Space Science Reviews

, Volume 208, Issue 1–4, pp 65–79 | Cite as

Dust Detection Mode of the Hayabusa2 LIDAR

  • H. Senshu
  • S. Oshigami
  • M. Kobayashi
  • R. Yamada
  • N. Namiki
  • H. Noda
  • Y. Ishihara
  • T. Mizuno
Article

Abstract

We aim to use light detection and ranging (LIDAR) to detect dust grains that might be present around asteroid (162173) Ryugu (1999 JU3), the target of the Hayabusa2 mission. LIDAR is currently used for observing atmospheric aerosols on Earth by measuring the time profile of the return pulse (received light). In the case of Hayabusa2, LIDAR will be used only to determine whether the energy flux of the return pulse exceeds a certain threshold every 133.33 ns. This simplification significantly reduces the amount of down link data. The profile of the return pulse is estimated from iterative observations by changing the thresholds. Here, the performance of the dust counter mode is examined using a breadboard model, a flight model, and an engineering model. For these tests, we develop a new testing device to simulate various time profiles of the return pulse. We also estimate the lower bound of the number density of dust grains that can be detected. It is shown that the LIDAR on board Hayabusa2 is capable of detecting asteroidal dust if dust grains with size similar to the Hayabusa sample exist around the target body and their number density exceeds \(10^{5}~\mbox{m}^{-3}\).

