Skip to main content
Log in

Origin and Evolution of the Cometary Reservoirs

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

Comets have three known reservoirs: the roughly spherical Oort Cloud (for long-period comets), the flattened Kuiper Belt (for ecliptic comets), and, surprisingly, the asteroid belt (for main-belt comets). Comets in the Oort Cloud were thought to have formed in the region of the giant planets and then placed in quasi-stable orbits at distances of thousands or tens of thousands of AU through the gravitational effects of the planets and the Galaxy. The planets were long assumed to have formed in place. However, the giant planets may have undergone two episodes of migration. The first would have taken place in the first few million years of the Solar System, during or shortly after the formation of the giant planets, when gas was still present in the protoplanetary disk around the Sun. The Grand Tack (Walsh et al. in Nature 475:206–209, 2011) models how this stage of migration could explain the low mass of Mars and deplete, then repopulate the asteroid belt, with outer-belt asteroids originating between, and outside of, the orbits of the giant planets. The second stage of migration would have occurred later (possibly hundreds of millions of years later) due to interactions with a remnant disk of planetesimals, i.e., a massive ancestor of the Kuiper Belt. Safronov (Evolution of the Protoplanetary Cloud and Formation of the Earth and the Planets, 1969) and Fernández and Ip (Icarus 58:109–120, 1984) proposed that the giant planets would have migrated as they interacted with leftover planetesimals; Jupiter would have moved slightly inward, while Saturn and (especially) Uranus and Neptune would have moved outward from the Sun. Malhotra (Nature 365:819–821, 1993) showed that Pluto’s orbit in the 3:2 resonance with Neptune was a natural outcome if Neptune captured Pluto into resonance while it migrated outward. Building on this work, Tsiganis et al. (Nature 435:459–461, 2005) proposed the Nice model, in which the giant planets formed closer together than they are now, and underwent a dynamical instability that led to a flood of comets and asteroids throughout the Solar System (Gomes et al. in Nature 435:466–469, 2005b). In this scenario, it is somewhat a matter of luck whether an icy planetesimal ends up in the Kuiper Belt or Oort Cloud (Brasser and Morbidelli in Icarus 225:40–49, 2013), as a Trojan asteroid (Morbidelli et al. in Nature 435:462–465, 2005; Nesvorný and Vokrouhlický in Astron. J. 137:5003–5011, 2009; Nesvorný et al. in Astrophys. J. 768:45, 2013), or as a distant “irregular” satellite of a giant planet (Nesvorný et al. in Astron. J. 133:1962–1976, 2007). Comets could even have been captured into the asteroid belt (Levison et al. in Nature 460:364–366, 2009). The remarkable finding of two “inner Oort Cloud” bodies, Sedna and 2012 \(\mbox{VP}_{113}\), with perihelion distances of 76 and 81 AU, respectively (Brown et al. in Astrophys. J. 617:645–649, 2004; Trujillo and Sheppard in Nature 507:471–474, 2014), along with the discovery of other likely inner Oort Cloud bodies (Chen et al. in Astrophys. J. Lett. 775:8, 2013; Brasser and Schwamb in Mon. Not. R. Astron. Soc. 446:3788–3796, 2015), suggests that the Sun formed in a denser environment, i.e., in a star cluster (Brasser et al. in Icarus 184:59–82, 2006, 191:413–433, 2007, 217:1–19, 2012b; Kaib and Quinn in Icarus 197:221–238, 2008). The Sun may have orbited closer or further from the center of the Galaxy than it does now, with implications for the structure of the Oort Cloud (Kaib et al. in Icarus 215:491–507, 2011).

We focus on the formation of cometary nuclei; the orbital properties of the cometary reservoirs; physical properties of comets; planetary migration; the formation of the Oort Cloud in various environments; the formation and evolution of the Kuiper Belt and Scattered Disk; and the populations and size distributions of the cometary reservoirs. We close with a brief discussion of cometary analogs around other stars and a summary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Notes

  1. We generally use the term “Kuiper Belt Objects” in a broad sense to mean small bodies with semi-major axes outside of Neptune’s orbit, excepting inner Oort Cloud bodies like Sedna. “KBOs” thus include classical and resonant KBOs and Scattered Disk Objects. In most cases we follow the terminology of Gladman et al. (2008), except that they refer to bodies beyond Neptune as Trans-Neptunian Objects (TNOs). See Bierhaus and Dones (2015) for a summary of different types of KBOs and Sect. 6.1 for a comparison of dynamical classification schemes.

  2. The term “pebble accretion” is used in studies of planet formation that assume planetesimals have already formed (e.g., Morbidelli et al. 2015; Bitsch et al. 2015). If “pebbles” are present in the solar nebula, the planetesimals may be able to grow rapidly into planetary “embryos,” the cores of the giant planets, or the terrestrial planets. The planetesimals, in turn, might consist of pebbles that clumped together through the streaming instability or other mechanisms that concentrate particles (Wahlberg Jansson and Johansen 2014). Within low-mass planetesimals, pebbles will collide at low speeds, so fragmentation will not occur and the planetesimal will remain a low-density “pebble pile” (Wahlberg Jansson and Johansen 2014; Hopkins 2014). Jacobson and Walsh (2015) define a pebble as a particle with Stokes number between 0.01 and 1. (These Stokes numbers correspond to particle radii \(r\approx0.8~\mbox{cm--}80~\mbox{cm}\) in the asteroid belt and 0.07–7 cm at 30 AU (Carrera et al. 2015), so the astrophysical use of the word “pebble” differs from its geological meaning.) The Stokes number of a particle in a flow, \(\mathit{St}\), is a measure of the particle’s “stopping time” \(\tau_{s}\) due to its interaction with the gas, relative to the particle’s orbital period. Specifically, \(\mathit{St} = \varOmega\tau_{s}\), where \(\varOmega\) is the particle’s orbital frequency and \(\varOmega= 2 \pi/T\), where \(T\) is the particle’s orbital period. When \(\mathit{St} \ll1\), the particle follows the flow, while for \(\mathit{St} \gg1\), the particle does not “feel” the gas. Carrera et al. (2015) find that the streaming instability can operate for \(0.003 \le \mathit{St}\leq0.3\), with the range depending on the solid-to-gas ratio in the disk. The biggest particles inferred in protoplanetary disks or seen to coagulate in experiments are only mm–cm sized. Carrera et al. (2015) therefore focus on formation of planetesimals from chondrules (typically \(r \approx0.3~\mbox{mm}\)), since half or more of the mass in many types of chondritic meteorites is in the form of chondrules. Johansen et al. (2015a) consider the growth of asteroids, Kuiper Belt Objects, and planetary embryos by accretion of chondrules.

  3. We think an anonymous referee for calling our attention to the fascinating history of ideas about comets in the 17th century.

  4. The “hyperbolic” comets were almost certainly on highly eccentric elliptical (“near-parabolic”) orbits. See Sect. 2.1 for discussion.

  5. For a comet or asteroid with semi-major axis \(a\), eccentricity \(e\), and inclination \(i\) with respect to the orbital plane of a planet with semi-major axis \(a_{P}\), the Tisserand parameter \(T = a_{P}/a + 2 \sqrt{a(1 - e^{2})/a_{P}} \cos i\). We consider the Tisserand parameter of comets with respect to Jupiter, for which \(a_{P} \sim5.2~\mbox{AU}\). The Tisserand parameter is an approximation to the Jacobi integral, which is a constant of motion for the circular restricted three-body problem (Carusi et al. 1995).

  6. See https://www.nasa.gov/feature/goddard/esa-nasa-solar-observatory-discovers-its-3000th-comet and http://sungrazer.nrl.navy.mil/.

  7. Johnston explains his total as follows (W.R. Johnston, personal communication, 2015): “The comet numbers are my attempt to count all known comets, whether or not they have received IAUC/MPC designations. The categories include:

    • Numbered comets—those periodic comets with permanent numbers, excluding Chiron and Echeclus which are counted among Centaurs.

    • Provisional designations—those with official designations other than permanent numbers, old or new style, both long- and short-period, and including 15 letter-designated fragments of numbered comets.

    • Without designations—known or suspected comets without IAUC designations, includes: SOHO/STEREO comets; distinct ancient/historical comets identified by Gary Kronk in the Cometography volumes but not identified with numbered/provisional comets; and “X” comets. Of those without designations, 456 are ones listed by Kronk from pre-modern observations, most of the remainder are SOHO comets.

    Given that a number of SOHO comets have made identified returns, I do not delete sungrazers that are suspected but not proven to have disintegrated on perihelion passage (though …many, possibly most, have). Similarly, some comets given “D” designations have been rediscovered so I don’t automatically exclude these. I do exclude those known to have collided with Jupiter (25 Shoemaker-Levy 9 fragments) or the Sun (the latter based on a calculated perihelion below the Sun’s surface).”

  8. The term “inner Oort Cloud” is now used for bodies like Sedna with perihelion distances outside the orbits of the planets and semi-major axes of hundreds of AU (as opposed to thousands of AU for the inner cloud discussed by Hills 1981). The existence of “Sednas” is not expected in models in which the Sun formed as an isolated star. See Sects. 5 and 6 for further discussion.

  9. Todorovic-Juchnicwicz (1981) found that the orbit of a long-period comet can be approximated well by a barycentric orbit neglecting planetary perturbations beyond distances of 150 to 200 AU from the Sun. The Polish group therefore tabulates orbital elements before and after a comet traverses the planetary region at a distance of 250 AU.

  10. The activity of an individual Centaur may bear no clear relationship to its distance (\(r\)) from the Sun. A coma around Chiron was first detected in 1989 when Chiron was inbound at \(r \sim12~\mbox{AU}\). Activity decreased through perihelion at 8.5 AU in 1996 until 1999, and then increased in 2000 and 2001 when Chiron was 10–11 AU from the Sun (Duffard et al. 2002). Chiron appears to have been more active when it was near aphelion at 19 AU in the early 1970s (Bus et al. 2001). Many comets, including Centaurs such as Chiron and 29P/Schwassmann-Wachmann 1, undergo outbursts in which they brighten by several magnitudes or more (Gronkowski and Wesołowski 2015). Chiron probably was in outburst near its last aphelion passage (Prialnik et al. 2004).

  11. Motivated by a model for the formation of super-Earths, Izidoro et al. (2014) proposed that the surface mass density of solids could have declined very rapidly with distance in the region of the terrestrial planets and the asteroid belt. This model explains the small mass of Mars, but predicts asteroid eccentricities and, particularly, inclinations that are smaller than the observed values (Izidoro et al. 2015). Levison et al. (2015b) have proposed yet another model, a variant of their “viscous stirred pebble accretion” idea (Levison et al. 2015), to explain the small mass of Mars and the asteroid belt.

  12. Deienno et al. (2011) find that the uranian satellites out to Oberon, the outermost regular moon, would likely survive encounters with another ice giant and massive planetesimals during the Nice model, but hypothetical moons only a bit further from Uranus would have been destabilized. Gomes et al. (2012) find that if Neptune had a close encounter with Jupiter, Triton would have a 65 % chance of remaining bound to Neptune. If Uranus had a close encounter with Jupiter, all of the regular satellites would remain bound to Uranus about 60 % of the time. The orbital properties of the giant planet satellite systems can be used to constrain the nature of the planetary encounters that took place in the Nice model and its progeny such as the “jumping Jupiter” model (Deienno et al. 2014; Nesvorný et al. 2014; Cloutier et al. 2015).

  13. Reyes-Ruiz et al. (2015) find shorter instability timescales (\({<} 70~\mbox{Myr}\)) using a different code (Mercury 6.5) to investigate this problem.

  14. Vokrouhlický and Nesvorný (2015) have independently used the planetary instability models of Nesvorný and Morbidelli (2012) to investigate the excitation of the obliquities of Jupiter and Saturn.

  15. Shannon et al. (2015b) simulate the formation of the Oort Cloud with the planets in their present-day orbits and the Sun in its current galactic environment. They estimate that some 4 % of the bodies in the Oort Cloud should be “asteroids,” i.e., bodies that formed within 2.5 AU of the Sun.

