products over North Africa and the Middle East. Remote Sens. Environ. 128, 58–73 (2013). doi:10.1016/j.rse.2012.07.017

    Article  Google Scholar 

  6. S. Basu, M.I. Richardson, R.J. Wilson, Simulation of the Martian dust cycle with the GFDL Mars GCM. J. Geophys. Res. 109, E11006 (2004). doi:10.1029/2004JE002243

    ADS  Article  Google Scholar 

  7. S. Basu, J. Wilson, M.I. Richardson, A. Ingersoll, Simulation of spontaneous and variable global dust storms with the GFDL Mars GCM. J. Geophys. Res.-Planets 111 (2006). doi:10.1029/2005je002660

  8. F. Bell, Dust devils and aviation, Meteorol. Note 27, Commonwealth of Australia, Bureau of Meteorology (1967) p. 10

  9. J.F. Bell, M.J. Wolff, M.C. Malin, W.M. Calvin, B.A. Cantor, M.A. Caplinger, R.T. Clancy, K.S. Edgett, L.J. Edwards, J. Fahle, F. Ghaemi, R.M. Haberle, A. Hale, P.B. James, S.W. Lee, T. McConnochie, E. Noe Dobrea, M.A. Ravine, D. Schaeffer, K.D. Supulver, P.C. Thomas, Mars Reconnaissance Orbiter Mars Color Imager (MARCI): Instrument description, calibration, and performance. J. Geophys. Res. 114 (2009). doi:10.1029/2008JE003315

  10. N. Bellouin, A. Jones, J. Haywood, S.A. Christopher, Updated estimate of aerosol direct radiative forcing from satellite observations and comparison against the Hadley Centre climate model. J. Geophys. Res. 113, D10205 (2008). doi:10.1029/2007JD009385

    ADS  Article  Google Scholar 

  11. S. Berthier, P. Chazette, P. Couvert, J. Pelon, F. Dulac, F. Thieuleux, C. Moulin, T. Pain, Desert dust aerosol columnar properties over ocean and continental Africa from Lidar In-Space Technology Experiment (LITE) and meteosat synergy. J. Geophys. Res. 111, D21202 (2006). doi:10.1029/2005JD006999

    ADS  Article  Google Scholar 

  12. K.K. Biener, P.E. Geissler, A.S. McEwen, C. Leovy, Observations of martian dust devils in MOC wide angle camera images, in Lunar Planet. Sci. Conf. XXXIII, League City, TX (2002) Abst. #2004

    Google Scholar 

  13. O. Boucher, D. Randall, P. Artaxo, C. Bretherton, G. Feingold, P. Forster, V.-M. Kerminen, Y. Kondo, H. Liao, U. Lohmann, P. Rasch, S.K. Satheesh, S. Sherwood, B. Stevens, X.Y. Zhang, in Climate Change 2013: The Physical Science Basis, ed. by T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, P.M. Midgley (Cambridge University Press, New York, 2013), p. 571. doi:10.1017/CBO9781107415324.016

    Google Scholar 

  14. G.A. Briggs, W.A. Baum, J. Barnes, Viking Orbiter imaging observations of dust in the Martian atmosphere. J. Geophys. Res. 84, 2795–2820 (1979). doi:10.1029/JB084iB06p02795

    ADS  Article  Google Scholar 

  15. B.A. Cantor, MOC observations of the 2001 Mars planet-encircling dust storm. Icarus 186(1), 60–96 (2007). doi:10.1016/j.icarus.2006.08.019

    ADS  Article  Google Scholar 

  16. B.A. Cantor, P.B. James, M. Caplinger, M.J. Wolff, Martian dust storms: 1999 Mars Orbiter Camera observations. J. Geophys. Res. 106, 23653 (2001). doi:10.1029/2000JE001310

    ADS  Article  Google Scholar 

  17. B. Cantor, M. Malin, K.S. Edgett, Multiyear Mars Orbiter Camera (MOC) observations of repeated Martian weather phenomena during the northern summer season. J. Geophys. Res. 107(E3), 5014 (2002). doi:10.1029/2001JE001588

    Article  Google Scholar 

  18. B.A. Cantor, K.M. Kanak, K.S. Edgett, Mars Orbiter camera observations of Martian dust devils and their tracks (September 1997 to January 2006) and evaluation of theoretical vortex models. J. Geophys. Res. 111, E12002 (2006). doi:10.1029/2006JE002700

    ADS  Article  Google Scholar 

  19. B.A. Cantor, P.B. James, W.M. Calvin, MARCI and MOC observations of the atmosphere and surface cap in the north polar region of Mars. Icarus 208, 61–81 (2010). doi:10.1016/j.icarus.2010.01.032

    ADS  Article  Google Scholar 

  20. D. Carrer, X. Ceamanos, B. Six, J.-L. Roujean, AERUS-GEO: a newly available satellite-derived aerosol optical depth product over Europe and Africa. Geophys. Res. Lett. 41, 7731–7738 (2014). doi:10.1002/2014GL061707

    ADS  Article  Google Scholar 

  21. I. Chiapello, C. Moulin, J.M. Prospero, Understanding the long-term variability of African dust transport across the Atlantic as recorded in both Barbados surface concentrations and large-scale TOMS optical thickness. J. Geophys. Res. 110, D18S10 (2005). doi:10.1029/2004JD005132

    ADS  Article  Google Scholar 

  22. I. Chiapello, Dust observations and climatology, in Mineral Dust: A Key Player in the Earth System, ed. by P. Knippertz, J.-B.W. Stuut (Springer, Dordrecht, 2014), p. 149. doi:10.1007/978-94-017-8978-3

    Google Scholar 

  23. M. Chin, T. Diehl, O. Dubovik, T.F. Eck, B.N. Holben, A. Sinyuk, D.G. Streets, Light absorption by pollution, dust, and biomass burning aerosols: a global model study and evaluation with AERONET measurements. Ann. Geophys. 27, 3439–3464 (2009). doi:10.5194/angeo-27-3439-2009

    ADS  Article  Google Scholar 

  24. M. Chin, T. Diehl, Q. Tan, J.M. Prospero, R.A. Kahn, L.A. Remer, H. Yu, A.M. Sayer, H. Bian, I.V. Geogdzhayev, B.N. Holben, S.G. Howell, B.J. Huebert, N.C. Hsu, D. Kim, T.L. Kucsera, R.C.L.M.I. Mishchenko, X. Pan, P.K. Quinn, G.L. Schuster, D.G. Streets, S.A. Strode, O. Torres, X.-P. Zhao, Multi-decadal aerosol variations from 1980 to 2009: a perspective from observations and a global model. Atmos. Chem. Phys. 14, 3657–3690 (2014). doi:10.5194/acp-14-3657-2014

    ADS  Article  Google Scholar 

  25. D.S. Choi, C.M. Dundas, Measurements of martian dust devil winds with HiRISE. Geophys. Res. Lett. 38 (2011). doi:10.1029/2011GL049806

  26. P.R. Christensen, Regional dust deposits on Mars: physical properties, age, and history. J. Geophys. Res. 91(B3), 3533–3545 (1986). doi:10.1029/JB091iB03p03533

    ADS  Article  Google Scholar 

  27. P.R. Christensen, B.M. Jakosky, H.H. Kieffer, M.C. Malin, H.Y. McSween Jr., K. Nealson, G.L. Mehall, S.H. Silverman, S. Ferry, M. Caplinger, M. Ravine, The thermal emission imaging system (THEMIS) for the Mars 2001 Odyssey mission. Space Sci. Rev. 110, 85 (2004). doi:10.1007/978-0-306-48600-5_3

    ADS  Article  Google Scholar 

  28. R.T. Clancy, B.J. Sandor, M.J. Wolff, P.R. Christensen, M.D. Smith, J.C. Pearl, B.J. Conrath, R.J. Wilson, An intercomparison of ground-based millimeter, MGS TES, and Viking atmospheric temperature measurements: seasonal and interannual variability of temperatures and dust loading in the global Mars atmosphere. J. Geophys. Res. 105, 9553–9571 (2000). doi:10.1029/1999JE001089

    ADS  Article  Google Scholar 

  29. D.S. Colburn, J.B. Pollack, R.M. Haberle, Diurnal variations in optical depth at Mars. Icarus 79, 159–189 (1989). doi:10.1016/0019-1035(89)90114-0

    ADS  Article  Google Scholar 

  30. S.M. Cowie, P. Knippertz, J.H. Marsham, Are vegetation-related roughness changes the cause of the recent decrease in dust emission from the Sahel? Geophys. Res. Lett. 40, 1868–1872 (2013). doi:10.1002/grl.50273

    ADS  Article  Google Scholar 

  31. G.E. Cushing, T.N. Titus, P.R. Christensen, THEMIS VIS and IR observations of a high-altitude martian dust devil. Geophys. Res. Lett. 32, 23 (2005). doi:10.1029/2005GL024478

    Article  Google Scholar 

  32. J.W. Deardorff, Observed characteristics of the outer layer, in Short Course on the Planetary Boundary Layer, ed. by A.K. Blackadar (Am. Meteorol. Soc., Boston, 1978), 101 pp.