Keywords

Hayabusa2 LIDAR Dust Asteroid Ryugu 

References

  1. C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (A Wiley-Interscience, New York, 1983), p. 530 Google Scholar
  2. C.R. Chapman, S-type asteroids, ordinary chondrites, and space weathering: the evidence from Galileo’s fly-bys of Gaspra and Ida. Meteorit. Planet. Sci. 31(6), 699–725 (1996) ADSCrossRefGoogle Scholar
  3. B.E. Clark, J. Veverka, P. Helfenstein, P.C. Thomas, J.F. Bell III, A. Harch, M.S. Robinson, S.L. Murchie, L.A. McFadden, C.R. Chapman, NEAR photometry of asteroid 253 Mathilde. Icarus 140, 53–65 (1999) ADSCrossRefGoogle Scholar
  4. M. Delbo, G. Libourel, J. Wilkerson, N. Murdoch, P. Michel, K.T. Ramesh, C. Ganino, C. Verati, S. Marchi, Thermal fatigue as the origin of regolith on small asteroids. Nature 508, 233–236 (2014) ADSCrossRefGoogle Scholar
  5. C.M. Hartzell, D.J. Scheeres, The role of cohesive forces in particle launching on the Moon and asteroids. Planet. Space Sci. 59, 1758–1768 (2011) ADSCrossRefGoogle Scholar
  6. M. Horányi, J.R. Szalay, S. Kempf, J. Schmidt, E. Grün, R. Srama, Z. Sternovsky, A permanent, asymmetric dust cloud around the Moon. Nature 522, 324–326 (2015) ADSCrossRefGoogle Scholar
  7. H. Kimura, H. Senshu, K. Wada, Electrostatic lofting of dust aggregates near the termination of airless bodies and its implication for the formation of exozodiacal disks. Planet. Space Sci. 100, 64–72 (2014) ADSCrossRefGoogle Scholar
  8. K.N. Liou, An Introduction to Atmospheric Radiation (Academic Press, San Diego, 2002), p. 392 Google Scholar
  9. D.S. McKay, G. Heiken, A. Basu, G. Blanford, S. Simon, R. Reedy, B.M. French, J. Papike, The lunar regolith, in Lunar Sourcebook, ed. by G.H. Heiken, D.T. Vaniman, B.M. French (Cambridge University Press, New York, 1991), pp. 285–356 Google Scholar
  10. B. Michel, T.H. Henning, R. Stognienko, F. Rouleau, Extinction properties of dust grains: a new computational technique. Astrophys. J. 468, 834–841 (1996) ADSCrossRefGoogle Scholar
  11. H. Miyamoto, H. Yano, D.J. Scheeres, S. Abe, O. Barnouin-Jha, A.F. Cheng, H. Demura, R.W. Gaskell, N. Hirata, M. Ishiguro, T. Michikami, A.M. Nakamura, R. Nakamura, J. Saito, S. Sasaki, Regolith migration and sorting on asteroid Itokawa. Science 316, 1011–1014 (2007) ADSCrossRefGoogle Scholar
  12. T. Mizuno, T. Kase, T. Shiina, M. Mita, N. Namiki, H. Senshu, R. Yamada, H. Noda, H. Kunimori, F. Terui, Y. Mimasu, Development of the laser altimeter (LIDAR) for Hayabusa2. Space Sci. Rev. (2016), doi:10.1007/s11214-015-0231-2, this issue Google Scholar
  13. K. Nagao, R. Okazaki, T. Nakamura, Y.N. Miura, T. Osawa, K-i. Bajo, S. Matsuda, M. Ebihara, T.R. Ireland, F. Kitajima, H. Naraoka, T. Noguchi, A. Tsuchiyama, H. Yurimoto, M.E. Zolensky, M. Uesugi, K. Shirai, M. Abe, T. Yada, Y. Ishibashi, A. Fujimura, T. Mukai, M. Ueno, T. Okada, M. Yoshikawa, J. Kawaguchi, Irradiation history of Itokawa regolith material deduced from noble gases in the Hayabusa samples. Science 333, 1128–1131 (2011) ADSCrossRefGoogle Scholar
  14. N. Namiki, T. Mizuno, N. Hirata, H. Noda, H. Senshu, R. Yamada, H. Ikeada, S. Abe, K. Matsumoto, S. Oshigami, M. Shizugami, F. Yoshida, N. Hirata, H. Miyamoto, S. Sasaki, H. Araki, S. Tazawa, Y. Ishihara, M. Kobayashi, K. Wada, H. Demura, J. Kimura, M. Hayakawa, N. Kobayashi, Scientific use of lidar data of Hayabusa-2 mission, in New Results in the Observations and Space Exploration of Asteroids, ed. by W-H. Ip (Macau University of Science and Technology, Macao, 2012), pp. 74–96 Google Scholar
  15. T. Okada, Overviews of Hayabusa2: he C-class asteroid sample return mission of Japan, in New Results in the Observations and Space Exploration of Asteroids, ed. by W-H. Ip (Macau University of Science and Technology, Macao, 2012), pp. 60–73 Google Scholar
  16. J.E. Richardson, H.J. Melosh, R. Greenberg, Impact-induced seismic activity on asteroid 433 Eros: a surface modification process. Science 306, 1526–1529 (2004) ADSCrossRefGoogle Scholar
  17. J.R. Szalay, M. Horányi, The search for electrostatically lofted grains above the Moon with the Lunar Dust Experiment. Geophys. Res. Lett. 42, 5141–5146326 (2015) ADSCrossRefGoogle Scholar
  18. P.C. Thomas, J. Veverka, D. Simonelli, P. Helfenstein, B. Carcich, M.J.S. Belton, M.E. Davies, C. Chapman, The shape of Gaspra. Icarus 107(1), 23–36 (1994) ADSCrossRefGoogle Scholar
  19. Y. Tsuda, M. Yoshikawa, M. Abe, H. Minamino, S. Nakazawa, System design of the Hayabusa 2-asteroid sample return mission to 1999 JU3. Acta Astronaut. 91, 356–362 (2013) ADSCrossRefGoogle Scholar
  20. J. Veverka, M. Robinson, P. Thomas, S. Murchie, J.F. Bell III, N. Izenberg, C. Chapman, A. Harch, M. Bell, B. Carcich, A. Cheng, B. Clark, D. Domingue, D. Dunham, R. Farquhar, M.J. Gaffey, E. Hawkins, J. Joseph, R. Kirk, H. Li, P. Lucey, M. Malin, P. Martin, L. McFadden, W.J. Merline, J.K. Miller, W.M. Owen Jr., C. Peterson, L. Prockter, J. Warren, D. Wellnitz, B.G. Williams, D.K. Yeomans, NEAR at Eros: imaging and spectral results. Science 289, 2088–2097 (2000) ADSCrossRefGoogle Scholar
  21. J. Veverka, B. Farquhar, M. Robinson, P. Thomas, S. Murchie, A. Harch, P.G. Antreasian, S.R. Chesley, J.K. Miller, W.M. Owen Jr., B.G. Williams, D. Yeomans, D. Dunham, G. Heyler, M. Holdridge, R.L. Nelson, K.E. Whittenburg, J.C. Ray, B. Carcich, A. Cheng, C. Chapman, J.F. Bell III, M. Bell, B. Bussey, B. Clark, D. Domingue, M.J. Gaffey, E. Hawkins, N. Izenberg, J. Joseph, R. Kirk, P. Lucey, M. Malin, L. McFadden, W.J. Merline, C. Peterson, L. Prockter, J. Warren, D. Wellnitz, The landing of the NEAR-Shoemaker spacecraft on asteroid 433 Eros. Nature 413, 390–393 (2001) ADSCrossRefGoogle Scholar
  22. R. Yamada, H. Senshu, N. Namiki, T. Mizuno, S. Abe, F. Yoshida, H. Noda, N. Hirata, S. Oshigam, N. Hirata, Y. Ishihara, K. Matsumoto, Performance of Hayabusa2 LIDAR to observe normal albedo on the C-type asteroid. Space Sci. Rev. (2016), this issue Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • H. Senshu
    • 1
  • S. Oshigami
    • 2
  • M. Kobayashi
    • 1
  • R. Yamada
    • 2
  • N. Namiki
    • 2
  • H. Noda
    • 2
  • Y. Ishihara
    • 3
  • T. Mizuno
    • 3
  1. 1.Chiba Institute of TechnologyPlanetary Exploration Research CenterNarashinoJapan
  2. 2.RISE ProjectNational Astronomical Observatory of JapanTokyoJapan
  3. 3.Institute of Space and Astronomical ScienceJapan Aerospace Exploration AgencySagamiharaJapan

Personalised recommendations