  16. For an isotropic distribution, \(\cos i\) is uniformly distributed between −1 and 1, so the median value of \(\cos i = 0\), corresponding to \(i = 90^{\circ}\), and \(e^{2}\) is uniformly distributed between 0 and 1, so the median value of \(e^{2}\) is \(\frac{1}{2}\) and the median value of \(e = 1/\sqrt{2}\) (Jeans 1919).

  17. Genzel et al. (2010) argue that the distance to the Galactic Center is \(R_{0} = 8.15~\mbox{kpc}\). Bash (1986) estimates that the Sun’s current orbit takes it from \(0.995~R_{0}\) to \(1.145~R_{0}\), i.e., from 8.11 kpc to 9.33 kpc if we adopt the value of \(R_{0}\) from Genzel et al. (2010).

  18. There is no consensus on the direction or amount of the Sun’s migration. For instance, Martínez-Barbosa et al. (2015) find that the Sun has probably undergone little migration, but if it has done so, it was probably born further out, near 11 kpc, while Halle et al. (2015) find that stars in the solar neighborhood “may have experienced very limited churning from the inner disc.” Hayden et al. (2015) find that “about 30 % of the stars in our Galaxy have traveled a long way from the orbits in which they were born” (http://www.sdss3.org/press/20150730.farfromhome.php).

  19. An animation by Alex Parker showing the rough relative sizes and true orbital motion of all trans-Neptunian objects with semi-major axes greater than Neptune’s as of 2014 can be seen at https://vimeo.com/96874127. See http://www.alexharrisonparker.com/datavisualization/ for other visualizations by Parker.

  20. See http://www.icq.eps.harvard.edu/kb.html for a discussion of how Kuiper never predicted the present-day existence of the belt that bears his name, while others, such as Leonard, Whipple, and Cameron, came closer to doing so.

  21. Oort (1950) found that, relative to the number of comets in the spike, fewer “returning” comets than expected were seen. Fitting the energy distribution of long-period comets required Oort to assume that “new or almost new” comets were unusually bright and that comets had a \({\approx}1~\%\) chance of being disrupted during each perihelion passage. This “fading” problem persists even now. Wiegert and Tremaine (1999) define fading as “all factors that reduce the intrinsic brightness of the comet near perihelion, and includes splitting into two or more large pieces, disruption into many small pieces, the depletion of volatiles, and the formation of insulating crusts of refractory materials.” Wiegert and Tremaine (1999) investigate fading in great detail, and find they can match the observed orbit distribution of long-period comets if the fraction of comets remaining observable after \(m\) apparitions \(\propto m^{0.6\pm0.1}\) or if \({\approx}95~\%\) of comets survive for only \({\approx}6\) returns and the rest last indefinitely.

  22. The absolute magnitude derived for a comet depends both on the aperture of the telescope used to observe it (since comets are extended sources) and the assumed value of the photometric index \(\nu\), which is not always stated. Even though both studies assumed \(\nu= 4\), Kresák and Kresáková (1989) derived absolute magnitudes that differed, on average, from those of Vsekhsvyatskij (1958) by 1.9 magnitudes, with a standard deviation of 1.5 magnitudes. For instance, Kresák and Kresáková (1989) derive a mean absolute magnitude for 1P/Halley of 2.8 from its 1835, 1910, and 1986 apparitions, while Hughes (1988), who uses Vsekhsvyatskij’s magnitudes, states that “during its last 30 apparitions, [Halley’s] \(H_{10}\) value has remained sensibly constant at \(5.5 \pm0.7\).”

  23. Using the traditional definition of a new comet as one with an original semi-major axis \({>} 10{,}000~\mbox{AU}\), Wiegert and Tremaine (1999) assume one long-period comet in three is dynamically new, while Fernández and Sosa (2012) find that new comets are \(30 \pm10~\%\) of long-period comets with perihelia \({<}1.3~\mbox{AU}\).

  24. Kaib and Quinn (2009) estimate that the fraction of Oort Cloud comets reaching orbits with \(q < 5~\mbox{AU}\) per year is \(1.4 \times10^{-11}\) and \(0.9 \times10^{-11}\) for comets from the outer (\(a >20{,}000~\mbox{AU}\)) and inner (\(a <20{,}000~\mbox{AU}\)) clouds, respectively.

  25. One dimming event reduced the star’s light by 20 %. Wright et al. (2015) state that the light curve is “consistent with a ‘swarm’ of megastructures,” i.e., a Dyson sphere. The SETI Institute is observing KIC 8462852 with the Allen Telescope Array to investigate this possibility (http://www.seti.org/seti-institute/mysterious-star-kic-8462852).

References

  • F.C. Adams, The birth environment of the Solar System. Annu. Rev. Astron. Astrophys. 48, 47–85 (2010)

    Article  ADS  Google Scholar 

  • F.C. Adams, G. Laughlin, Constraints on the birth aggregate of the Solar System. Icarus 150, 151–162 (2001)

    Article  ADS  Google Scholar 

  • C.B. Agnor, D.N.C. Lin, On the migration of Jupiter and Saturn: constraints from linear models of secular resonant coupling with the terrestrial planets. Astrophys. J. 745, 143 (2012)

    Article  ADS  Google Scholar 

  • M.F. A’Hearn, M.J.S. Belton, W.A. Delamere, L.M. Feaga, D. Hampton, J. Kissel, K.P. Klaasen, L.A. McFadden, K.J. Meech, H.J. Melosh, et al., EPOXI at comet Hartley 2. Science 332, 1396–1400 (2011)

    Article  ADS  Google Scholar 

  • C.M.O. Alexander, R. Bowden, M.L. Fogel, K.T. Howard, C.D.K. Herd, L.R. Nittler, The provenances of asteroids, and their contributions to the volatile inventories of the terrestrial planets. Science 337, 721–723 (2012)

    Article  ADS  Google Scholar 

  • R. Alexander, Planet formation in evolving protoplanetary discs, in Exploring the Formation and Evolution of Planetary Systems, ed. by M. Booth, B.C. Matthews, J.R. Graham. IAU Symposium, vol. 299 (2014), pp. 179–189

    Google Scholar 

  • R. Alexander, I. Pascucci, S. Andrews, P. Armitage, L. Cieza, The dispersal of protoplanetary disks, ed. by H. Beuther, R.S. Klessen, C.P. Dullemond, T. Henning (Univ. Arizona Press, 2014), pp. 475–496

  • M. Alexandersen, B. Gladman, J.J. Kavelaars, J.-M. Petit, S. Gwyn, C. Shankman, A carefully characterised and tracked trans-Neptunian survey, the size-distribution of the Plutinos and the number of Neptunian Trojans. ArXiv e-prints 1411.7953 [astro-ph] (2014)

  • L. Allen, S.T. Megeath, R. Gutermuth, P.C. Myers, S. Wolk, F.C. Adams, J. Muzerolle, E. Young, J.L. Pipher, The structure and evolution of young stellar clusters, in Protostars and Planets V, ed. by B. Reipurth, D. Jewitt, K. Keil (2007), pp. 361–376

    Google Scholar 

  • R.L. Allen, G.M. Bernstein, R. Malhotra, The edge of the Solar System. Astrophys. J. Lett. 549, 241–244 (2001)

    Article  ADS  Google Scholar 

  • K. Altwegg, H. Balsiger, A. Bar-Nun, J.J. Berthelier, A. Bieler, P. Bochsler, C. Briois, U. Calmonte, M. Combi, J. De Keyser, et al., 67P/Churyumov-Gerasimenko, a Jupiter family comet with a high D/H ratio. Science 347, 1261952 (2015)

    Article  Google Scholar 

  • S.M. Andrews, Observations of solids in protoplanetary disks. ArXiv e-prints 1507.04758 [astro-ph] (2015)

  • S.M. Andrews, D.J. Wilner, A.M. Hughes, C. Qi, K.A. Rosenfeld, K.I. Öberg, T. Birnstiel, C. Espaillat, L.A. Cieza, J.P. Williams, et al., The TW Hya disk at 870 μm: comparison of CO and dust radial structures. Astrophys. J. 744, 162 (2012)

    Article  ADS  Google Scholar 

  • W. Applebaum, Keplerian astronomy after Kepler: researches and problems. Hist. Sci. 34, 451–504 (1996)

    Article  MathSciNet  Google Scholar 

  • P.J. Armitage, Lecture notes on the formation and early evolution of planetary systems (version 4, August 26, 2014). ArXiv e-prints astro-ph/0701485 (2014)

  • P.J. Armitage, Physical processes in protoplanetary disks. ArXiv e-prints 1509.06382 [astro-ph] (2015)

  • P.J. Armitage, Astrophysics of Planet Formation (Cambridge University Press, Cambridge, 2010)

    Google Scholar 

  • E. Asphaug, W. Benz, Size, density, and structure of comet Shoemaker-Levy 9 inferred from the physics of tidal breakup. Icarus 121, 225–248 (1996)

    Article  ADS  Google Scholar 

  • C.A.L. Bailer-Jones, Close encounters of the stellar kind. Astron. Astrophys. 575, 35 (2015)

    Article  ADS  Google Scholar 

  • M.E. Bailey, S.V.M. Clube, W.M. Napier, The Origin of Comets (Pergamon Press, Elmsford, 1990)

    Google Scholar 

  • R.B. Baldwin, Was there a ‘terminal lunar cataclysm’ 3.9 to 4.0 billion years ago? Icarus 23, 157–166 (1974)

    Article  ADS  Google Scholar 

  • P. Barge, J. Sommeria, Did planet formation begin inside persistent gaseous vortices? Astron. Astrophys. 295, 1–4 (1995)

    ADS  Google Scholar 

  • A.C. Barr, R.M. Canup, Origin of the Ganymede-Callisto dichotomy by impacts during the Late Heavy Bombardment. Nat. Geosci. 3, 164–167 (2010)

    Article  ADS  Google Scholar 

  • J.A. Barranco, P.S. Marcus, Three-dimensional vortices in stratified protoplanetary disks. Astrophys. J. 623, 1157–1170 (2005)

    Article  ADS  Google Scholar 

  • M.A. Barucci, I.N. Belskaya, M. Fulchignoni, M. Birlan, Taxonomy of Centaurs and Trans-Neptunian objects. Astron. J. 130, 1291–1298 (2005)

    Article  ADS  Google Scholar 

  • C. Baruteau, A. Crida, S.-J. Paardekooper, F. Masset, J. Guilet, B. Bitsch, R. Nelson, W. Kley, J. Papaloizou, Planet-disk interactions and early evolution of planetary systems, in Protostars and Planets VI, ed. by H. Beuther, R.S. Klessen, C.P. Dullemond, T. Henning (Univ. Arizona Press, Tucson, 2014), pp. 667–689

    Google Scholar 

  • F. Bash, The present, past and future velocity of nearby stars—the path of the Sun in \(10^{8}~\mbox{years}\), in The Galaxy and the Solar System, ed. by R. Smoluchowski, J.M. Bahcall, M.S. Matthews (Univ. Arizona Press, Tucson, 1986), pp. 35–46

    Google Scholar 

  • K. Batygin, M.E. Brown, H. Betts, Instability-driven dynamical evolution model of a primordially five-planet outer Solar System. Astrophys. J. Lett. 744, 3 (2012)

    Article  ADS  Google Scholar 

  • K. Batygin, M.E. Brown, W.C. Fraser, Retention of a primordial cold classical Kuiper Belt in an instability-driven model of Solar System formation. Astrophys. J. 738, 13 (2011)

    Article  ADS  Google Scholar 

  • K. Batygin, A. Morbidelli, M.J. Holman, Chaotic disintegration of the inner Solar System. Astrophys. J. 799, 120 (2015)

    Article  ADS  Google Scholar 

  • M.J.S. Belton, The mass disruption of Jupiter family comets. Icarus 245, 87–93 (2015)

    Article  ADS  Google Scholar 

  • P.G. Benavidez, A. Campo Bagatin, Collisional evolution of trans-Neptunian populations: effects of fragmentation physics and estimates of the abundances of gravitational aggregates. Planet. Space Sci. 57, 201–215 (2009)