    Google Scholar 

  33. K.S. Edgett, M.C. Malin, Martian dust raising and surface albedo controls: thin, dark (and sometimes bright) streaks and dust devils in MGS MOC high resolution images, in Lunar Planet. Sci. Conf. XXXI, Houston, TX (2000) Abst. #1073

    Google Scholar 

  34. A.T. Evan, J. Dunion, J.A. Foley, A.K. Heidinger, C.S. Velden, New evidence for a relationship between Atlantic tropical cyclone activity and African dust outbreaks. Geophys. Res. Lett. 33, L19813 (2006). doi:10.1029/2006GL026408

    ADS  Article  Google Scholar 

  35. A.T. Evan, S. Mukhopadhyay, African dust over the northern tropical Atlantic: 1955–2008. J. Appl. Meteorol. Climatol. 49, 2213–2229 (2010). doi:10.1175/2010JAMC2485.1

    ADS  Article  Google Scholar 

  36. A.T. Evan, C. Flamant, S. Fiedler, O. Doherty, An analysis of aeolian dust in climate models. Geophys. Res. Lett. 41, 5996–6001 (2014). doi:10.1002/2014GL060545

    ADS  Article  Google Scholar 

  37. A.A. Fedorova, F. Montmessin, A. Rodin, O.I. Korablev, A. Määttänen, L. Maltagliati, J.-L. Bertaux, Evidence for a bimodal size distribution for the suspended aerosol particles on Mars. Icarus 231, 239–260 (2014). doi:10.1016/j.icarus.2013.12.015

    ADS  Article  Google Scholar 

  38. L.K. Fenton, J.C. Pearl, T.Z. Martin, Mapping Mariner 9 dust opacities. Icarus 130, 115–124 (1997). doi:10.1006/icar.1997.5810

    ADS  Article  Google Scholar 

  39. L.K. Fenton, R. Lorenz, Dust devil height and spacing with relation to the martian planetary boundary layer thickness. Icarus 260, 246–262 (2015). doi:10.1016/j.icarus2015.07.028

    ADS  Article  Google Scholar 

  40. F. Ferri, P.H. Smith, M. Lemmon, N.O. Rennó, Dust devils as observed by Mars Pathfinder. J. Geophys. Res. 108 (2003). doi:10.1029/2000JE001421

  41. J.A. Fisher, M.I. Richardson, C.E. Newman, M.A. Szwast, C. Graf, S. Basu, S.P. Ewald, A.D. Toigo, R.J. Wilson, A survey of martian dust devil activity using Mars global surveyor Mars orbiter camera images. J. Geophys. Res. 110, E03004 (2005). doi:10.1029/2003JE002165

    ADS  Google Scholar 

  42. D.E. Fitzjarrald, A field investigation of dust devils. J. Appl. Meteorol. 12, 808–813 (1973). doi:10.1175/1520-0450(1973)012<0808:AFIODD>2.0.CO;2

    ADS  Article  Google Scholar 

  43. W.D. Flower, Sand devils. London Meteorol. Off. Prof. Notes. 5, No. 71 (1936)

  44. G.J. Flynn, The meteoritic contribution to dust and aerosols in the atmosphere of Mars, in Workshop on the Martian Surface and Atmosphere Through Time, Boulder, CO, USA, Report No. NASA-CR-190418, pp. 51–52 (1992)

  45. G.R. Foltz, M.J. McPhaden, Trends in Saharan dust and tropical Atlantic climate during 1980–2006. Geophys. Res. Lett. 35, L20706 (2008). doi:10.1029/2008GL035042

    ADS  Article  Google Scholar 

  46. F. Forget, F. Hourdin, R. Fournier, C. Hourdin, O. Talagrand, M. Collins, S.R. Lewis, P.L. Read, J.-P. Huot, Improved general circulation models of the martian atmosphere from the surface to above 80 km. J. Geophys. Res. 104(E10), 24155–24175 (1999). doi:10.1029/1999JE001025

    ADS  Article  Google Scholar 

  47. J.R. Garratt, The Atmospheric Boundary Layer (Cambridge Univ. Press, New York, 1994)

    Google Scholar 

  48. S. Gassó, A.F. Stein, Does dust from Patagonia reach the sub-Antarctic Atlantic Ocean? Geophys. Res. Lett. 34, L01801 (2007). doi:10.1029/2006GL027693

    ADS  Article  Google Scholar 

  49. A. Gibbons, F. Yang, P. Mlsna, P. Geissler, Automated procedures for detecting martian dust devils, in Lunar Planet. Sci. Con. XXXVI, League City, TX (2005) Abst. #2005

    Google Scholar 

  50. P.J. Gierasch, R.M. Goody, A model of a Martian Great dust storm. J. Atmos. Sci. 30(2), 169–179 (1973). doi:10.1175/1520-0469(1973)030<0169:AMOAMG>2.0.CO;2

    ADS  Article  Google Scholar 

  51. D.A. Gillette, P.C. Sinclair, Estimation of suspension of alkaline material by dust in the United States. Atmos. Environ. 24A(5), 1135–1142 (1990). doi:10.1016/0960-1686(90)90078-2

    ADS  Article  Google Scholar 

  52. P. Ginoux, J.M. Prospero, T.E. Gill, N.C. Hsu, M. Zhao, global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products. Rev. Geophys. 50, RG3005 (2012). doi:10.1029/2012RG000388

    ADS  Article  Google Scholar 

  53. A. Goudie, N. Middleton, Desert Dust in the Global System (Springer, Berlin, 2006)

    Google Scholar 

  54. D. Grassi, V. Formisano, F. Forget, C. Fiorenza, N.I. Ignatiev, A. Maturilli, L.V. Zasova, The martian atmosphere in the region of Hellas basin as observed by the planetary Fourier spectrometer (PFS-MEX). Planet. Space Sci. 55, 1346–1357 (2007). doi:10.1016/j.pss.2006.12.006

    ADS  Article  Google Scholar 

  55. R. Greeley, J. Iversen, Wind as Geologic Process on Earth, Mars, Venus, and Titan (Cambridge Univ. Press, New York, 1985)

    Google Scholar 

  56. R. Greeley, M.R. Balme, J.D. Iversen, S.M. Metzger, R. Mickelson, J. Phoreman, B. White, Martian dust devils: laboratory simulations of particle threshold. J. Geophys. Res. 108 (2003). doi:10.1029/2002JE001987

  57. R. Greeley, P.L. Whelley, R.E. Arvidson, N.A. Cabrol, D.J. Foley, B.J. Franklin, P.G. Geissler, M.P. Golombek, R.O. Kuzmin, G.A. Landis, M.T. Lemmon, L.D.V. Neakrase, S.W. Squyres, S.D. Thompson, Active dust devils in Gusev crater, Mars: observations from the Mars Exploration Rover Spirit. J. Geophys. Res. 111, E12S09 (2006). doi:10.1029/2006JE002743

    ADS  Google Scholar 

  58. R. Greeley, D.A. Waller, N.A. Cabrol, G.A. Landis, M.T. Lemmon, L.D.V. Neakrase, M. Pendeleton Hoffer, S.D. Thompson, P.L. Whelley, Gusev crater, Mars: observations of three dust devil seasons. J. Geophys. Res. 115, E00F02 (2010). doi:10.1029/2010JE003608

    ADS  Article  Google Scholar 

  59. S.D. Guzewich, A.D. Toigo, L. Kulowski, H. Wang, Mars Orbiter Camera climatology of textured dust storms. Icarus 258, 1–13 (2015). doi:10.1016/j.icarus.2015.06.023

    ADS  Article  Google Scholar 

  60. R.M. Haberle, M.A. Kahre, J.R. Murphy, Role of dust devils and orbital precession in closing the Martian dust cycle. Geophys. Res. Lett. 33, L19504 (2006). doi:10.1029/2006GL026188

    Article  Google Scholar 

  61. R. Hanel, B. Conrath, W. Hovis, V. Kunde, P. Lowman, W. Maguire, J. Pearl, J. Pirraglia, C. Prabhakara, B. Schlachman, G. Levin, P. Straat, T. Burke, Investigation of the Martian environment by infrared spectroscopy on Mariner 9. Icarus 17, 423–442 (1972). doi:10.1016/0019-1035(72)90009-7

    ADS  Article  Google Scholar 

  62. N.G. Heavens, J.L. Benson, D.M. Kass, A. Kleinbohl, W.A. Abdou, D.J. McCleese, M.I. Richardson, J.T. Schofield, J.H. Shirley, P.M. Wolkenberg, Water ice clouds over the Martian tropics during northern summer. Geophys. Res. Lett. 37 (2010). doi:10.1029/2010gl044610

  63. N.G. Heavens, D.J. McCleese, M.I. Richardson, D.M. Kass, A. Kleinböhl, J.T. Schofield, Structure and dynamics of the Martian lower and middle atmosphere as observed by the Mars Climate Sounder: 2. Implications of the thermal structure and aerosol distributions for the mean meridional circulation. J. Geophys. Res., Planets 116, E01010 (2011a). doi:10.1029/2010JE003713

    ADS  Google Scholar 

  64. N.G. Heavens, M.I. Richardson, A. Kleinbohl, D.M. Kass, D.J. McCleese, W. Abdou, J.L. Benson, J.T. Schofield, J.H. Shirley, P.M. Wolkenberg, Vertical distribution of dust in the Martian atmosphere during northern spring and summer: high-altitude tropical dust maximum at northern summer solstice. J. Geophys. Res., Planets 116 (2011b). doi:10.1029/2010JE003692

  65. N.G. Heavens, B.A. Cantor, P.O. Hayne, D.M. Kass, A. Kleinböhl, D.J. McCleese, S. Piqueux, J.T. Schofield, J.H. Shirley, Extreme detached dust layers near Martian volcanoes: evidence for dust transport by mesoscale circulations forced by high topography. Geophys. Res. Lett. 42, 3730–3738 (2015). doi:10.1002/2015GL064004

    ADS  Article  Google Scholar 

  66. J.R. Herman, P.K. Bhartia, O. Torres, C. Hsu, C. Seftor, E. Celarier, Global distribution of UV-absorbing aerosols from Nimbus 7/TOMS data. J. Geophys. Res. 102, 16911 (1997). doi:10.1029/96JD03680

    ADS  Article  Google Scholar 

  67. M. Herman, J.-L. Deuzé, A. Marchand, B. Roger, P. Lallart, Aerosol remote sensing from POLDER/ADEOS over the ocean: improved retrieval using a nonspherical particle model. J. Geophys. Res. 110, D10S02 (2005). doi:10.1029/2004JD004798

    ADS  Article  Google Scholar 

  68. G.D. Hess, K.T. Spillane, Characteristics of dust devils in Australia. J. Appl. Meteorol. 29, 498–506 (1990). doi:10.1175/1520-0450(1990)029<0498:CODDIA>2.0.CO;2

    ADS  Article  Google Scholar 

  69. R. Hesse, Short-lived and long-lived dust devil tracks in the coastal desert of southern Peru. Aeolian Res. 5, 101–106 (2012). doi:10.1016/j.aeolia.2011.10.003

    ADS  Article  Google Scholar 

  70. D.P. Hinson, M. Pätzold, S. Tellmann, B. Häusler, G.L. Tyler, The depth of the convective boundary layer on Mars. Icarus 198, 57–66 (2008). doi:10.1016/j.icarus.2008.07.003

    ADS  Article  Google Scholar 

  71. D.P. Hinson, H. Wang, Further observations of regional dust storms and baroclinic eddies in the northern hemisphere of Mars. Icarus 206, 290–305 (2010). doi:10.1016/j.icarus.2009.08.019

    ADS  Article  Google Scholar 

  72. D.P. Hinson, H. Wang, M.D. Smith, A multi-year survey of dynamics near the surface in the northern hemisphere of Mars: short-period baroclinic waves and dust storms. Icarus 219, 307–320 (2012). doi:10.1016/j.icarus.2012.03.001

    ADS  Article  Google Scholar 

  73. D.P. Hinson, S.W. Asmar, D.S. Kahan, V. Akopian, R.M. Haberle, A. Spiga, J.T. Schofield, A. Kleinböhl, W.A. Abdou, S.R. Lewis, M. Paik, S.G. Maalouf, Initial results from radio occultation measurements with the Mars Reconnaissance Orbiter: a nocturnal mixed layer in the tropics and comparisons with polar profiles from the Mars Climate Sounder. Icarus 243, 91–103 (2014). doi:10.1016/j.icarus.2014.09.019

    ADS  Article  Google Scholar 

  74. N.C. Hsu, S.C. Tsay, M.D. King, J.R. Herman, Aerosol properties over bright-reflecting source regions. IEEE Trans. Geosci. Remote Sens. 42(3), 557–569 (2004). doi:10.1109/TGRS.2004.824067

    ADS  Article  Google Scholar 

  75. N.C. Hsu, R. Gautam, A.M. Sayer, C. Bettenhausen, C. Li, M.J. Jeong, S.-C. Tsay, B.N. Holben, Global and regional trends of aerosol optical depth over land and ocean using SeaWiFS measurements from 1997 to 2010. Atmos. Chem. Phys. 12, 8037–8053 (2012). doi:10.5194/acp-12-8037-2012

    ADS  Article  Google Scholar 

  76. N.C. Hsu, M.-J. Jeong, C. Bettenhausen, A.M. Sayer, R. Hansell, C.S. Seftor, J. Huang, S.-C. Tsay, Enhanced Deep Blue aerosol retrieval algorithm: the second generation. J. Geophys. Res., Atmos. 118, 9296–9315 (2013). doi:10.1002/jgrd.50712

    ADS  Article  Google Scholar 

  77. J. Huang, C. Zhang, J.M. Prospero, African dust outbreaks: a satellite perspective of temporal and spatial variability over the tropical Atlantic Ocean. J. Geophys. Res. 115, D05202 (2010). doi:10.1029/2009JD012516

    ADS  Google Scholar 

  78. N. Huneeus, M. Schulz, Y. Balkanski, J. Griesfeller, J.A. Prospero, S. Kinne, S. Bauer, O. Boucher, M. Chin, F. Dentener, T. Diehl, R. Easter, D. Fillmore, S. Ghan, P. Ginoux, A. Grini, L. Horowitz, D. Koch, M. Krol, W. Landing, X. Liu, N. Mahowald, R. Miller, J.-J. Morcrette, G. Myhre, J.E. Penner, J. Perlwitz, P. Stier, T. Takemura, C. Zender, Global dust model intercomparison in AeroCom phase I. Atmos. Chem. Phys. 11, 7781–7816 (2011). doi:10.5194/acp-11-7781-2011

    ADS  Article  Google Scholar 

  79. G.E. Hunt, P.B. James, Martian extratropical cyclones. Nature 278, 531–532 (1979). doi:10.1038/278531a0

    ADS  Article  Google Scholar 

  80. R.B. Husar, J.M. Prospero, L.L. Stowe, Characterization of tropospheric aerosols over the oceans with the NOAA AVHRR optical thickness product. J. Geophys. Res. 102, 16889–16909 (1997). doi:10.1029/96JD04009

    ADS  Article  Google Scholar 

  81. R.L. Ives, Behavior of dust devils. Bull. Am. Meteorol. Soc. 28, 168–174 (1947)

    Google Scholar 

  82. I. Jankowiak, D. Tanré, Satellite climatology of Saharan dust outbreaks: method and preliminary results. J. Climate 5(6), 646–656 (1992). doi:10.1175/1520-0442(1992)005<0646:SCOSDO>2.0.CO;2

    ADS  Article  Google Scholar 

  83. R. Jaumann, G. Neukum, T. Behnke, T.C. Duxbury, K. Eichentopf, J. Flohrer, S. van Gasselt, B. Giese, K. Gwinner, E. Hauber, H. Hoffmann, A. Hoffmeister, U. Köhler, K.-D. Matz, T.B. McCord, V. Mertens, J. Oberst, R. Pischel, D. Reiss, E. Ress, T. Roatsch, P. Saiger, F. Scholten, G. Schwarz, K. Stephan, M. Wählisch, the HRSC Co-Investigator Team, The high-resolution stereo camera (HRSC) experiment on Mars Express: instrument aspects and experiment conduct from interplanetary cruise through the nominal mission. Planet. Space Sci. 55, 928–952 (2007). doi:10.1016/j.pss.2006.12.003

    ADS  Article  Google Scholar 

  84. B.C. Jemmett-Smith, J.H. Marsham, P. Knippertz, C.A. Gilkeson, Quantifying global dust devil occurrence from meteorological analyses. Geophys. Res. Lett. 42, 1275–1282 (2015). doi:10.1002/2015GL063078

    ADS  Article  Google Scholar 

  85. R.A. Kahn, T.Z. Martin, R.W. Zurek, S.W. Lee, The Martian dust cycle, in Mars, ed. by H.H. Kieffer, B.M. Jakosky, C.W. Snyder, M.S. Matthews (Univ. of Ariz. Press, Tucson, 1992), pp. 1017–1053

    Google Scholar 

  86. M.A. Kahre, J.R. Murphy, R.M. Haberle, Modeling the Martian dust cycle and surface dust reservoirs with the NASA Ames general circulation model. J. Geophys. Res. 111 (2006). doi:10.1029/2005JE002588

  87. K.M. Kanak, D.K. Lilly, J.T. Snow, The formation of vertical vortices in the convective boundary layer. Q. J. R. Meteorol. Soc. 126, 2789–2810 (2000). doi:10.1002/qj.49712656910

    ADS  Article  Google Scholar 

  88. Y.J. Kaufman, I. Koren, L.A. Remer, D. Tanré, P. Ginoux, S. Fan, Dust transport and deposition observed from the Terra-Moderate Resolution Imaging Spectrometer (MODIS) spacecraft over the Atlantic Ocean. J. Geophys. Res. 110, D10S12 (2005). doi:10.1029/2003JD004436

    ADS  Article  Google Scholar 

  89. H.H. Kieffer, B.M. Jakosky, C.W. Snyder, The planet Mars: from antiquity to the present, in Mars, ed. by H.H. Kieffer, B.M. Jakosky, C.W. Snyder, M.S. Matthews (University of Arizona Press, Tucson, 1992), pp. 12–13