    Article  ADS  Google Scholar 

  • G.M. Bernstein, D.E. Trilling, R.L. Allen, M.E. Brown, M. Holman, R. Malhotra, The size distribution of trans-Neptunian bodies. Astron. J. 128, 1364–1390 (2004)

    Article  ADS  Google Scholar 

  • G.M. Bernstein, D.E. Trilling, R.L. Allen, M.E. Brown, M. Holman, R. Malhotra, Erratum: “the size distribution of trans-Neptunian bodies”. Astron. J. 131, 2364 (2006)

    Article  ADS  Google Scholar 

  • I. Bertini, Main belt comets: a new class of small bodies in the solar system. Planet. Space Sci. 59, 365–377 (2011)

    Article  ADS  Google Scholar 

  • H. Beuther, R.S. Klessen, C.P. Dullemond, T. Henning, Protostars and Planets VI (Univ. Arizona Press, Tucson, 2014)

    Google Scholar 

  • J.-P. Bibring, M.G.G.T. Taylor, C. Alexander, U. Auster, J. Biele, A.E. Finzi, F. Goesmann, G. Klingelhoefer, W. Kofman, S. Mottola, et al., Philae’s first days on the comet. Science 349, 493 (2015)

    Article  ADS  Google Scholar 

  • E.B. Bierhaus, L. Dones, Craters and ejecta on Pluto and Charon: anticipated results from the New Horizons flyby. Icarus 246, 165–182 (2015)

    Article  ADS  Google Scholar 

  • E.B. Bierhaus, L. Dones, J.L. Alvarellos, K. Zahnle, The role of ejecta in the small crater populations on the mid-sized Saturnian satellites. Icarus 218, 602–621 (2012)

    Article  ADS  Google Scholar 

  • B. Bitsch, M. Lambrechts, A. Johansen, The growth of planets by pebble accretion in evolving protoplanetary discs. Astron. Astrophys. 582, 112 (2015)

    Article  ADS  Google Scholar 

  • B. Bitsch, A. Morbidelli, E. Lega, A. Crida, Stellar irradiated discs and implications on migration of embedded planets. II. Accreting-discs. Astron. Astrophys. 564, 135 (2014)

    Article  ADS  Google Scholar 

  • J. Blum, B. Gundlach, S. Mühle, J.M. Trigo-Rodriguez, Comets formed in solar-nebula instabilities!—An experimental and modeling attempt to relate the activity of comets to their formation process. Icarus 235, 156–169 (2014)

    Article  ADS  Google Scholar 

  • J. Blum, B. Gundlach, S. Mühle, J.M. Trigo-Rodriguez, Corrigendum to ‘Comets formed in solar-nebula instabilities!—An experimental and modeling attempt to relate the activity of comets to their formation process’ [Icarus 235 (2014) 156–169]. Icarus 248, 135–136 (2015)

    Article  ADS  Google Scholar 

  • D. Bockelée-Morvan, J. Crovisier, M.J. Mumma, H.A. Weaver, The composition of cometary volatiles, in Comets II, ed. by M.C. Festou, H.U. Keller, H.A. Weaver, (Univ. Arizona Press, Tucson, 2004), pp. 391–423

    Google Scholar 

  • D. Bockelée-Morvan, N. Biver, B. Swinyard, M. de Val-Borro, J. Crovisier, P. Hartogh, D.C. Lis, R. Moreno, S. Szutowicz, E. Lellouch, et al., Herschel measurements of the D/H and 16O/18O ratios in water in the Oort-cloud comet C/2009 P1 (Garradd). Astron. Astrophys. 544, 15 (2012)

    Article  ADS  Google Scholar 

  • D. Bockelée-Morvan, U. Calmonte, S. Charnley, J. Duprat, C. Engrand, A. Gicquel, M. Hässig, E. Jehin, H. Kawakita, B. Marty, et al., Cometary isotopic measurements. Space Sci. Rev. (2015). doi:10.1007/s11214-015-0156-9

    Google Scholar 

  • A.C. Boley, The two modes of gas giant planet formation. Astrophys. J. Lett. 695, 53–57 (2009)

    Article  ADS  Google Scholar 

  • A. Bonsor, A.J. Mustill, M.C. Wyatt, Dynamical effects of stellar mass-loss on a Kuiper-like belt. Mon. Not. R. Astron. Soc. 414, 930–939 (2011)

    Article  ADS  Google Scholar 

  • A. Bonsor, S.N. Raymond, J.-C. Augereau, C.W. Ormel, Planetesimal-driven migration as an explanation for observations of high levels of warm, exozodiacal dust. Mon. Not. R. Astron. Soc. 441, 2380–2391 (2014)

    Article  ADS  Google Scholar 

  • W.F. Bottke, H.F. Levison, D. Nesvorný, L. Dones, Can planetesimals left over from terrestrial planet formation produce the lunar Late Heavy Bombardment? Icarus 190, 203–223 (2007)

    Article  ADS  Google Scholar 

  • W.F. Bottke, D. Vokrouhlický, D. Minton, D. Nesvorný, A. Morbidelli, R. Brasser, B. Simonson, H.F. Levison, An Archaean heavy bombardment from a destabilized extension of the asteroid belt. Nature 485, 78–81 (2012)

    Article  ADS  Google Scholar 

  • W.F. Bottke, D. Vokrouhlický, S. Marchi, T. Swindle, E.R.D. Scott, J.R. Weirich, H. Levison, Dating the Moon-forming impact event with asteroidal meteorites. Science 348, 321–323 (2015)

    Article  ADS  Google Scholar 

  • T.S. Boyajian, D.M. LaCourse, S.A. Rappaport, D. Fabrycky, D.A. Fischer, D. Gandolfi, G.M. Kennedy, M.C. Liu, A. Moor, K. Olah, et al., Planet Hunters X. KIC 8462852—where’s the flux? ArXiv e-prints 1509.03622 [astro-ph] (2015)

  • R. Brasser, M.J. Duncan, An analytical method to compute comet cloud formation efficiency and its application. Celest. Mech. Dyn. Astron. 100, 1–26 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • R. Brasser, M.-H. Lee, Tilting Saturn without tilting Jupiter: constraints on giant planet migration. Astron. J. (2015). doi:10.1088/0004-6256/150/5/157

    Google Scholar 

  • R. Brasser, A. Morbidelli, Oort Cloud and Scattered Disc formation during a late dynamical instability in the Solar System. Icarus 225, 40–49 (2013)

    Article  ADS  Google Scholar 

  • R. Brasser, M.E. Schwamb, Re-assessing the formation of the inner Oort Cloud in an embedded star cluster—II. Probing the inner edge. Mon. Not. R. Astron. Soc. 446, 3788–3796 (2015)

    Article  ADS  Google Scholar 

  • R. Brasser, J.-H. Wang, An updated estimate of the number of Jupiter-family comets using a simple fading law. Astron. Astrophys. 573, 102 (2015)

    Article  ADS  Google Scholar 

  • R. Brasser, M.J. Duncan, H.F. Levison, Embedded star clusters and the formation of the Oort Cloud. Icarus 184, 59–82 (2006)

    Article  ADS  Google Scholar 

  • R. Brasser, M.J. Duncan, H.F. Levison, Embedded star clusters and the formation of the Oort Cloud. II. The effect of the primordial solar nebula. Icarus 191, 413–433 (2007)

    Article  ADS  Google Scholar 

  • R. Brasser, M.J. Duncan, H.F. Levison, Embedded star clusters and the formation of the Oort Cloud. III. Evolution of the inner cloud during the Galactic phase. Icarus 196, 274–284 (2008)

    Article  ADS  Google Scholar 

  • R. Brasser, A. Higuchi, N. Kaib, Oort Cloud formation at various galactic distances. Astron. Astrophys. 516, 72 (2010)

    Article  ADS  MATH  Google Scholar 

  • R. Brasser, K.J. Walsh, D. Nesvorný, Constraining the primordial orbits of the terrestrial planets. Mon. Not. R. Astron. Soc. 433, 3417–3427 (2013)

    Article  ADS  Google Scholar 

  • R. Brasser, A. Morbidelli, R. Gomes, K. Tsiganis, H.F. Levison, Constructing the secular architecture of the solar system II: the terrestrial planets. Astron. Astrophys. 507, 1053–1065 (2009)

    Article  ADS  Google Scholar 

  • R. Brasser, M.E. Schwamb, P.S. Lykawka, R.S. Gomes, An Oort Cloud origin for the high-inclination, high-perihelion Centaurs. Mon. Not. R. Astron. Soc. 420, 3396–3402 (2012a)

    Article  ADS  Google Scholar 

  • R. Brasser, M.J. Duncan, H.F. Levison, M.E. Schwamb, M.E. Brown, Reassessing the formation of the inner Oort Cloud in an embedded star cluster. Icarus 217, 1–19 (2012b)

    Article  ADS  Google Scholar 

  • S. Breiter, R. Ratajczak, Vectorial elements for the Galactic disc tide effects in cometary motion. Mon. Not. R. Astron. Soc. 364, 1222–1228 (2005)

    Article  ADS  Google Scholar 

  • G.D. Brin, D.A. Mendis, Dust release and mantle development in comets. Astrophys. J. 229, 402–408 (1979)

    Article  ADS  Google Scholar 

  • M.E. Brown, The inclination distribution of the Kuiper Belt. Astron. J. 121, 2804–2814 (2001)

    Article  ADS  Google Scholar 

  • M.E. Brown, The largest Kuiper Belt Objects, in The Solar System Beyond Neptune, ed. by M.A. Barucci, H. Boehnhardt, D.P. Cruikshank, A. Morbidelli, R. Dotson (Univ. Arizona Press, Tucson, 2008), pp. 335–344

    Google Scholar 

  • M.E. Brown, C. Trujillo, D. Rabinowitz, Discovery of a candidate inner Oort Cloud planetoid. Astrophys. J. 617, 645–649 (2004)

    Article  ADS  Google Scholar 

  • M.E. Brown, C.A. Trujillo, D.L. Rabinowitz, Discovery of a planetary-sized object in the scattered Kuiper Belt. Astrophys. J. Lett. 635, 97–100 (2005)

    Article  ADS  Google Scholar 

  • D. Brownlee, The Stardust mission: analyzing samples from the edge of the Solar System. Annu. Rev. Earth Planet. Sci. 42, 179–205 (2014)

    Article  ADS  Google Scholar 

  • D. Brownlee, P. Tsou, J. Aléon, C.M.O. Alexander, T. Araki, S. Bajt, G.A. Baratta, R. Bastien, P. Bland, P. Bleuet, et al., Comet 81P/Wild 2 under a microscope. Science 314, 1711–1716 (2006)

    Article  ADS  Google Scholar 

  • S.J. Bus, M.F. A’Hearn, E. Bowell, S.A. Stern, (2060) Chiron: evidence for activity near aphelion. Icarus 150, 94–103 (2001)

    Article  ADS  Google Scholar 

  • H. Campins, K. Hargrove, N. Pinilla-Alonso, E.S. Howell, M.S. Kelley, J. Licandro, T. Mothé-Diniz, Y. Fernández, J. Ziffer, Water ice and organics on the surface of the asteroid 24 Themis. Nature 464, 1320–1321 (2010)

    Article  ADS  Google Scholar 

  • R.M. Canup, A giant impact origin of Pluto-Charon. Science 307, 546–550 (2005)

    Article  ADS  Google Scholar 

  • R.W. Carlson, L.E. Borg, A.M. Gaffney, M. Boyet, Rb-Sr, Sm-Nd and Lu-Hf isotope systematics of the lunar Mg-suite: the age of the lunar crust and its relation to the time of Moon formation. Philos. Trans. R. Soc. Lond. A 372, 30246 (2014)

    Article  ADS  Google Scholar 

  • D. Carrera, A. Johansen, M.B. Davies, How to form planetesimals from mm-sized chondrules and chondrule aggregates. Astron. Astrophys. 579, 43 (2015)