    Google Scholar 

  90. A. Kleinböhl, J.T. Schofield, D.M. Kass, W.A. Abdou, C.R. Backus, B. Sen, J.H. Shirley, W.G. Lawson, M.I. Richardson, F.W. Taylor, N.A. Teanby, D.J. McCleese, Mars Climate Sounder limb profile retrieval of atmospheric temperature, pressure, and dust and water ice opacity. J. Geophys. Res. 114, E10006 (2009). doi:10.1029/2009JE003358

    ADS  Article  Google Scholar 

  91. J. Koch, N.O. Renno, The role of convective plumes and vortices on the global aerosol budget. Geophys. Res. Lett. 32, L18806 (2005). doi:10.1029/2005GL02342

    ADS  Google Scholar 

  92. J.F. Kok, E.J.R. Parteli, T.I. Michaels, D.B. Karam, The physics of wind-blown sand and dust. Rep. Prog. Phys. 75, 10 (2012). doi:10.1088/0034-4885/75/10/106901

    Article  Google Scholar 

  93. O. Korablev, V.A. Krasnopolsky, A.V. Rodin, E. Chassefière, Vertical structure of Martian dust measured by solar infrared occultations from the Phobos spacecraft. Icarus 102, 76–87 (1993). doi:10.1006/icar.1993.1033

    ADS  Article  Google Scholar 

  94. J. Laskar, A.C.M. Correia, M. Gastineau, F. Joutel, B. Levrard, P. Robutel, Long term evolution and chaotic diffusion of the insolation quantities of Mars. Icarus 170, 343–364 (2004). doi:10.1016/j.icarus.2004.04.005

    ADS  Article  Google Scholar 

  95. M. Legrand, C. N’doumé, I. Jankowiak, Satellite-derived climatology of the Saharan aerosol, in Proc. SPIE 2309, Passive Infrared Remote Sensing of Clouds and the Atmosphere II (1994), pp. 127–135. doi:10.1117/12.196669

    Google Scholar 

  96. M. Legrand, A. Plana-Fattori, C. N’doumé, Satellite detection of dust using the IR imagery of Meteosat: 1. Infrared difference dust index. J. Geophys. Res. 106, 18251–18274 (2001). doi:10.1029/2000JD900749

    ADS  Article  Google Scholar 

  97. M.T. Lemmon, M.J. Wolff, M.D. Smith, R.T. Clancy, D. Banfield, G.A. Landis, A. Ghosh, P.H. Smith, N. Spanovich, B. Whitney, P. Whelley, R. Greeley, S. Thompson, J.F. Bell, S.W. Squyres, Atmospheric imaging results from the Mars exploration rovers: Spirit and Opportunity. Science 306, 1753–1756 (2004). doi:10.1126/science.1104474

    ADS  Article  Google Scholar 

  98. M.T. Lemmon, M.J. Wolff, J.F. Bell, M.D. Smith, B.A. Cantor, P.H. Smith, Dust aerosol, clouds, and the atmospheric optical depth record over 5 Mars years of the Mars Exploration Rover mission. Icarus 251, 96–111 (2015). doi:10.1016/j.icarus.2014.03.029

    ADS  Article  Google Scholar 

  99. J. Lenoble, L. Remer, D. Tanré, Aerosol Remote Sensing (Springer, Heidelberg, 2013). doi:10.1007/978-3-642-17725-5

    Google Scholar 

  100. R.C. Levy, S. Mattoo, L.A. Munchak, L.A. Remer, A.M. Sayer, F. Patadia, N.C. Hsu, The Collection 6 MODIS aerosol products over land and ocean. Atmos. Meas. Tech. 6, 2989–3034 (2013). doi:10.5194/amt-6-2989-2013

    Article  Google Scholar 

  101. S.R. Lewis, P.L. Read, B.J. Conrath, J.C. Pearl, M.D. Smith, Assimilation of thermal emission spectrometer atmospheric data during the Mars Global Surveyor aerobraking period. Icarus 192, 327–347 (2007). doi:10.1016/j.icarus.2007.08.009

    ADS  Article  Google Scholar 

  102. R. Lorenz, On the statistical distribution of dust devil diameters. Icarus 215, 381–390 (2011). doi:10.1016/j.icarus.2011.06.005

    ADS  Article  Google Scholar 

  103. R. Lorenz, The longevity and aspect ratio of dust devils: effects on detection efficiencies and comparison of landed and orbital imaging at Mars. Icarus 226, 964–970 (2013). doi:10.1016/j.icarus.2013.06.031

    ADS  Article  Google Scholar 

  104. R.D. Lorenz, M.J. Myers, Dust devil hazard to aviation: a review of United States air accident reports. J. Meteorol. 30(298), 179–184 (2005)

    Google Scholar 

  105. A. Määttänen, T. Fouchet, O. Forni, F. Forget, H. Savijärvi, B. Gondet, R. Melchiorri, Y. Langevin, V. Formisano, M. Giuranna, J.-P. Bibring, A study of the properties of a local dust storm with Mars Express OMEGA and PFS data. Icarus 201, 504–516 (2009). doi:10.1016/j.icarus.2009.01.024

    ADS  Article  Google Scholar 

  106. A. Määttänen, C. Listowski, F. Montmessin, L. Maltagliati, A. Reberac, L. Joly, J.-L. Bertaux, A complete climatology of the aerosol vertical distribution on Mars from MEx/SPICAM UV solar occultations. Icarus 223, 892–941 (2013). doi:10.1016/j.icarus.2012.12.001

    ADS  Article  Google Scholar 

  107. J.-B. Madeleine, F. Forget, E. Millour, T. Navarro, A. Spiga, The influence of radiatively active water ice clouds on the Martian climate. Geophys. Res. Lett. 39, L23202 (2012a). doi:10.1029/2012GL053564

    ADS  Article  Google Scholar 

  108. J.-B. Madeleine, F. Forget, A. Spiga, M.J. Wolff, F. Montmessin, M. Vincendon, D. Jouglet, B. Gondet, J.-P. Bibring, Y. Langevin, B. Schmitt, Aphelion water-ice cloud mapping and property retrieval using the OMEGA imaging spectrometer onboard Mars Express. J. Geophys. Res., Planets 117, E00J07 (2012b). doi:10.1029/2011JE003940

    ADS  Article  Google Scholar 

  109. B.A. Maher, J.M. Prospero, D. Mackie, D. Gaiero, P.P. Hesse, Y. Balkanski, Global connections between aeolian dust, climate and ocean biogeochemistry at the present day and at the last glacial maximum. Earth-Sci. Rev. 99, 61–97 (2010). doi:10.1016/j.earscirev.2009.12.001

    ADS  Article  Google Scholar 

  110. M.C. Malin, K.S. Edgett, Mars Global Surveyor Mars Orbiter Camera: interplanetary cruise through primary mission. J. Geophys. Res. 106(E10), 23429–23570 (2001). doi:10.1029/2000JE001455

    ADS  Article  Google Scholar 

  111. M.C. Malin, K.S. Edgett, B.A. Cantor, M.A. Caplinger, G.E. Danielson, E.H. Jensen, M.A. Ravine, J.L. Sandoval, K.D. Supulver, An overview of the 1985–2006 Mars Orbiter Camera science investigation. Mars 5 (2010). doi:10.1555/mars.2010.0001

  112. P. Markowski, C. Hannon, Multiple-Doppler radar observations of the evolution of vorticity extrema in a convective boundary layer. Mon. Weather Rev. 134, 355–374 (2006). doi:10.1175/MWR3060.1

    ADS  Article  Google Scholar 

  113. B. Marticorena, B. Chatenet, J.L. Rajot, Temporal variability of mineral dust concentrations over West Africa: analyses of a pluriannual monitoring from the AMMA Sahelian Dust Transect. Atmos. Chem. Phys. 10, 8899–8915 (2010). doi:10.5194/acp-10-8899-2010

    ADS  Article  Google Scholar 

  114. B. Marticorena, P. Formenti, Fundamentals of aeolian sediment transport: long-range transport of dust, in Treatise Geomorphol, vol. 11, ed. by J. Shroder, N. Lancaster, D.J. Sherman, A.C.W. Bass (Academic Press, San Diego, 2013), pp. 64–84

    Google Scholar 

  115. L.J. Martin, R.W. Zurek, An analysis of the history of dust activity on Mars. J. Geophys. Res. 98, 3221 (1993). doi:10.1029/92JE02937

    ADS  Article  Google Scholar 

  116. T.Z. Martin, Thermal infrared opacity of the Mars atmosphere. Icarus 66, 2–21 (1986). doi:10.1016/0019-1035(86)90003-5

    ADS  Article  Google Scholar 

  117. T.Z. Martin, M.I. Richardson, New dust opacity mapping from Viking Infrared Thermal Mapper Data. J. Geophys. Res. 98, 10941–10949 (1993). doi:10.1029/93JE01044

    ADS  Article  Google Scholar 

  118. J.V. Martonchik, D.J. Diner, R. Kahn, B. Gaitley, B.N. Holben, Comparison of MISR and AERONET aerosol optical depths over desert sites. Geophys. Res. Lett. 31, L16102 (2004). doi:10.1029/2004GL019807