    Article  ADS  Google Scholar 

  • A. Carusi, Ľ. Kresák, G.B. Valsecchi, Conservation of the Tisserand parameter at close encounters of interplanetary objects with Jupiter. Earth Moon Planets 68, 71–94 (1995)

    Article  ADS  Google Scholar 

  • A. Carusi, L. Kresak, E. Perozzi, G.B. Valsecchi, Peculiar orbital histories of some short-period comets. Bull. Am. Astron. Soc. 16, 704 (1984)

    ADS  Google Scholar 

  • A. Carusi, L. Kresak, E. Perozzi, G.B. Valsecchi, Long-Term Evolution of Short-Period Comets (Adam Hilger, Bristol, 1985)

    Google Scholar 

  • A. Carusi, L. Kresak, E. Perozzi, G.B. Valsecchi, High-order librations of Halley-type comets. Astron. Astrophys. 187, 899–905 (1987)

    ADS  Google Scholar 

  • J.E. Chambers, Making more terrestrial planets. Icarus 152, 205–224 (2001)

    Article  ADS  Google Scholar 

  • J.E. Chambers, Planetesimal formation by turbulent concentration. Icarus 208, 505–517 (2010)

    Article  ADS  Google Scholar 

  • J.E. Chambers, Giant planet formation with pebble accretion. Icarus 233, 83–100 (2014)

    Article  ADS  Google Scholar 

  • S.L. Chapin, Early ideas about comets 1650–1700. Leafl., Astron. Soc. Pac. 6(278), 221–228 (1952)

    ADS  Google Scholar 

  • C.R. Chapman, B.A. Cohen, D.H. Grinspoon, What are the real constraints on the existence and magnitude of the Late Heavy Bombardment? Icarus 189, 233–245 (2007)

    Article  ADS  Google Scholar 

  • J. Chen, D. Jewitt, On the rate at which comets split. Icarus 108, 265–271 (1994)

    Article  ADS  Google Scholar 

  • Y.-T. Chen, J.J. Kavelaars, S. Gwyn, L. Ferrarese, P. Côté, A. Jordán, V. Suc, J.-C. Cuillandre, W.-H. Ip, Discovery of a new member of the inner Oort Cloud from the Next Generation Virgo Cluster Survey. Astrophys. J. Lett. 775, 8 (2013)

    Article  ADS  Google Scholar 

  • E. Chiang, A.N. Youdin, Forming planetesimals in solar and extrasolar nebulae. Annu. Rev. Earth Planet. Sci. 38, 493–522 (2010)

    Article  ADS  Google Scholar 

  • R. Cloutier, D. Tamayo, D. Valencia, Could Jupiter or Saturn have ejected a fifth giant planet? Astrophys. J. 813, 8 (2015)

    Article  ADS  Google Scholar 

  • R. Cloutier, T. Currie, G.H. Rieke, S.J. Kenyon, Z. Balog, R. Jayawardhana, A deep Spitzer survey of circumstellar disks in the young double cluster, h and \(\chi\) Persei. Astrophys. J. 796, 127 (2014)

    Article  ADS  Google Scholar 

  • A.L. Cochran, A.-C. Levasseur-Regourd, M. Cordiner, E. Hadamcik, J. Lasue, A. Gicquel, D.G. Schleicher, S.B. Charnley, M.J. Mumma, L. Paganini, et al., The composition of comets. Space Sci. Rev. (2015). doi:10.1007/s11214-015-0183-6

    Google Scholar 

  • B.A. Cohen, N.E. Petro, S.J. Lawrence, What do Nectaris Basin impact melt rocks look like and where can we find them? in Early Solar System Impact Bombardment III, (2015), p. 3019. http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20150015512.pdf

    Google Scholar 

  • B.A. Cohen, T.D. Swindle, D.A. Kring, Support for the lunar cataclysm hypothesis from lunar meteorite impact melt ages. Science 290, 1754–1756 (2000)

    Article  ADS  Google Scholar 

  • C.J. Cohen, E.C. Hubbard, Libration of the close approaches of Pluto to Neptune. Astron. J. 70, 10–13 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  • M. Ćuk, Chronology and sources of lunar impact bombardment. Icarus 218, 69–79 (2012)

    Article  ADS  Google Scholar 

  • M. Ćuk, B.J. Gladman, S.T. Stewart, Constraints on the source of lunar cataclysm impactors. Icarus 207, 590–594 (2010)

    Article  ADS  Google Scholar 

  • M. Ćuk, B.J. Gladman, S.T. Stewart, Rebuttal to the comment by Malhotra and Strom on “Constraints on the source of lunar cataclysm impactors”. Icarus 216, 363–365 (2011)

    Article  ADS  Google Scholar 

  • J.N. Cuzzi, R.C. Hogan, W.F. Bottke, Towards initial mass functions for asteroids and Kuiper Belt Objects. Icarus 208, 518–538 (2010)

    Article  ADS  Google Scholar 

  • J.N. Cuzzi, R.C. Hogan, K. Shariff, Toward planetesimals: dense chondrule clumps in the protoplanetary nebula. Astrophys. J. 687, 1432–1447 (2008)

    Article  ADS  Google Scholar 

  • J.N. Cuzzi, R.C. Hogan, J.M. Paque, A.R. Dobrovolskis, Size-selective concentration of chondrules and other small particles in protoplanetary nebula turbulence. Astrophys. J. 546, 496–508 (2001)

    Article  ADS  Google Scholar 

  • B.J.R. Davidsson, P.J. Gutiérrez, Estimating the nucleus density of comet 19P/Borrelly. Icarus 168, 392–408 (2004)

    Article  ADS  Google Scholar 

  • B.J.R. Davidsson, P.J. Gutiérrez, Nucleus properties of comet 67P/Churyumov Gerasimenko estimated from non-gravitational force modeling. Icarus 176, 453–477 (2005)

    Article  ADS  Google Scholar 

  • B.J.R. Davidsson, P.J. Gutiérrez, Non-gravitational force modeling of comet 81P/Wild 2. I. A nucleus bulk density estimate. Icarus 180, 224–242 (2006)

    Article  ADS  Google Scholar 

  • B.J.R. Davidsson, P.J. Gutiérrez, H. Rickman, Nucleus properties of comet 9P/Tempel 1 estimated from non-gravitational force modeling. Icarus 187, 306–320 (2007)

    Article  ADS  Google Scholar 

  • B. Davidsson, H. Sierks, C. Güttler, F. Marzari, M. Pajola, H. Rickman, A.-T. Auger, M.R. El-Maarry, The primordial nucleus of comet 67P/Churyumov-Gerasimenko. Astron. Astrophys. (2015), submitted

  • M.B. Davies, F.C. Adams, P. Armitage, J. Chambers, E. Ford, A. Morbidelli, S.N. Raymond, D. Veras, The long-term dynamical evolution of planetary systems, ed. by H. Beuther, R.S. Klessen, C.P. Dullemond, T. Henning (Univ. Arizona Press, 2014), pp. 787–808

  • A.M. Davis, K.D. McKeegan, Short-lived radionuclides and early Solar System chronology, in Treatise on Geochemistry, 2nd edn., ed. by K.K. Turekian, H.D. Holland (Elsevier, Amsterdam, 2014), pp. 361–395

    Chapter  Google Scholar 

  • A.M. Davis, C.M.O. Alexander, F.J. Ciesla, M. Gounelle, A.N. Krot, M.I. Petaev, T. Stephan, Samples of the Solar System: recent developments, in Protostars and Planets VI, ed. by H. Beuther, R.S. Klessen, C.P. Dullemond, T. Henning (Univ. Arizona Press, Tucson, 2014), pp. 809–831

    Google Scholar 

  • R.I. Dawson, R. Murray-Clay, Neptune’s wild days: constraints from the eccentricity distribution of the classical Kuiper Belt. Astrophys. J. 750, 43 (2012)

    Article  ADS  Google Scholar 

  • R. Deienno, T. Yokoyama, E.C. Nogueira, N. Callegari, M.T. Santos, Effects of the planetary migration on some primordial satellites of the outer planets. I. Uranus’ case. Astron. Astrophys. 536, 57 (2011)

    Article  ADS  Google Scholar 

  • R. Deienno, D. Nesvorný, D. Vokrouhlický, T. Yokoyama, Orbital perturbations of the Galilean satellites during planetary encounters. Astron. J. 148, 25 (2014)

    Article  ADS  Google Scholar 

  • A. Delsanti, D. Jewitt, The Solar System beyond the planets, in Solar System Update, ed. by P. Blondel, J.W. Mason (Springer, Berlin, 2006), pp. 267–294

    Chapter  Google Scholar 

  • A.H. Delsemme, D.C. Miller, The continuum of comet Burnham (1960 II): the differentiation of a short period comet. Planet. Space Sci. 19, 1229–1257 (1971)

    Article  ADS  Google Scholar 

  • F.E. DeMeo, B. Carry, Solar System evolution from compositional mapping of the asteroid belt. Nature 505, 629–634 (2014)

    Article  ADS  Google Scholar 

  • F.E. DeMeo, R.P. Binzel, B. Carry, D. Polishook, N.A. Moskovitz, Unexpected D-type interlopers in the inner main belt. Icarus 229, 392–399 (2014)

    Article  ADS  Google Scholar 

  • R.P. Di Sisto, A. Brunini, The origin and distribution of the Centaur population. Icarus 190, 224–235 (2007)

    Article  ADS  Google Scholar 

  • R.P. Di Sisto, J.A. Fernández, A. Brunini, On the population, physical decay and orbital distribution of Jupiter family comets: numerical simulations. Icarus 203, 140–154 (2009)

    Article  ADS  Google Scholar 

  • L. Dones, P.R. Weissman, H.F. Levison, M.J. Duncan, Oort Cloud formation and dynamics, in Comets II, ed. by M.C. Festou, H.U. Keller, H.A. Weaver (Univ. Arizona Press, Tucson, 2004), pp. 153–174

    Google Scholar 

  • L. Dones, C.R. Chapman, W.B. McKinnon, H.J. Melosh, M.R. Kirchoff, G. Neukum, K.J. Zahnle, Icy satellites of Saturn: impact cratering and age determination, in Saturn from Cassini-Huygens, ed. by M.K. Dougherty, L.W. Esposito, S.M. Krimigis (2009), pp. 613–635

    Chapter  Google Scholar 

  • B. Donn, J. Rahe, Structure and origin of cometary nuclei, in IAU Colloq. 61: Comet Discoveries, Statistics, and Observational Selection, ed. by L.L. Wilkening (1982), pp. 203–226

    Google Scholar 

  • P.M. Doyle, K. Jogo, K. Nagashima, A.N. Krot, S. Wakita, F.J. Ciesla, I.D. Hutcheon, Early aqueous activity on the ordinary and carbonaceous chondrite parent bodies recorded by fayalite. Nat. Commun. 6, 7444 (2015)

    Article  ADS  Google Scholar 

  • R. Duffard, D. Lazzaro, S. Pinto, J. Carvano, C. Angeli, A. Alvarez-Candal, S. Fernández, New activity of Chiron: results from 5 years of photometric monitoring. Icarus 160, 44–51 (2002)

    Article  ADS  Google Scholar 

  • D. Dukes, M.R. Krumholz, Was the Sun born in a massive cluster? Astrophys. J. 754, 56 (2012)

    Article  ADS  Google Scholar 

  • M. Duncan, T. Quinn, S. Tremaine, The formation and extent of the Solar System comet cloud. Astron. J. 94, 1330–1338 (1987)

    Article  ADS  Google Scholar 

  • M.J. Duncan, H.F. Levison, A scattered comet disk and the origin of Jupiter family comets. Science 276, 1670–1672 (1997)

    Article  ADS  Google Scholar 

  • M.J. Duncan, H.F. Levison, S.M. Budd, The dynamical structure of the Kuiper Belt. Astron. J. 110, 3073–3081 (1995)

    Article  ADS  Google Scholar 

  • P.A. Dybczyński, Simulating observable comets. I. The effects of a single stellar passage through or near the Oort cometary cloud. Astron. Astrophys. 396, 283–292 (2002)