    ADS  Article  Google Scholar 

  119. H. Masursky, R.M. Batson, J.F. McCauley, L.A. Soderblom, R.L. Wildey, M.H. Carr, D.J. Milton, D.E. Wilhelms, B.A. Smith, T.B. Kirby, J.C. Robinson, C.B. Leovy, G.A. Briggs, T.C. Duxbury, C.H. Acton Jr., B.C. Murray, J.A. Cutts, R.P. Sharp, S. Smith, R.B. Leighton, C. Sagan, J. Veverka, M. Noland, J. Lederberg, E. Levinthal, J.B. Pollack, J.T. Moore Jr., W.K. Hartmann, E.N. Shipley, G. de Vaucouleurs, M.E. Davies, Mariner 9 television reconnaissance of Mars and its satellites: preliminary results. Science 175, 294–305 (1972). doi:10.1126/science.175.4019.294

    ADS  Article  Google Scholar 

  120. J.O. Mattsson, T. Nihlén, W. Yue, Observations of dust devils in a semi-arid district of southern Tunisia. Weather 48, 359–363 (1993). doi:10.1002/j.1477-8696.1993.tb05814.x

    ADS  Article  Google Scholar 

  121. T. Maxworthy, A vorticity source for large-scale dust devils and other comments on naturally occurring columnar vortices. J. Atmos. Sci. 30, 1717–1722 (1973). doi:10.1175/1520-0469(1973)030<1717:AVSFLS>2.0.CO;2

    ADS  Article  Google Scholar 

  122. D.J. McCleese, N.G. Heavens, J.T. Schofield, W.A. Abdou, J.L. Bandfield, S.B. Calcutt, P.G.J. Irwin, D.M. Kass, A. Kleinböhl, S.R. Lewis, D.A. Paige, P.L. Read, M.I. Richardson, J.H. Shirley, F.W. Taylor, N. Teanby, R.W. Zurek, Structure and dynamics of the Martian lower and middle atmosphere as observed by the Mars Climate Sounder: seasonal variations in zonal mean temperature, dust, and water ice aerosols. J. Geophys. Res., Planets 115 (2010). doi:10.1029/2010JE003677

  123. A.S. McEwen, M.E. Banks, N. Baugh, K. Becker, A. Boyd, J.W. Bergstrom, R.A. Beyer, E. Bortolini, N.T. Bridges, S. Byrne, B. Castalia, F.C. Chuang, L.S. Crumpler, I. Daubar, A.K. Davatzes, D.G. Deardorff, A. DeJong, W.A. Delamere, E. Noe Dobrea, C.M. Dundas, E.M. Eliason, Y. Espinoza, A. Fennema, K.E. Fishbaugh, T. Forrester, P.E. Geissler, J.A. Grant, J.L. Griffes, J.P. Grotzinger, V.C. Gulick, C.J. Hansen, K.E. Herkenhoff, R. Heyd, W.L. Jaeger, D. Jones, B. Kanefsky, L. Keszthelyi, R. King, R.L. Kirk, E.J. Kolb, J. Lasco, A. Lefort, R. Leis, K.W. Lewis, S. Martinez-Alonso, S. Mattson, G. McArthur, M.T. Mellon, J.M. Metz, M.P. Milazzo, R.E. Milliken, T. Motazedian, C.H. Okubo, A. Ortiz, A.J. Philippoff, J. Plassmann, A. Polit, P.S. Russell, C. Schaller, M.L. Searls, T. Spriggs, S.W. Squyres, S. Tarr, N. Thomas, B.J. Thomson, L.L. Tornabene, C. Van Houten, C. Verba, C. Weitz, J.J. Wray, The high resolution imaging science experiment (HiRISE) during MRO’s primary science phase (PSP). Icarus 205, 2–37 (2010). doi:10.1016/j.icarus.2009.04.023

    ADS  Article  Google Scholar 

  124. J.B. McGinnigle, Dust whirls in north-west Libya. Weather 21, 272–276 (1966). doi:10.1002/j.1477-8696.1966.tb05204.x

    ADS  Article  Google Scholar 

  125. S.M. Metzger, Dust devils as aeolian transport mechanisms in southern Nevada and in the Mars Pathfinder landing site, PhD thesis, Univ. Nevada, Reno (1999), 208 pp.

  126. S.M. Metzger, M.R. Balme, M.C. Towner, B.J. Bos, T.J. Ringrose, M.R. Patel, In situ measurements of particle load and transport in dust devils. Icarus 214, 766–772 (2011). doi:10.1016/j.icarus.2011.03.013

    ADS  Article  Google Scholar 

  127. L. Montabone, F. Forget, E. Millour, R.J. Wilson, S.R. Lewis, B. Cantor, D. Kass, A. Kleinböhl, M.T. Lemmon, M.D. Smith, M.J. Wolff, Eight-year climatology of dust optical depth on Mars. Icarus 251, 65–95 (2015). doi:10.1016/j.icarus.2014.12.034

    ADS  Article  Google Scholar 

  128. L. Montabone, S.R. Lewis, P.L. Read, Interannual variability of Martian dust storms in assimilation of several years of Mars global surveyor observations. Adv. Space Res. 36, 2146–2155 (2005). doi:10.1016/j.asr.2005.07.047

    ADS  Article  Google Scholar 

  129. F. Montmessin, F. Forget, P. Rannou, M. Cabane, R.M. Haberle, Origin and role of water ice clouds in the Martian water cycle as inferred from a general circulation model. J. Geophys. Res., Planets 109, E10004 (2004). doi:10.1029/2004JE002284

    ADS  Article  Google Scholar 

  130. C. Moulin, I. Chiapello, Evidence of the control of summer atmospheric transport of African dust over the Atlantic by Sahel sources from TOMS satellites (1979–2000). Geophys. Res. Lett. 31, L02107 (2004). doi:10.1029/2003GL018931

    ADS  Article  Google Scholar 

  131. D.R. Muhs, S.R. Cattle, O. Crouvi, D.-D. Rousseau, J. Sun, M.A. Zárate, Loess records, in Mineral Dust: A Key Player in the Earth System, ed. by P. Knippertz, J.-B.W. Stuut (Springer, Dordrecht, 2014), p. 411. doi:10.1007/978-94-017-8978-3D

    Google Scholar 

  132. D.P. Mulholland, P.L. Read, S.R. Lewis, Simulating the interannual variability of major dust storms on Mars using variable lifting thresholds. Icarus 223, 344–358 (2013). doi:10.1016/j.icarus.2012.12.003

    ADS  Article  Google Scholar 

  133. D.P. Mulholland, A. Spiga, C. Listowski, P.L. Read, An assessment of the impact of local processes on dust lifting in martian climate models. Icarus 252, 212–227 (2015). doi:10.1016/j.icarus.2015.01.017

    ADS  Article  Google Scholar 

  134. S. Murchie et al., R. Arvidson, P. Bedini, K. Beisser, J.-P. Bibring, J. Bishop, J. Boldt, P. Cavender, T. Choo, R.T. Clancy, E.H. Darlington, D. Des Marais, R. Espiritu, D. Fort, R. Green, E. Guinness, J. Hayes, C. Hash, K. Heffernan, J. Hemmler, G. Heyler, D. Humm, J. Hutcheson, N. Izenberg, R. Lee, J. Lees, D. Lohr, E. Malaret, T. Martin, J.A. McGovern, P. McGuire, R. Morris, J. Mustard, S. Pelkey, E. Rhodes, M. Robinson, T. Roush, E. Schaefer, G. Seagrave, G. Seelos, P. Silverglate, S. Slavney, M. Smith, W.J. Shyong, K. Strohbehn, H. Taylor, P. Thompson, B. Tossman, M. Wirzburger, M. Wolff, Compact reconnaissance imaging spectrometer for Mars (CRISM) on Mars reconnaissance orbiter (MRO). J. Geophys. Res. 112 (2007). doi:10.1029/2006JE002682

  135. J.R. Murphy, S. Nelli, Mars Pathfinder convective vortices: frequency of occurrence. Geophys. Res. Lett. 29, 11–14 (2002). doi:10.1029/2002GL015214

    Google Scholar 

  136. T. Navarro, J.-B. Madeleine, F. Forget, A. Spiga, E. Millour, F. Montmessin, A. Määttänen, Global climate modeling of the Martian water cycle with improved microphysics and radiatively active water ice clouds. J. Geophys. Res., Planets 119, 1479–1495 (2014). doi:10.1002/2013JE004550

    ADS  Article  Google Scholar 

  137. L.D.V. Neakrase, J. McHone, P.L. Whelley, R. Greeley, Saharan dust devil tracks: Mars analog field study areas, in Abstracts with Programs (Geol. Soc. Am., Houston, 2008), p. 262, Abst. #40

    Google Scholar 

  138. L.D.V. Neakrase, J. McHone, P.L. Whelley, R. Greeley, Terrestrial analogs to Mars: east-central Saharan dust devil tracks, in Lunar Planet. Sci. Conf. XLIII, League City, TX (2012) Abst. #2009

    Google Scholar 

  139. F.M. Neubauer, Thermal convection in the martian atmosphere. J. Geophys. Res. 71(10), 2419–2426 (1966). doi:10.1029/JZ071i010p02419