    Article  ADS  Google Scholar 

  • P.A. Dybczyński, M. Królikowska, Where do long-period comets come from? Moving through the Jupiter-Saturn barrier. Mon. Not. R. Astron. Soc. 416, 51–69 (2011)

    ADS  Google Scholar 

  • P.A. Dybczyński, M. Królikowska, Near-parabolic comets observed in 2006–2010—II. Their past and future motion under the influence of the Galaxy field and known nearby stars. Mon. Not. R. Astron. Soc. 448, 588–600 (2015)

    Article  ADS  Google Scholar 

  • P. Eberhardt, M. Reber, D. Krankowsky, R.R. Hodges, The D/H and 18O/16O ratios in water from comet P/Halley. Astron. Astrophys. 302, 301 (1995)

    ADS  Google Scholar 

  • S. Eggers, H.U. Keller, P. Kroupa, W.J. Markiewicz, Origin and dynamics of comets and star formation. Planet. Space Sci. 45, 1099–1104 (1997)

    Article  ADS  Google Scholar 

  • D.J. Eicher, Comets!: Visitors from Deep Space (Cambridge University Press, Cambridge, 2013)

    Book  Google Scholar 

  • J.L. Elliot, S.D. Kern, K.B. Clancy, A.A.S. Gulbis, R.L. Millis, M.W. Buie, L.H. Wasserman, E.I. Chiang, A.B. Jordan, D.E. Trilling, K.J. Meech, The Deep Ecliptic Survey: a search for Kuiper Belt Objects and Centaurs. II. Dynamical classification, the Kuiper Belt plane, and the core population. Astron. J. 129, 1117–1162 (2005)

    Article  ADS  Google Scholar 

  • V.V. Emel’yanenko, D.J. Asher, M.E. Bailey, A new class of trans-Neptunian objects in high-eccentricity orbits. Mon. Not. R. Astron. Soc. 338, 443–451 (2003)

    Article  ADS  Google Scholar 

  • V.V. Emel’yanenko, D.J. Asher, M.E. Bailey, Centaurs from the Oort Cloud and the origin of Jupiter-family comets. Mon. Not. R. Astron. Soc. 361, 1345–1351 (2005)

    Article  ADS  Google Scholar 

  • E. Everhart, Comet discoveries and observational selection. Astron. J. 72, 716–726 (1967a)

    Article  ADS  Google Scholar 

  • E. Everhart, Intrinsic distributions of cometary perihelia and magnitudes. Astron. J. 72, 1002–1011 (1967b)

    Article  ADS  Google Scholar 

  • E. Everhart, Change in total energy of comets passing through the Solar System. Astron. J. 73, 1039–1052 (1968)

    Article  ADS  Google Scholar 

  • E. Everhart, The origin of short-period comets. Astrophys. Lett. 10, 131–135 (1972)

    ADS  Google Scholar 

  • P. Farinella, D.R. Davis, Short-period comets: primordial bodies or collisional fragments? Science 273, 938–941 (1996)

    Article  ADS  Google Scholar 

  • F. Feng, C.A.L. Bailer-Jones, Finding the imprints of stellar encounters in long period comets. Mon. Not. R. Astron. Soc. 454(3), 3267–3276 (2015)

    Article  ADS  Google Scholar 

  • J.A. Fernández, On the existence of a comet belt beyond Neptune. Mon. Not. R. Astron. Soc. 192, 481–491 (1980)

    Article  ADS  Google Scholar 

  • J.A. Fernández, The formation of the Oort Cloud and the primitive galactic environment. Icarus 129, 106–119 (1997)

    Article  ADS  Google Scholar 

  • J.A. Fernández, A. Brunini, The buildup of a tightly bound comet cloud around an early Sun immersed in a dense galactic environment: numerical experiments. Icarus 145, 580–590 (2000)

    Article  ADS  Google Scholar 

  • J.A. Fernández, W.-H. Ip, Some dynamical aspects of the accretion of Uranus and Neptune—the exchange of orbital angular momentum with planetesimals. Icarus 58, 109–120 (1984)

    Article  ADS  Google Scholar 

  • J.A. Fernández, A. Sosa, Magnitude and size distribution of long-period comets in Earth-crossing or approaching orbits. Mon. Not. R. Astron. Soc. 423, 1674–1690 (2012)

    Article  ADS  Google Scholar 

  • J.A. Fernández, G. Tancredi, H. Rickman, J. Licandro, The population, magnitudes, and sizes of Jupiter family comets. Astron. Astrophys. 352, 327–340 (1999)

    ADS  Google Scholar 

  • J.A. Fernández, Comets: Nature, Dynamics, Origin, and Their Cosmogonical Relevance. Astrophysics and Space Science Library (Springer, Berlin, 2005)

    Book  Google Scholar 

  • Y.R. Fernández, D.C. Jewitt, S.S. Sheppard, Albedos of asteroids in comet-like orbits. Astron. J. 130, 308–318 (2005)

    Article  ADS  Google Scholar 

  • Y.R. Fernández, M.S. Kelley, P.L. Lamy, I. Toth, O. Groussin, C.M. Lisse, M.F. A’Hearn, J.M. Bauer, H. Campins, A. Fitzsimmons, et al., Thermal properties, sizes, and size distribution of Jupiter-family cometary nuclei. Icarus 226, 1138–1170 (2013)

    Article  ADS  Google Scholar 

  • M.C. Festou, H.U. Keller, H.A. Weaver (eds.), Comets II (Univ. Arizona Press, Tucson, 2004)

    Google Scholar 

  • M. Fischer-Gödde, H. Becker, What is the age of the Nectaris basin? New Re-Os constraints for a pre-4.0 Ga bombardment history of the Moon, in Lunar and Planetary Science Conference, vol. 42 (2011), p. 1414

    Google Scholar 

  • M. Fouchard, C. Froeschlé, J.J. Matese, G. Valsecchi, Comparison between different models of Galactic tidal effects on cometary orbits. Celest. Mech. Dyn. Astron. 93, 229–262 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • M. Fouchard, C. Froeschlé, J.J. Matese, G.B. Valsecchi, Erratum: Comparison between different models of Galactic tidal effects on cometary orbits. Celest. Mech. Dyn. Astron. 96, 341–344 (2006a)

    Article  ADS  MATH  Google Scholar 

  • M. Fouchard, C. Froeschlé, G. Valsecchi, H. Rickman, Long-term effects of the Galactic tide on cometary dynamics. Celest. Mech. Dyn. Astron. 95, 299–326 (2006b)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • M. Fouchard, C. Froeschlé, H. Rickman, G.B. Valsecchi, The key role of massive stars in Oort Cloud comet dynamics. Icarus 214, 334–347 (2011a)

    Article  ADS  Google Scholar 

  • M. Fouchard, H. Rickman, C. Froeschlé, G.B. Valsecchi, The last revolution of new comets: the role of stars and their detectability. Astron. Astrophys. 535, 86 (2011b)

    Article  ADS  Google Scholar 

  • M. Fouchard, H. Rickman, C. Froeschlé, G.B. Valsecchi, Planetary perturbations for Oort Cloud comets. I. Distributions and dynamics. Icarus 222, 20–31 (2013)

    Article  ADS  MATH  Google Scholar 

  • M. Fouchard, H. Rickman, C. Froeschlé, G.B. Valsecchi, Planetary perturbations for Oort Cloud comets: II. Implications for the origin of observable comets. Icarus 231, 110–121 (2014)

    Article  ADS  Google Scholar 

  • P.J. Francis, The demographics of long-period comets. Astrophys. J. 635, 1348–1361 (2005)

    Article  ADS  Google Scholar 

  • W.C. Fraser, The collisional divot in the Kuiper Belt size distribution. Astrophys. J. 706, 119–129 (2009)

    Article  ADS  Google Scholar 

  • W.C. Fraser, J.J. Kavelaars, The size distribution of Kuiper Belt Objects for \(D \gtrsim 10~\mbox{km}\). Astron. J. 137, 72–82 (2009)

    Article  ADS  Google Scholar 

  • W.C. Fraser, M.E. Brown, M.E. Schwamb, The luminosity function of the hot and cold Kuiper Belt populations. Icarus 210, 944–955 (2010)

    Article  ADS  Google Scholar 

  • W.C. Fraser, M.E. Brown, A. Morbidelli, A. Parker, K. Batygin, The absolute magnitude distribution of Kuiper Belt Objects. Astrophys. J. 782, 100 (2014)

    Article  ADS  Google Scholar 

  • C.I. Fuentes, M.J. Holman, A Subaru archival search for faint trans-Neptunian objects. Astron. J. 136, 83–97 (2008)

    Article  ADS  Google Scholar 

  • E.J. Gaidos, Paleodynamics: Solar System formation and the early environment of the Sun. Icarus 114, 258–268 (1995)

    Article  ADS  Google Scholar 

  • J. García-Sánchez, P.R. Weissman, R.A. Preston, D.L. Jones, J.-F. Lestrade, D.W. Latham, R.P. Stefanik, J.M. Paredes, Stellar encounters with the Solar System. Astron. Astrophys. 379, 634–659 (2001)

    Article  ADS  Google Scholar 

  • R. Genzel, F. Eisenhauer, S. Gillessen, The Galactic center massive black hole and nuclear star cluster. Rev. Mod. Phys. 82, 3121–3195 (2010)

    Article  ADS  Google Scholar 

  • A.M. Gilbert, P.A. Wiegert, Searching for main-belt comets using the Canada-France-Hawaii Telescope Legacy Survey. Icarus 201, 714–718 (2009)

    Article  ADS  Google Scholar 

  • A.M. Gilbert, P.A. Wiegert, Updated results of a search for main-belt comets using the Canada-France-Hawaii Telescope Legacy Survey. Icarus 210, 998–999 (2010)

    Article  ADS  Google Scholar 

  • B. Gladman, B.G. Marsden, C. Vanlaerhoven, Nomenclature in the outer Solar System, in The Solar System Beyond Neptune, ed. by M.A. Barucci, H. Boehnhardt, D.P. Cruikshank, A. Morbidelli, R. Dotson (Univ. Arizona Press, Tucson, 2008), pp. 43–57

    Google Scholar 

  • B. Gladman, J.J. Kavelaars, P.D. Nicholson, T.J. Loredo, J.A. Burns, Pencil-beam surveys for faint trans-Neptunian objects. Astron. J. 116, 2042–2054 (1998)

    Article  ADS  Google Scholar 

  • B. Gladman, J.J. Kavelaars, J.-M. Petit, A. Morbidelli, M.J. Holman, T. Loredo, The structure of the Kuiper Belt: size distribution and radial extent. Astron. J. 122, 1051–1066 (2001)

    Article  ADS  Google Scholar 

  • B. Gladman, M. Holman, T. Grav, J. Kavelaars, P. Nicholson, K. Aksnes, J.-M. Petit, Evidence for an extended scattered disk. Icarus 157, 269–279 (2002)

    Article  ADS  Google Scholar 

  • B. Gladman, J. Kavelaars, J.-M. Petit, M.L.N. Ashby, J. Parker, J. Coffey, R.L. Jones, P. Rousselot, O. Mousis, Discovery of the first retrograde transneptunian object. Astrophys. J. Lett. 697, 91–94 (2009)

    Article  ADS  Google Scholar 

  • B. Gladman, S.M. Lawler, J.-M. Petit, J. Kavelaars, R.L. Jones, J.W. Parker, C. Van Laerhoven, P. Nicholson, P. Rousselot, A. Bieryla, M.L.N. Ashby, The resonant trans-Neptunian populations. Astron. J. 144, 23 (2012)

    Article  ADS  Google Scholar 

  • P. Goldreich, S. Tremaine, Disk-satellite interactions. Astrophys. J. 241, 425–441 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  • P. Goldreich, W.R. Ward, The formation of planetesimals. Astrophys. J. 183, 1051–1062 (1973)

    Article  ADS  Google Scholar 

  • R.S. Gomes, The origin of the Kuiper Belt high-inclination population. Icarus 161, 404–418 (2003)