    ADS  Article  Google Scholar 

  140. G.A. Neumann, D.E. Smith, M.T. Zuber, Two Mars years of clouds detected by the Mars Orbiter Laser Altimeter. J. Geophys. Res. 108, 5023 (2003). doi:10.1029/2002JE001849

    Article  Google Scholar 

  141. C.E. Newman, S.R. Lewis, P.L. Read, F. Forget, Modeling the Martian dust cycle, 1. Representations of dust transport processes. J. Geophys. Res. 107(E12), 5123 (2002a). doi:10.1029/2002JE001910

    Google Scholar 

  142. C.E. Newman, S.R. Lewis, P.L. Read, F. Forget, Modeling the Martian dust cycle 2. Multiannual radiatively active dust transport simulations. J. Geophys. Res. 107(E12), 5124 (2002b). doi:10.1029/2002JE001920

    Google Scholar 

  143. C.E. Newman, S.R. Lewis, P.L. Read, The atmospheric circulation and dust activity in different orbital epochs on Mars. Icarus 174, 135–160 (2005). doi:10.1016/j.icarus.2004.10.023

    ADS  Article  Google Scholar 

  144. A.H. Omar, D.M. Winker, M.A. Vaughan, Y. Hu, C.R. Trepte, R.A. Ferrare, K.-P. Lee, C.A. Hostetler, C. Kittaka, R. Rogers, R.E. Kuehn, Z. Liu, The CALIPSO automated aerosol classification and lidar ratio selection algorithm. J. Atmos. Ocean. Technol. 26, 1994–2014 (2009). doi:10.1175/2009JTECHA1231.1

    ADS  Article  Google Scholar 

  145. A.V. Pathare, M.R. Balme, S.M. Metzger, A. Spiga, M.C. Towner, N.O. Renno, F. Saca, Assessing the power law hypothesis for the size–frequency distribution of terrestrial and martian dust devils. Icarus 209, 851–853 (2010). doi:10.1016/j.icarus2010.06.027

    ADS  Article  Google Scholar 

  146. S. Peyridieu, A. Chédin, D. Tanré, V. Capelle, C. Pierangelo, N. Lamquin, R. Armante, Saharan dust infrared optical depth and altitude retrieved from AIRS: a focus over North Atlantic—comparison to MODIS and CALIPSO. Atmos. Chem. Phys. 10(4), 1953–1967 (2010). doi:10.5194/acp-10-1953-2010

    ADS  Article  Google Scholar 

  147. A. Petrosyan, B. Galperin, S.E. Larsen, S.R. Lewis, A. Määttänen, P.L. Read, N. Renno, L.P.H.T. Rogberg, H. Savijrvi, T. Siili, A. Spiga, A. Toigo, L. Vázquez, The Martian atmospheric boundary layer. Rev. Geophys. 49 (2011). doi:10.1029/2010RG000351

  148. J.M.C. Plane, Cosmic dust in the Earth’s atmosphere. Chem. Soc. Rev. 41(19), 6507–6518 (2012). doi:10.1039/C2CS35132C

    ADS  Article  Google Scholar 

  149. J.B. Pollack, D.S. Colburn, F.M. Flasar, R. Kahn, C.E. Carlston, D. Pidek, Properties and effects of dust particles suspended in the Martian atmosphere. J. Geophys. Res. 84 (1979). doi:10.1029/JB084iB06p02929

  150. J.M. Prospero, P.J. Lamb, African droughts and dust transport to the Caribbean: climate change implications. Science 302, 1024–1027 (2003). doi:10.1126/science.1089915

    ADS  Article  Google Scholar 

  151. J.M. Prospero, P. Ginoux, O. Torres, S.E. Nicholson, T.E. Gill, Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 total ozone mapping spectrometer (TOMS) absorbing aerosol product. Rev. Geophys. 40(1), 1002 (2002). doi:10.1029/2000RG000095

    ADS  Article  Google Scholar 

  152. J.M. Prospero, J.E. Bullard, R. Hodgkins, High-latitude dust over the North Atlantic: inputs from Icelandic proglacial dust storms. Science 335, 1078–1082 (2012). doi:10.1126/science.1217447

    ADS  Article  Google Scholar 

  153. N. Putzig, M. Mellon, K. Kretke, R. Arvidson, Global thermal inertia and surface properties of Mars from the MGS mapping mission. Icarus 173(2), 325–341 (2005). doi:10.1016/j.icarus.2004.08.017

    ADS  Article  Google Scholar 

  154. S.C.R. Rafkin, The potential importance of non-local, deep transport on the energetics, momentum, chemistry, and aerosol distributions in the atmospheres of Earth, Mars, and Titan. Planet. Space Sci. 60, 147–154 (2012). doi:10.1016/j.pss.2011.07.015

    ADS  Article  Google Scholar 

  155. S.C.R. Rafkin, M.R.V.S. Maria, T.I. Michaels, Simulation of the atmospheric thermal circulation of a martian volcano using a mesoscale numerical model. Nature 419, 697–699 (2002). doi:10.1038/nature01206

    ADS  Article  Google Scholar 

  156. P.L. Read, S.R. Lewis, The Martian Climate Revisited: Atmosphere and Environment of a Desert Planet (Springer/Praxis Books, Berlin/New York, 2004)

    Google Scholar 

  157. H.E. Redmond, K.D. Dial, J.E. Thompson, Light scattering and absorption by wind blown dust: theory, measurement, and recent data. Aeolian Res. 2(1), 5–26 (2010). doi:10.1016/j.aeolia.2009.09.002

    ADS  Article  Google Scholar 

  158. D. Reiss, D. Lüsebrink, H. Hiesinger, T. Kelling, G. Wurm, J. Teiser, High altitude dust devils on Arsia Mons: testing the greenhouse and thermophoresis hypothesis of dust lifting, in Lunar and Planetary Science Conference XL, the Woodlands, TX (2009) Abst. #1961

    Google Scholar 

  159. D. Reiss, J. Raack, A.P. Rossi, G. Di Achille, H. Hiesinger, First in-situ analysis of dust devil tracks on Earth and their comparison with tracks on Mars. Geophys. Res. Lett. 37, L14203 (2010). doi:10.1029/2010GL044016

    ADS  Google Scholar 

  160. D. Reiss, J. Raack, H. Hiesinger, Bright dust devil tracks on Earth: implications for their formation on Mars. Icarus 211, 917–920 (2011a). doi:10.1016/j.icarus.2010.09.009

    ADS  Article  Google Scholar 

  161. D. Reiss, M. Zanetti, G. Neukum, Multitemporal observations of identical active dust devils on Mars with the High Resolution Stereo Camera (HRSC) and Mars Orbiter Camera (MOC). Icarus 215, 358–369 (2011b). doi:10.1016/j.icarus.2011.06.011

    ADS  Article  Google Scholar 

  162. D. Reiss, M.I. Zimmerman, D.C. Lewellen, Formation of cycloidal dust devil tracks by redeposition of coarse sands in southern Peru: implications for Mars. Earth Planet. Sci. Lett. 383, 7–15 (2013). doi:10.1016/j.epsl.2013.09.033

    ADS  Article  Google Scholar 

  163. D. Reiss, A. Spiga, G. Erkeling, The horizontal motion of dust devils on Mars derived from CRISM and CTX/HiRISE observations. Icarus 227, 8–20 (2014a). doi:10.1016/j.icarus.2013.08.028

    ADS  Article  Google Scholar 

  164. D. Reiss, N.M. Hoekzema, O.J. Stenzel, Dust deflation by dust devils on Mars derived from optical depth measurements using the shadow method in HiRISE images. Planet. Space Sci. 93–94, 54–64 (2014b). doi:10.1016/j.pss.2014.01.016

    Article  Google Scholar 

  165. L.A. Remer, R.G. Kleidman, R.C. Levy, Y.J. Kaufman, D. Tanré, S. Mattoo, J.V. Martins, C. Ichoku, I. Koren, H. Yu, B.N. Holben, Global aerosol climatology from the MODIS satellite sensors. J. Geophys. Res. 113, D14S07 (2008). doi:10.1029/2007JD009661

    ADS  Article  Google Scholar 

  166. N.O. Rennó, M.L. Burkett, M.P. Larkin, A simple thermodynamical theory for dust devils. J. Atmos. Sci. 55, 3244–3252 (1998). doi:10.1175/1520-0469(1998)055<3244:ASTTFD>2.0.CO;2

    ADS  MathSciNet  Article  Google Scholar 

  167. N.O. Rennó, A.A. Nash, J. Lunine, J. Murphy, Martian and terrestrial dust devils: test of a scaling theory using Pathfinder data. J. Geophys. Res. 105, 1859–1865 (2000). doi:10.1029/1999JE001037

    ADS  Article  Google Scholar 

  168. N.O. Rennó, V.J. Abreu, J. Koch, P.H. Smith, O.K. Hartogensis, H.A.R. De Bruin, D. Burose, G.T. Delory, W.M. Farrell, C.J. Watts, J. Garatuza, M. Parker, A. Carswell, MATADOR 2002: a pilot field experiment on convective plumes and dust devils. J. Geophys. Res. 109 (2004). doi:10.1029/2003JE002219

  169. T.J. Ringrose, M.C. Towner, J.C. Zarnecki, Convective vortices on Mars: a reanalysis of Viking Lander 2 meteorological data, sols 1–60. Icarus 163, 78–87 (2003). doi:10.1016/S0019-1035(03)00073-3

    ADS  Article  Google Scholar 

  170. A.P. Rossi, L. Marinangeli, The first terrestrial analogue to Martian dust devil tracks found in Ténéré Desert, Niger. Geophys. Res. Lett. 31, L06702 (2004). doi:10.1029/2004GL019428

    ADS  Article  Google Scholar 

  171. J.A. Ryan, Notes on the martian yellow clouds. J. Geophys. Res. 69(18), 3759–3770 (1964). doi:10.1029/JZ069i018p03759

    ADS  Article  Google Scholar 

  172. J.A. Ryan, J.J. Carroll, Dust devil wind velocities: mature state. J. Geophys. Res. 75, 531–541 (1970). doi:10.1029/JC075i003p00531

    ADS  Article  Google Scholar 

  173. J.A. Ryan, R.D. Lucich, Possible dust devils, vortices on Mars. J. Geophys. Res. 88(C15), 11005–11011 (1983). doi:10.1029/JC088iC15p11005

    ADS  Article  Google Scholar 

  174. K. Schepanski, I. Tegen, M.C. Todd, B. Heinold, G. Bonisch, B. Laurent, A. Macke, Meteorological processes forcing Saharan dust emission inferred from MSG-SEVIRI observations of subdaily dust source activation and numerical models. J. Geophys. Res. 114, D10201 (2009). doi:10.1029/2008JD010325

    ADS  Article  Google Scholar 

  175. A. Schnapf, TIROS: A Story of Achievement, AED P-5167A (Radio Corporation of America, Princeton, 1964), p. 37

    Google Scholar 

  176. P.C. Sinclair, Some preliminary dust devil measurements. Mon. Weather Rev. 92, 363–367 (1964). doi:10.1126/science.27.693.594

    ADS  Article  Google Scholar 

  177. P.C. Sinclair, On the rotation of dust devils. Bull. Am. Meteorol. Soc. 46, 388–391 (1965)

    Google Scholar 

  178. P.C. Sinclair, General characteristics of dust devils. J. Appl. Meteorol. 8, 32–45 (1969). doi:10.1175/1520-0450(1969)008<0032:GCODD>2.0.CO;2

    ADS  Article  Google Scholar 

  179. P.C. Sinclair, The lower structure of dust devils. J. Atmos. Sci. 30, 1599–1619 (1973). doi:10.1175/1520-0469(1973)030<1599:TLSODD>2.0.CO;2

    ADS  Article  Google Scholar 

  180. A. Slingo, T.P. Ackerman, R.P. Allan, E.I. Kassianov, S.A. McFarlane, G.J. Robinson, J.C. Barnard, M.A. Miller, J.E. Harries, J.E. Russell, S. Dewitte, Observations of the impact of a major Saharan dust storm on the atmospheric radiation balance. Geophys. Res. Lett. 33, L24817 (2006). doi:10.1029/2006GL027869

    ADS  Article  Google Scholar 

  181. M.D. Smith, Interannual variability in TES atmospheric observations of Mars during 1999–2003. Icarus 167(1), 148–165 (2004). doi:10.1016/j.icarus.2003.09.010

    ADS  Article  Google Scholar 

  182. M.D. Smith, THEMIS observations of Mars aerosol optical depth from 2002–2008. Icarus 202, 444–452 (2009). doi:10.1016/j.icarus.2009.03.027

    ADS  Article  Google Scholar 

  183. P.H. Smith, M. Lemmon, Opacity of the Martian atmosphere measured by the Imager for Mars Pathfinder. J. Geophys. Res. 104, 8975 (1999). doi:10.1029/1998JE900017

    ADS  Article  Google Scholar 

  184. M.D. Smith, J.C. Pearl, B.J. Conrath, P.R. Christensen, Mars global surveyor thermal emission spectrometer (TES) observations of dust opacity during aerobraking and science phasing. J. Geophys. Res. 105, 9539–9552 (2000). doi:10.1029/1999JE0010

    ADS  Article  Google Scholar 

  185. D.E. Smith, M.T. Zuber, H.V. Frey, J.B. Garvin, J.W. Head, D.O. Muhleman, G.H. Pettengill, R.J. Phillips, S.C. Solomon, H.J. Zwally, W.B. Bannerdt, T.C. Duxbury, M.P. Golombek, F.g. Lemoine, G.A. Neumann, D.D. Rowlands, O. Aharonson, P.G. Ford, A.B. Ivanov, C.L. Johnson, P.J. McGovern, J.B. Abshire, R.S. Afzal, X. Sun, Mars orbiter laser altimeter: experiment summary after the first year of global mapping of Mars. J. Geophys. Res. 106, 23689–23722 (2001a). doi:10.1029/2000JE001364

    ADS  Article  Google Scholar 

  186. M.D. Smith, J.C. Pearl, B.J. Conrath, P.R. Christensen, One Martian year of atmospheric observations by the thermal emission spectrometer. Geophys. Res. Lett. 28, 4263–4266 (2001b). doi:10.1029/2001GL013608

    ADS  Article  Google Scholar 

  187. M.D. Smith, M.J. Wolff, M.T. Lemmon, N. Spanovich, D. Banfield, C.J. Budney, R.T. Clancy, A. Ghosh, G.A. Landis, P. Smith, B. Whitney, P.R. Christensen, S.W. Squyres, First atmospheric science results from the Mars exploration rovers Mini-TES. Science 306, 1750–1753 (2004). doi:10.1126/science.1104257

    ADS  Article  Google Scholar 

  188. M.D. Smith, M.J. Wolff, R.T. Clancy, A. Kleinböhl, S.L. Murchie, Vertical distribution of dust and water ice aerosols from CRISM limb-geometry observations. J. Geophys. Res. 118, 321–334 (2013). doi:10.1002/jgre.20047

    Article  Google Scholar 

  189. J.T. Snow, T.M. McClelland, Dust devils at White Sands Missile Range, New Mexico 1. Temporal and spatial distributions. J. Geophys. Res. 95, 13707–13721 (1990). doi:10.1029/JD095iD09p13707

    ADS  Article  Google Scholar 

  190. C.W. Snyder, V.I. Moroz, Spacecraft exploration of Mars, in Mars, ed. by H.H. Kieffer, B.M. Jakosky, C.W. Snyder, M.S. Matthews (University of Arizona Press, Tucson, 1992), pp. 71–119

    Google Scholar 

  191. A. Spiga, F. Forget, A new model to simulate the Martian mesoscale and microscale atmospheric circulation: validation and first results. J. Geophys. Res. 114 (2009). doi:10.1029/2008je003242

  192. A. Spiga, F. Forget, S.R. Lewis, D.P. Hinson, Structure and dynamics of the convective boundary layer on mars as inferred from large-eddy simulations and remote-sensing measurements. Q. J. R. Meteorol. Soc. 136, 414–428 (2010). doi:10.1002/qj.563

    ADS  Article  Google Scholar 

  193. A. Spiga, S.R. Lewis, Martian mesoscale and microscale wind variability of relevance for dust lifting. Mars 5, 146–158 (2010). doi:10.1555/mars.2010.0006

    ADS  Article  Google Scholar 

  194. J.D. Spinhirne, S.P. Palm, W.D. Hart, D.L. Hlavka, E.J. Welton, Cloud and aerosol measurements from GLAS: overview an initial results. Geophys. Res. Lett. 32 (2005). doi:10.1029/2005GL023507

  195. C. Stanzel, M. Pätzold, R. Greeley, E. Hauber, G. Neukum, Dust devils on Mars observed by the high resolution stereo camera. Geophys. Res. Lett. 33, L11202 (2006). doi:10.1029/2006GL025816

    ADS  Article  Google Scholar 

  196. C. Stanzel, Studying martian dust devils by applying pattern recognition algorithms to multi-mission camera images. PhD thesis, University of Cologne (2007). 158 pp.