    Article  ADS  Google Scholar 

  • R.S. Gomes, A. Morbidelli, H.F. Levison, Planetary migration in a planetesimal disk: why did Neptune stop at 30 AU? Icarus 170, 492–507 (2004)

    Article  ADS  Google Scholar 

  • R.S. Gomes, E.C. Nogueira, R. Brasser, The fate of regular satellites during the Nice model’s planetary close encounters, in AAS/Division for Planetary Sciences Meeting Abstracts, vol. 44 (2012). 415.02

    Google Scholar 

  • R.S. Gomes, T. Gallardo, J.A. Fernández, A. Brunini, On the origin of the high-perihelion Scattered Disk: the role of the Kozai mechanism and mean motion resonances. Celest. Mech. Dyn. Astron. 91, 109–129 (2005a)

    Article  ADS  MATH  Google Scholar 

  • R. Gomes, H.F. Levison, K. Tsiganis, A. Morbidelli, Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets. Nature 435, 466–469 (2005b)

    Article  ADS  Google Scholar 

  • M. Gounelle, G. Meynet, Solar system genealogy revealed by extinct short-lived radionuclides in meteorites. Astron. Astrophys. 545, 4 (2012)

    Article  ADS  Google Scholar 

  • J.S. Greaves, M.C. Wyatt, W.S. Holland, W.R.F. Dent, The debris disc around \(\tau\) Ceti: a massive analogue to the Kuiper Belt. Mon. Not. R. Astron. Soc. 351, 54–58 (2004)

    Article  ADS  Google Scholar 

  • J.S. Greaves, W.S. Holland, M.C. Wyatt, W.R.F. Dent, E.I. Robson, I.M. Coulson, T. Jenness, G.H. Moriarty-Schieven, G.R. Davis, H.M. Butner, et al., Structure in the \(\epsilon\) Eridani debris disk. Astrophys. J. Lett. 619, 187–190 (2005)

    Article  ADS  Google Scholar 

  • J.M. Greenberg, Comet Halley—a carrier of interstellar dust chemical evolution. Adv. Space Res. 7, 33–44 (1987)

    Article  ADS  Google Scholar 

  • J.M. Greenberg, J.I. Hage, From interstellar dust to comets—a unification of observational constraints. Astrophys. J. 361, 260–274 (1990)

    Article  ADS  Google Scholar 

  • P. Gronkowski, M. Wesołowski, A model of cometary outbursts: a new simple approach to the classical question. Mon. Not. R. Astron. Soc. 451, 3068–3077 (2015)

    Article  ADS  Google Scholar 

  • O. Groussin, G. Hahn, P.L. Lamy, R. Gonczi, G.B. Valsecchi, The long-term evolution and initial size of comets 46P/Wirtanen and 67P/Churyumov-Gerasimenko. Mon. Not. R. Astron. Soc. 376, 1399–1406 (2007)

    Article  ADS  Google Scholar 

  • O. Groussin, L. Jorda, A.-T. Auger, E. Kührt, R. Gaskell, C. Capanna, F. Scholten, F. Preusker, P. Lamy, S. Hviid, et al., Gravitational slopes, geomorphology, and material strengths of the nucleus of comet 67P/Churyumov-Gerasimenko from OSIRIS observations. ArXiv e-prints 1509.02707 [astro-ph] (2015)

  • M.S. Gudipati, N. Abou Mrad, J. Blum, S.B. Charnley, T. Chiavassa, M.A. Cordiner, O. Mousis, G. Danger, F. Duvernay, B. Gundlach, et al., Laboratory studies towards understanding comets. Space Sci. Rev. (2015). doi:10.1007/s11214-015-0192-5

    Google Scholar 

  • A. Guilbert-Lepoutre, S. Besse, O. Mousis, M. Ali-Dib, S. Höfner, D. Koschny, P. Hager, On the evolution of comets. Space Sci. Rev. (2015). doi:10.1007/s11214-015-0148-9

    Google Scholar 

  • C. Güttler, J. Blum, A. Zsom, C.W. Ormel, C.P. Dullemond, The outcome of protoplanetary dust growth: pebbles, boulders, or planetesimals? I. Mapping the zoo of laboratory collision experiments. Astron. Astrophys. 513, 56 (2010)

    Article  Google Scholar 

  • M. Guzzo, E. Lega, A study of the past dynamics of comet 67P/Churyumov-Gerasimenko with fast Lyapunov indicators. Astron. Astrophys. 579, 79 (2015)

    Article  ADS  Google Scholar 

  • F. Habashi, Hevel, Johannes, in Biographical Encyclopedia of Astronomers, ed. by T. Hockey, V. Trimble, T.R. Williams, K. Bracher, R.A. Jarrell, J.D. Marché II, J. Palmeri, D.W.E. Green (2014) pp. 967–970

    Google Scholar 

  • G. Hahn, H. Rickman, Asteroids in cometary orbits. Icarus 61, 417–442 (1985)

    Article  ADS  Google Scholar 

  • J.M. Hahn, R. Malhotra, Orbital evolution of planets embedded in a planetesimal disk. Astron. J. 117, 3041–3053 (1999)

    Article  ADS  Google Scholar 

  • J.M. Hahn, R. Malhotra, Neptune’s migration into a stirred-up Kuiper Belt: a detailed comparison of simulations to observations. Astron. J. 130, 2392–2414 (2005)

    Article  ADS  Google Scholar 

  • A. Halle, P. Di Matteo, M. Haywood, F. Combes, Quantifying stellar radial migration in an N-body simulation: blurring, churning, and the outer regions of galaxy discs. Astron. Astrophys. 578, 58 (2015)

    Article  ADS  Google Scholar 

  • D.P. Hamilton, W.R. Ward, Tilting Saturn. II. Numerical model. Astron. J. 128, 2510–2517 (2004)

    Article  ADS  Google Scholar 

  • M.S. Hanner, A comparison of the dust properties in recent periodic comets. Adv. Space Res. 4, 189–196 (1984)

    Article  ADS  Google Scholar 

  • B.M.S. Hansen, Formation of the terrestrial planets from a narrow annulus. Astrophys. J. 703, 1131–1140 (2009)

    Article  ADS  Google Scholar 

  • J.K. Harmon, M.C. Nolan, S.J. Ostro, D.B. Campbell, Radar studies of comet nuclei and grain comae, in Comets II, ed. by M.C. Festou, H.U. Keller, H.A. Weaver (Univ. Arizona Press, Tucson, 2004), pp. 265–279

    Google Scholar 

  • W.K. Hartmann, Lunar ‘cataclysm’—a misconception. Icarus 24, 181–187 (1975)

    Article  ADS  Google Scholar 

  • W.K. Hartmann, Megaregolith evolution and cratering cataclysm models—lunar cataclysm as a misconception (28 years later). Meteorit. Planet. Sci. 38, 579–593 (2003)

    Article  ADS  Google Scholar 

  • W.K. Hartmann, History of the terminal cataclysm concept: a cataclysm that never happened? in AAS/Division for Planetary Sciences Meeting Abstracts, vol. 46 (2014). 106.03

    Google Scholar 

  • W.K. Hartmann, D.J. Tholen, D.P. Cruikshank, The relationship of active comets, “extinct” comets, and dark asteroids. Icarus 69, 33–50 (1987)

    Article  ADS  Google Scholar 

  • W.K. Hartmann, G. Ryder, L. Dones, D. Grinspoon, The time-dependent intense bombardment of the primordial Earth/Moon system, in Origin of the Earth and Moon, ed. by R.M. Canup, K. Righter (Univ. Arizona Press, Tucson, 2000), pp. 493–512

    Google Scholar 

  • P. Hartogh, D.C. Lis, D. Bockelée-Morvan, M. de Val-Borro, N. Biver, M. Küppers, M. Emprechtinger, E.A. Bergin, J. Crovisier, M. Rengel, et al., Ocean-like water in the Jupiter-family comet 103P/Hartley 2. Nature 478, 218–220 (2011)

    Article  ADS  Google Scholar 

  • I. Hasegawa, S. Nakano, Orbit of periodic comet 153P/Ikeya-Zhang. Mon. Not. R. Astron. Soc. 345, 883–888 (2003)

    Article  ADS  Google Scholar 

  • L.A. Haskin, The Imbrium impact event and the thorium distribution at the lunar highlands surface. J. Geophys. Res. 103, 1679–1689 (1998)

    Article  ADS  Google Scholar 

  • L.A. Haskin, R.L. Korotev, K.M. Rockow, B.L. Jolliff, The case for an Imbrium origin of the Apollo Th-rich impact-melt breccias. Meteorit. Planet. Sci. 33, 959–975 (1998)

    Article  ADS  Google Scholar 

  • C. Hayashi, Structure of the solar nebula, growth and decay of magnetic fields and effects of magnetic and turbulent viscosities on the nebula. Prog. Theor. Phys. Suppl. 70, 35–53 (1981)

    Article  ADS  Google Scholar 

  • M.R. Hayden, J. Bovy, J.A. Holtzman, D.L. Nidever, J.C. Bird, D.H. Weinberg, B.H. Andrews, S.R. Majewski, C. Allende Prieto, F. Anders, et al., Chemical cartography with APOGEE: metallicity distribution functions and the chemical structure of the Milky Way disk. Astrophys. J. 808, 132 (2015)

    Article  ADS  Google Scholar 

  • T. Heidarzadeh, A History of Physical Theories of Comets, from Aristotle to Whipple (Springer, Berlin, 2008)

    Book  Google Scholar 

  • J. Heisler, Monte Carlo simulations of the Oort comet cloud. Icarus 88, 104–121 (1990)

    Article  ADS  Google Scholar 

  • J. Heisler, S. Tremaine, The influence of the galactic tidal field on the Oort comet cloud. Icarus 65, 13–26 (1986)

    Article  ADS  Google Scholar 

  • J. Heisler, S. Tremaine, C. Alcock, The frequency and intensity of comet showers from the Oort Cloud. Icarus 70, 269–288 (1987)

    Article  ADS  Google Scholar 

  • A. Higuchi, E. Kokubo, Effect of stellar encounters on comet cloud formation. Astron. J. 150, 26 (2015)

    Article  ADS  Google Scholar 

  • A. Higuchi, E. Kokubo, H. Kinoshita, T. Mukai, Orbital evolution of planetesimals due to the galactic tide: formation of the comet cloud. Astron. J. 134, 1693–1706 (2007)

    Article  ADS  Google Scholar 

  • L.A. Hillenbrand, J.M. Carpenter, J.S. Kim, M.R. Meyer, D.E. Backman, A. Moro-Martín, D.J. Hollenbach, D.C. Hines, I. Pascucci, J. Bouwman, The complete census of 70 μm-bright debris disks within “The Formation and Evolution of Planetary Systems” Spitzer Legacy Survey of Sun-like stars. Astrophys. J. 677, 630–656 (2008)

    Article  ADS  Google Scholar 

  • J.G. Hills, Comet showers and the steady-state infall of comets from the Oort cloud. Astron. J. 86, 1730–1740 (1981)

    Article  ADS  Google Scholar 

  • J.R. Hind, The Comets: A Descriptive Treatise upon Those Bodies with a Condensed Account of the Numerous Modern Discoveries Respecting Them, and a Table of All the Calculated Comets, from the Earliest Ages to the Present Time (John W. Parker and Son, London, 1852)

    Google Scholar 

  • M. Hirabayashi, D.J. Scheeres, D.P. Sánchez, T. Gabriel, Constraints on the physical properties of main belt comet P/2013 R3 from its breakup event. Astrophys. J. Lett. 789, 12 (2014)

    Article  ADS  Google Scholar 

  • P.-Y. Ho, Ancient and medieval observations of comets and novae in Chinese sources. Vistas Astron. 5, 127–225 (1962)

    Article  ADS  Google Scholar 

  • R.C. Hogan, J.N. Cuzzi, Cascade model for particle concentration and enstrophy in fully developed turbulence with mass-loading feedback. Phys. Rev. E 75(5), 056305 (2007)