  197. C. Stanzel, M. Pätzold, D.A. Williams, P.L. Whelley, R. Greeley, G. Neukum, The HRSC Co-Investigator Team, Dust devil speeds, directions of motion and general characteristics observed by the Mars express high resolution stereo camera. Icarus 197, 39–51 (2008). doi:10.1016/j.icarus2008.04.017

    ADS  Article  Google Scholar 

  198. L.J. Steele, S.R. Lewis, M.R. Patel, The radiative impact of water ice clouds from a reanalysis of Mars climate sounder data. Geophys. Res. Lett. 41, 4471–4478 (2014a). doi:10.1002/2014GL060235

    ADS  Article  Google Scholar 

  199. L.J. Steele, S.R. Lewis, M.R. Patel, F. Montmessin, F. Forget, M.D. Smith, The seasonal cycle of water vapour on Mars from assimilation of thermal emission spectrometer data. Icarus 237, 97–115 (2014b). doi:10.1016/j.icarus.2014.04.017

    ADS  Article  Google Scholar 

  200. M.J. Strausberg, H. Wang, M.I. Richardson, S.P. Ewald, A.D. Toigo, Observations of the initiation and evolution of the 2001 Mars global dust storm. J. Geophys. Res. 110, E02006 (2005). doi:10.1029/2004JE002361

    ADS  Article  Google Scholar 

  201. R. Swap, S. Ulanski, M. Cobbett, M. Garstang, Temporal and spatial characteristics of Saharan dust outbreaks. J. Geophys. Res. 101(D2), 4205–4220 (1996). doi:10.1029/95JD03236

    ADS  Article  Google Scholar 

  202. D. Tanré, F.M. Bréon, J.L. Deuzé, O. Dubovik, F. Ducos, P. François, P. Goloub, M. Herman, A. Lifermann, F. Waquet, Remote sensing of aerosols by using polarized, directional and spectral measurements within the A-Train: the PARASOL mission. Atmos. Meas. Tech. 4, 1383–1395 (2011). doi:10.5194/amt-4-1383-2011

    Article  Google Scholar 

  203. P. Thomas, P.J. Gierasch, Dust devils on Mars. Science 230, 175–177 (1985). doi:10.1126/science.230.4722.175

    ADS  Article  Google Scholar 

  204. O. Torres, P.K. Bhartia, J.R. Herman, Z. Ahmad, Derivation of aerosol properties from satellite measurements of backscattered ultraviolet radiation: theoretical basis. J. Geophys. Res. 103, 17099–17110 (1998). doi:10.1029/98JD00900

    ADS  Article  Google Scholar 

  205. M.C. Towner, Characteristics of large Martian dust devils using Mars Odyssey Thermal Emission Imaging System visual and infrared images. J. Geophys. Res. 114, E02010 (2009). doi:10.1029/2008JE003220

    ADS  Article  Google Scholar 

  206. D.M. Tratt, M.H. Hecht, D.C. Catling, E.C. Samulon, P.H. Smith, In situ measurement of dust devil dynamics: toward a strategy for Mars. J. Geophys. Res. 108 (2003). doi:10.1029/2003JE002161

  207. United States, Catalogue of meteorological satellite data – TIROS VI television cloud photography. Key to Meteorological Records Documentation No. 5(36), (1964) 400 pp.

  208. P. Vallelonga, A. Svensson, Ice core archives of mineral dust, in Mineral Dust: A Key Player in the Earth System, ed. by P. Knippertz, J.-B.W. Stuut (Springer, Dordrecht, 2014), p. 463. doi:10.1007/978-94-017-8978-3

    Google Scholar 

  209. H. Wang, M.I. Richardson, R.J. Wilson, A.P. Ingersoll, A.D. Toigo, R.W. Zurek, Cyclones, tides, and the origin of a cross-equatorial dust storm on Mars. Geophys. Res. Lett. 30 (2003). doi:10.1029/2002GL016828

  210. H. Wang, Dust storms originating in the northern hemisphere during the third mapping year of Mars Global Surveyor. Icarus 189, 325–343 (2007). doi:10.1016/j.icarus.2007.01.014

    ADS  Article  Google Scholar 

  211. H. Wang, J.A. Fisher, North polar frontal clouds and dust storms on Mars during spring and summer. Icarus 204, 103–113 (2009). doi:10.1016/j.icarus.2009.05.028

    ADS  Article  Google Scholar 

  212. H. Wang, M.I. Richardson, The origin, evolution, and trajectory of large dust storms on Mars during Mars years 24–30 (1999–2011). Icarus 251, 112–127 (2015). doi:10.1016/j.icarus.2013.10.033

    ADS  Article  Google Scholar 

  213. A. Wennmacher, F.M. Neubauer, M. Pätzold, J. Schmitt, K. Schulte, A search for dust devils on Mars, in Lunar Planet. Sci. Conf. XXVII, League City, TX (1996). Abst. #1417

    Google Scholar 

  214. P.L. Whelley, R. Greeley, The distribution of dust devil activity on Mars. J. Geophys. Res. 113, E7 (2008). doi:10.1029/2007JE002966

    Article  Google Scholar 

  215. N.R. Williams, Development of dust whirls and similar small-scale vortices. Bull. Am. Meteorol. Soc. 29, 106–117 (1948)

    Google Scholar 

  216. G.E. Willis, J.W. Deardorff, Laboratory observations of turbulent penetrative convection planforms. J. Geophys. Res. 84, 295–302 (1979). doi:10.1029/JC084iC01p00295

    ADS  Article  Google Scholar 

  217. R.J. Wilson, S.R. Lewis, L. Montabone, M.D. Smith, Influence of water ice clouds on Martian tropical atmospheric temperatures. Geophys. Res. Lett. 35 (2008). doi:10.1029/2007GL032405

  218. G. Winckler, R.F. Anderson, D. McGee, M.Q. Fleisher, N. Mahowald, Half a million years of coherent dust flux variations in the tropical Pacific and Antarctica, in 8th Annual V.M. Goldschmidt Conference (Pergamon–Elsevier, Vancouver, 2008) pp. A1026

    Google Scholar 

  219. D.M. Winker, J. Pelon, J.A. Coakley Jr., S.A. Ackerman, R.J. Charlson, P.R. Colarco, P. Flamant, Q. Fu, R.M. Hoff, C. Kittaka, T.L. Kubar, H. Le Treut, M.P. McCormick, G. Mégie, L. Poole, K. Powell, C. Trepte, M.A. Vaughan, B.A. Wielicki, The CALIPSO mission: a global 3D view of aerosols and clouds. Bull. Am. Meteorol. Soc. 91, 1211–1229 (2010). doi:10.1175/2010BAMS3009.1

    ADS  Article  Google Scholar 

  220. M.J. Wolff, M.D. Smith, R.T. Clancy, R. Arvidson, M. Kahre, F. Seelos, S. Murchie, H. Savijärvi, Wavelength dependence of dust aerosol single scattering albedo as observed by the Compact Reconnaissance Imaging Spectrometer. J. Geophys. Res. 114, E00D04 (2009). doi:10.1029/2009JE003350

    ADS  Article  Google Scholar 

  221. S. Wong, A.E. Dessler, N.M. Mahowald, P. Yang, Q. Feng, Maintenance of lower tropospheric temperature inversion in the Saharan Air Layer by dust and dry anomaly. J. Climate 22(19), 5149–5162 (2009). doi:10.1175/2009JCLI2847.1

    ADS  Article  Google Scholar 

  222. F. Yang, P.A. Mlsna, P. Geissler, Gaussian-based filters for detecting martian dust devils, in 2006 IEEE Southwest Symp. Image Anal. Interpret., pp. 46–50 (2006). doi:10.1109/SSIAI.2006.1633719

    Google Scholar 

  223. H. Yu, M. Chin, T. Yuan, H. Bian, L.A. Remer, J.M. Prospero, A. Omar, D. Winker, Y. Yang, Y. Zhang, Z. Zhang, C. Zhao, The fertilizing role of African dust in the Amazon rainforest: a first multiyear assessment based on data from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations. Geophys. Res. Lett. 42 (2015). doi:10.1002/2015GL063040

  224. M.T. Zuber, D.E. Smith, S.C. Solomon, D.O. Muhleman, J.W. Head, J.B. Garvin, J.B. Abshire, J.L. Bufton, The Mars observer laser altimeter investigation. J. Geophys. Res. 97(E5), 7781–7797 (1992). doi:10.1029/92JE00341

    ADS  Article  Google Scholar 

  225. L. Zasova, V. Formisano, N. Moroz, D. Grassi, N. Ignatiev, M. Giuranna, G. Hansen, M. Blecka, A. Ekonomov, E. Lellouch, S. Fonti, A. Grigoriev, H. Hirsch, I. Khatuntsev, A. Mattana, A. Maturilli, A. Moshkin, D. Patsaev, G. Piccioni, M. Rataj, B. Saggin, Water clouds and dust aerosols observations with PFS MEX at Mars. Planet. Space Sci. 53, 1065–1077 (2005). doi:10.1016/j.pss.2004.12.010

    ADS  Article  Google Scholar 

  226. A. Zhu, V. Ramanathan, F. Li, D. Kim, Dust plumes over the Pacific, Indian, and Atlantic oceans: climatology and radiative impact. J. Geophys. Res. 112, D16208 (2007). doi:10.1029/2007JD008427

    ADS  Article  Google Scholar 

  227. R.W. Zurek, J.R. Barnes, R.M. Haberle, J.B. Pollack, J.E. Tillman, C.B. Leovy, Dynamics of the atmosphere of Mars, in Mars, ed. by H.H. Kieffer, B.M. Jakosky, C.W. Snyder, M.S. Matthews (University of Arizona Press, Tucson, 1992), pp. 835–933

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank two anonymous reviewers and an editor for many suggestions that greatly improved the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lori Fenton.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fenton, L., Reiss, D., Lemmon, M. et al. Orbital Observations of Dust Lofted by Daytime Convective Turbulence. Space Sci Rev 203, 89–142 (2016). https://doi.org/10.1007/s11214-016-0243-6

Download citation

Keywords

  • Atmospheric dust
  • Dust devil
  • Mars
  • Dust storm
  • Boundary layer