    Article  ADS  Google Scholar 

  • M.D. Hopkins, S.J. Mojzsis, A protracted timeline for lunar bombardment from mineral chemistry, Ti thermometry and U-Pb geochronology of Apollo 14 melt breccia zircons. Contrib. Mineral. Petrol. 169, 30 (2015)

    Article  ADS  Google Scholar 

  • P.F. Hopkins, Jumping the gap: the formation conditions and mass function of pebble-pile planetesimals. ArXiv e-prints 1401.2458 [astro-ph] (2014)

  • J. Horner, N.W. Evans, Biases in cometary catalogues and Planet X. Mon. Not. R. Astron. Soc. 335, 641–654 (2002)

    Article  ADS  Google Scholar 

  • A.W. Howard, Observed properties of extrasolar planets. Science 340, 572–576 (2013)

    Article  ADS  Google Scholar 

  • H.H. Hsieh, The Hawaii trails project: comet-hunting in the main asteroid belt. Astron. Astrophys. 505, 1297–1310 (2009)

    Article  ADS  Google Scholar 

  • H.H. Hsieh, D.C. Jewitt, Y.R. Fernández, The strange case of 133P/Elst-Pizarro: a comet among the asteroids. Astron. J. 127, 2997–3017 (2004)

    Article  ADS  Google Scholar 

  • H.H. Hsieh, K.J. Meech, J. Pittichová, Main-belt comet 238P/Read revisited. Astrophys. J. Lett. 736, 18 (2011)

    Article  ADS  Google Scholar 

  • H.H. Hsieh, D. Jewitt, P. Lacerda, S.C. Lowry, C. Snodgrass, The return of activity in main-belt comet 133P/Elst-Pizarro. Mon. Not. R. Astron. Soc. 403, 363–377 (2010)

    Article  ADS  Google Scholar 

  • H.H. Hsieh, L. Denneau, R.J. Wainscoat, N. Schörghofer, B. Bolin, A. Fitzsimmons, R. Jedicke, J. Kleyna, M. Micheli, P. Vereš, et al., The main-belt comets: the Pan-STARRS1 perspective. Icarus 248, 289–312 (2015)

    Article  ADS  Google Scholar 

  • W.F. Hübner, Über die Gasproduktion der Kometen. Z. Astrophys. 63, 22 (1965)

    ADS  Google Scholar 

  • D.W. Hughes, Cometary magnitude distribution and the ratio between the numbers of long- and short-period comets. Icarus 73, 149–162 (1988)

    Article  ADS  Google Scholar 

  • D.W. Hughes, The magnitude distribution, perihelion distribution and flux of long-period comets. Mon. Not. R. Astron. Soc. 326, 515–523 (2001)

    Article  ADS  Google Scholar 

  • J.R. Hurley, O.R. Pols, S.J. Aarseth, C.A. Tout, A complete N-body model of the old open cluster M67. Mon. Not. R. Astron. Soc. 363, 293–314 (2005)

    Article  ADS  Google Scholar 

  • D.M. Hurwitz, D.A. Kring, Differentiation of the South Pole-Aitken basin impact melt sheet: implications for lunar exploration. J. Geophys. Res., Planets 119, 1110–1133 (2014)

    Article  ADS  Google Scholar 

  • B.A. Ivanov, G. Neukum, W.F. Bottke, W.K. Hartmann, The comparison of size-frequency distributions of impact craters and asteroids and the planetary cratering rate, in Asteroids III, ed. by W.F.J. Bottke, A. Cellino, P. Paolicchi, R.P. Binzel (Univ. Arizona Press, Tucson, 2002), pp. 89–101

    Google Scholar 

  • A. Izidoro, N. Haghighipour, O.C. Winter, M. Tsuchida, Terrestrial planet formation in a protoplanetary disk with a local mass depletion: a successful scenario for the formation of Mars. Astrophys. J. 782, 31 (2014)

    Article  ADS  Google Scholar 

  • A. Izidoro, S.N. Raymond, A. Morbidelli, O.C. Winter, Terrestrial planet formation constrained by Mars and the structure of the asteroid belt. Mon. Not. R. Astron. Soc. 453, 3619–3634 (2015)

    Article  ADS  Google Scholar 

  • S.A. Jacobson, K.J. Walsh, Earth and terrestrial planet formation. ArXiv e-prints 1502.03852 [astro-ph] (2015)

  • J.H. Jeans, The origin of binary systems. Mon. Not. R. Astron. Soc. 79, 408–416 (1919)

    Article  ADS  Google Scholar 

  • D. Jewitt, From comets to asteroids: when hairy stars go bald. Earth Moon Planets 72, 185–201 (1996)

    Article  ADS  Google Scholar 

  • D. Jewitt, The active asteroids. Astron. J. 143, 66 (2012)

    Article  ADS  Google Scholar 

  • D. Jewitt, Properties of near-Sun asteroids. Astron. J. 145, 133 (2013)

    Article  ADS  Google Scholar 

  • D. Jewitt, Color systematics of comets and related bodies. ArXiv e-prints 1510.07069 [astro-ph] (2015)

  • D. Jewitt, J. Li, Activity in Geminid parent (3200) Phaethon. Astron. J. 140, 1519–1527 (2010)

    Article  ADS  Google Scholar 

  • D. Jewitt, J. Luu, Discovery of the candidate Kuiper Belt Object 1992 \(\mbox{QB}_{1}\). Nature 362, 730–732 (1993)

    Article  ADS  Google Scholar 

  • D. Jewitt, H. Hsieh, J. Agarwal, The active asteroids, in Asteroids IV, ed. by P. Michel, F. DeMeo, W. Bottke, (2015). ArXiv e-prints 1502.02361 [astro-ph]

    Google Scholar 

  • D. Jewitt, J. Luu, C. Trujillo, Large Kuiper Belt Objects: the Mauna Kea 8K CCD survey. Astron. J. 115, 2125–2135 (1998)

    Article  ADS  Google Scholar 

  • D.C. Jewitt, From Kuiper Belt Object to cometary nucleus: the missing ultrared matter. Astron. J. 123, 1039–1049 (2002)

    Article  ADS  Google Scholar 

  • D. Jewitt, H. Weaver, J. Agarwal, M. Mutchler, M. Drahus, A recent disruption of the main-belt asteroid P/2010 A2. Nature 467, 817–819 (2010)

    Article  ADS  Google Scholar 

  • D. Jewitt, H. Weaver, M. Mutchler, S. Larson, J. Agarwal, Hubble Space Telescope observations of main-belt comet (596) Scheila. Astrophys. J. Lett. 733, 4 (2011)

    Article  ADS  Google Scholar 

  • D. Jewitt, J. Agarwal, J. Li, H. Weaver, M. Mutchler, S. Larson, Disintegrating asteroid P/2013 R3. Astrophys. J. Lett. 784, 8 (2014)

    Article  ADS  Google Scholar 

  • D. Jewitt, J. Li, J. Agarwal, H. Weaver, M. Mutchler, S. Larson, Nucleus and mass loss from active asteroid 313P/Gibbs. Astron. J. 150, 76 (2015)

    Article  ADS  Google Scholar 

  • A. Johansen, H. Klahr, Planetesimal formation through streaming and gravitational instabilities. Earth Moon Planets 108, 39–43 (2011)

    Article  ADS  Google Scholar 

  • A. Johansen, A.N. Youdin, Y. Lithwick, Adding particle collisions to the formation of asteroids and Kuiper belt objects via streaming instabilities. Astron. Astrophys. 537, 125 (2012)

    Article  ADS  Google Scholar 

  • A. Johansen, J.S. Oishi, M.-M. Mac Low, H. Klahr, T. Henning, A. Youdin, Rapid planetesimal formation in turbulent circumstellar disks. Nature 448, 1022–1025 (2007)

    Article  ADS  Google Scholar 

  • A. Johansen, J. Blum, H. Tanaka, C. Ormel, M. Bizzarro, H. Rickman, The multifaceted planetesimal formation process, in Protostars and Planets VI, ed. by H. Beuther, R.S. Klessen, C.P. Dullemond, T. Henning (Univ. Arizona Press, Tucson, 2014), pp. 547–570

    Google Scholar 

  • A. Johansen, M.-M. Mac Low, P. Lacerda, M. Bizzarro, Growth of asteroids, planetary embryos, and Kuiper Belt Objects by chondrule accretion. Sci. Adv. 1, 15109 (2015a)

    Article  ADS  Google Scholar 

  • A. Johansen, E. Jacquet, J.N. Cuzzi, A. Morbidelli, M. Gounelle, New paradigms for asteroid formation, in Asteroids IV, ed. by P. Michel, F. DeMeo, W. Bottke (2015b). ArXiv e-prints 1505.02941 [astro-ph]

    Google Scholar 

  • L. Jones, M. Brown, Solar System science with the Large Synoptic Survey Telescope, in AAS/Division for Planetary Sciences Meeting Abstracts, vol. 47 (2015). 312.22

    Google Scholar 

  • L. Jorda, R. Gaskell, C. Capanna, S. Hviid, P. Lamy, G. Faury, O. Groussin, P. Gutiérrez, C. Jackman, H.U. Keller, et al., The global shape and density of comet 67P/Churyumov-Gerasimenko from pre-perihelion Rosetta/OSIRIS observations. Icarus (2015), in preparation

  • Y.C. Joshi, Displacement of the Sun from the Galactic plane. Mon. Not. R. Astron. Soc. 378, 768–776 (2007)

    Article  ADS  Google Scholar 

  • P.C. Joss, On the origin of short-period comets. Astron. Astrophys. 25, 271–273 (1973)

    ADS  Google Scholar 

  • M. Jura, An upper bound to the space density of interstellar comets. Astron. J. 141, 155 (2011)

    Article  ADS  Google Scholar 

  • M. Jutzi, E. Asphaug, The shape and structure of cometary nuclei as a result of low-velocity accretion. Science 348, 1355–1358 (2015)

    Article  ADS  Google Scholar 

  • N.A. Kaib, J.E. Chambers, The fragility of the terrestrial planets during a giant planet instability. ArXiv e-prints 1510.08448 [astro-ph] (2015)

  • N.A. Kaib, N.B. Cowan, The feeding zones of terrestrial planets and insights into Moon formation. Icarus 252, 161–174 (2015)

    Article  ADS  Google Scholar 

  • N.A. Kaib, T. Quinn, The formation of the Oort Cloud in open cluster environments. Icarus 197, 221–238 (2008)

    Article  ADS  Google Scholar 

  • N.A. Kaib, T. Quinn, Reassessing the source of long-period comets. Science 325, 1234–1236 (2009)

    Article  ADS  Google Scholar 

  • N.A. Kaib, R. Roškar, T. Quinn, Sedna and the Oort Cloud around a migrating Sun. Icarus 215, 491–507 (2011)

    Article  ADS  Google Scholar 

  • P. Kalas, J.R. Graham, M.P. Fitzgerald, M. Clampin, STIS coronagraphic imaging of Fomalhaut: main belt structure and the orbit of Fomalhaut b. Astrophys. J. 775, 56 (2013)

    Article  ADS  Google Scholar 

  • J. Kavelaars, L. Jones, B. Gladman, J.W. Parker, J.-M. Petit, The orbital and spatial distribution of the Kuiper Belt, in The Solar System Beyond Neptune, ed. by M.A. Barucci, H. Boehnhardt, D.P. Cruikshank, A. Morbidelli, R. Dotson (Univ. Arizona Press, Tucson, 2008), pp. 59–69

    Google Scholar 

  • H.U. Keller, Comets: dirty snowballs or icy dirtballs, in Physics and Mechanics of Cometary Materials, ed. by J.J. Hunt, T.D. Guyenne. ESA Special Publication, vol. 302 (1989), pp. 39–45

    Google Scholar 

  • H.U. Keller, C. Arpigny, C. Barbieri, R.M. Bonnet, S. Cazes, M. Coradini, C.B. Cosmovici, W.A. Delamere, W.F. Huebner, D.W. Hughes, et al., First Halley multicolour camera imaging results from Giotto. Nature 321, 320–326 (1986)

    Article  ADS  Google Scholar 

  • M.S.P. Kelley, C.E. Woodward, D. Bodewits, T.L. Farnham, M.S. Gudipati, D.E. Harker, D.C. Hines, M.M. Knight, L. Kolokolova, A. Li, I. de Pater, S. Protopapa, R.W. Russell, M.L. Sitko, D.H. Wooden, Cometary science with the James Webb Space Telescope. ArXiv e-prints 1510.05878 [astro-ph] (2015a)

  • M.S.P. Kelley, D.J. Lindler, D. Bodewits, M.F. A’Hearn, C.M. Lisse, L. Kolokolova, J. Kissel, B. Hermalyn, Erratum to “a distribution of large particles in the coma of comet 103P/Hartley 2” [Icarus 222 (2013) 634–652]. Icarus 262, 187–189 (2015b)

    Article  ADS  Google Scholar 

  • M.S. Kelley, D.J. Lindler, D. Bodewits, M.F. A’Hearn, C.M. Lisse, L. Kolokolova, J. Kissel, B. Hermalyn, A distribution of large particles in the coma of comet 103P/Hartley 2. Icarus 222, 634–652 (2013)

    Article  ADS  Google Scholar 

  • G.M. Kennedy, M.C. Wyatt, Do two-temperature debris discs have multiple belts? Mon. Not. R. Astron. Soc. 444, 3164–3182 (2014)

    Article  ADS  Google Scholar 

  • S.J. Kenyon, B.C. Bromley, Prospects for detection of catastrophic collisions in debris disks. Astron. J. 130, 269–279 (2005)

    Article  ADS  Google Scholar 

  • S.J. Kenyon, J.X. Luu, Accretion in the early Kuiper Belt. I. Coagulation and velocity evolution. Astron. J. 115, 2136–2160 (1998)

    Article  ADS  Google Scholar 

  • S.J. Kenyon, J.X. Luu, Accretion in the early outer Solar System. Astrophys. J. 526, 465–470 (1999)

    Article  ADS  Google Scholar 

  • F. Kiefer, A. Lecavelier des Etangs, J. Boissier, A. Vidal-Madjar, H. Beust, A.-M. Lagrange, G. Hébrard, R. Ferlet, Two families of exocomets in the \(\beta\) Pictoris system. Nature 514, 462–464 (2014)

    Article  ADS  Google Scholar 

  • Y. Kim, M. Ishiguro, F. Usui, Physical properties of asteroids in comet-like orbits in infrared asteroid survey catalogs. Astrophys. J. 789, 151 (2014)

    Article  ADS  Google Scholar 

  • D.R. Kirsh, M. Duncan, R. Brasser, H.F. Levison, Simulations of planet migration driven by planetesimal scattering. Icarus 199, 197–209 (2009)

    Article  ADS  Google Scholar 

  • J. Kissel, D.E. Brownlee, K. Buchler, B.C. Clark, H. Fechtig, E. Grün, K. Hornung, E.B. Igenbergs, E.K. Jessberger, F.R. Krueger, et al., Composition of comet Halley dust particles from Giotto observations. Nature 321, 336–337 (1986)

    Article  ADS  Google Scholar 

  • M.M. Knight, M.F. A’Hearn, D.A. Biesecker, G. Faury, D.P. Hamilton, P. Lamy, A. Llebaria, Photometric study of the Kreutz comets observed by SOHO from 1996 to 2005. Astron. J. 139, 926–949 (2010)

    Article  ADS  Google Scholar 

  • C. Koeberl, The Late Heavy Bombardment in the inner Solar System: is there any connection to Kuiper Belt Objects? Earth Moon Planets 92, 79–87 (2003)

    Article  ADS  Google Scholar 

  • W. Kofman, A. Herique, Y. Barbin, J.-P. Barriot, V. Ciarletti, S. Clifford, P. Edenhofer, C. Elachi, C. Eyraud, J.-P. Goutail, et al., Properties of the 67P/Churyumov-Gerasimenko interior revealed by CONSERT radar. Science 349(2), 020639 (2015)

    ADS  Google Scholar 

  • E. Kokubo, S. Ida, Oligarchic growth of protoplanets. Icarus 131, 171–178 (1998)

    Article  ADS  Google Scholar 

  • M.B.N. Kouwenhoven, S.P. Goodwin, R.J. Parker, M.B. Davies, D. Malmberg, P. Kroupa, The formation of very wide binaries during the star cluster dissolution phase. Mon. Not. R. Astron. Soc. 404, 1835–1848 (2010)

    ADS  Google Scholar 

  • L. Kresák, Dynamics, interrelations and evolution of the systems of asteroids and comets. Moon Planets 22, 83–98 (1980)

    Article  ADS  Google Scholar 

  • L. Kresák, Comet discoveries, statistics, and observational selection, in Comets, ed. by L.L. Wilkening (Univ. Arizona Press, Tucson, 1982), pp. 56–82

    Google Scholar 

  • L. Kresák, Dormant phases in the aging of periodic comets. Astron. Astrophys. 187, 906–908 (1987)

    ADS  Google Scholar 

  • L. Kresák, M. Kresáková, The absolute magnitudes of periodic comets. I—catalogue. Bull. Astron. Inst. Czechoslov. 40, 269–284 (1989)

    ADS  Google Scholar 

  • K.A. Kretke, H.F. Levison, Challenges in forming the Solar System’s giant planet cores via pebble accretion. Astron. J. 148, 109 (2014)

    Article  ADS  Google Scholar 

  • K.A. Kretke, H.F. Levison, Evidence for pebbles in comets. Icarus 262, 9–13 (2015)

    Article  ADS  Google Scholar 

  • D.A. Kring, B.A. Cohen, Cataclysmic bombardment throughout the inner solar system 3.9–4.0 Ga. J. Geophys. Res., Planets 107, 5009 (2002)

    Article  ADS  Google Scholar 

  • M. Królikowska, A study of the original orbits of “hyperbolic” comets. Astron. Astrophys. 376, 316–324 (2001)

    Article  ADS  Google Scholar 

  • M. Królikowska, 67P/Churyumov-Gerasimenko—potential target for the Rosetta mission. Acta Astron. 53, 195–209 (2003)

    ADS  Google Scholar 

  • M. Królikowska, Non-gravitational effects in long-period comets and the size of the Oort Cloud. Acta Astron. 56, 385–412 (2006)

    ADS  Google Scholar 

  • M. Królikowska, Warsaw catalogue of cometary orbits: 119 near-parabolic comets. Astron. Astrophys. 567, 126 (2014)

    Article  ADS  Google Scholar 

  • M. Królikowska, P.A. Dybczyński, Where do long-period comets come from? 26 comets from the non-gravitational Oort spike. Mon. Not. R. Astron. Soc. 404, 1886–1902 (2010)

    ADS  Google Scholar 

  • M. Królikowska, S. Szutowicz, Non-gravitational motion of the Jupiter-family comet 81P/Wild 2. I. The dynamical evolution. Astron. Astrophys. 448, 401–409 (2006)

    Article  ADS  Google Scholar 

  • M. Królikowska, G. Sitarski, E.M. Pittich, S. Szutowicz, K. Ziołkowski, H. Rickman, R. Gabryszewski, B. Rickman, New catalogue of one-apparition comets discovered in the years 1901–1950. I. Comets from the Oort spike. Astron. Astrophys. 571, 63 (2014)

    Article  ADS  Google Scholar 

  • G.W. Kronk, Cometography: A Catalog of Comets, vol. 1: Ancient–1799 (Cambridge University Press, Cambridge, 1999)

    Google Scholar 

  • G.W. Kronk, Cometography: A Catalog of Comets, vol. 2: 1800–1899 (Cambridge University Press, Cambridge, 2003)

    Google Scholar 

  • G.W. Kronk, Cometography: A Catalog of Comets, vol. 3, 1900–1932, vol. 3 (Cambridge University Press, Cambridge, 2007)

    Google Scholar 

  • G.W. Kronk, Cometography: A Catalog of Comets, vol. 4, 1933–1959, vol. 4 (Cambridge University Press, Cambridge, 2009)

    Google Scholar 

  • G.W. Kronk, M. Meyer, Cometography: A Catalog of Comets, vol. 5, 1960–1982, vol. 5 (Cambridge University Press, Cambridge, 2010)

    Google Scholar 

  • M.R. Krumholz, M.R. Bate, H.G. Arce, J.E. Dale, R. Gutermuth, R.I. Klein, Z.-Y. Li, F. Nakamura, Q. Zhang, Star cluster formation and feedback, in Protostars and Planets VI, ed. by H. Beuther, R.S. Klessen, C.P. Dullemond, T. Henning (Univ. Arizona Press, Tucson, 2014), pp. 243–266

    Google Scholar 

  • E. Kuehrt, H.U. Keller, The formation of cometary surface crusts. Icarus 109, 121–132 (1994)

    Article  ADS  Google Scholar 

  • G. Kuiper, On the origin of the Solar System, in Astrophysics: A Topical Symposium, ed. by J.A. Hynek (McGraw–Hill, New York, 1951), pp. 357–424

    Google Scholar 

  • M. Küppers, L. O’Rourke, D. Bockelée-Morvan, V. Zakharov, S. Lee, P. von Allmen, B. Carry, D. Teyssier, A. Marston, T. Müller, et al., Localized sources of water vapour on the dwarf planet (1) Ceres. Nature 505, 525–527 (2014)

    Article  ADS  Google Scholar 

  • C.J. Lada, The physics and modes of star cluster formation: observations. Philos. Trans. R. Soc. Lond. A 368, 713–731 (2010)

    Article  ADS  Google Scholar 

  • C.J. Lada, E.A. Lada, Embedded clusters in molecular clouds. Annu. Rev. Astron. Astrophys. 41, 57–115 (2003)

    Article  ADS  Google Scholar 

  • G. Laibe, J.-F. Gonzalez, S.T. Maddison, Revisiting the “radial-drift barrier” of planet formation and its relevance in observed protoplanetary discs. Astron. Astrophys. 537, 61 (2012)

    Article  ADS  Google Scholar 

  • M. Lambrechts, A. Johansen, Rapid growth of gas-giant cores by pebble accretion. Astron. Astrophys. 544, 32 (2012)

    Article  ADS  Google Scholar 

  • M. Lambrechts, A. Johansen, Forming the cores of giant planets from the radial pebble flux in protoplanetary discs. Astron. Astrophys. 572, 107 (2014)

    Article  ADS  Google Scholar 

  • H.J.G.L.M. Lamers, M. Gieles, N. Bastian, H. Baumgardt, N.V. Kharchenko, S. Portegies Zwart, An analytical description of the disruption of star clusters in tidal fields with an application to Galactic open clusters. Astron. Astrophys. 441, 117–129 (2005)

    Article  ADS  Google Scholar 

  • P.L. Lamy, A. Herique, I. Toth, The subsurface structure and density of cometary nuclei. Space Sci. Rev. (2015). doi:10.1007/s11214-015-0160-0

    Google Scholar 

  • P.L. Lamy, I. Toth, Y.R. Fernandez, H.A. Weaver, The sizes, shapes, albedos, and colors of cometary nuclei, in Comets II, ed. by M.C. Festou, H.U. Keller, H.A. Weaver (Univ. Arizona Press, Tucson, 2004), pp. 223–264

    Google Scholar 

  • D. Lardner, On the classification of comets and the distribution of their orbits in space. Mon. Not. R. Astron. Soc. 13, 188 (1853)

    Article  ADS  Google Scholar 

  • J. Laskar, Large scale chaos and the spacing of the inner planets. Astron. Astrophys. 317, 75–78 (1997)

    ADS  Google Scholar 

  • J. Laskar, M. Gastineau, Existence of collisional trajectories of Mercury, Mars and Venus with the Earth. Nature 459, 817–819 (2009)

    Article  ADS  Google Scholar 

  • G. Laughlin, J.J. Lissauer, Exoplanetary geophysics—an emerging discipline. ArXiv e-prints 1501.05685 [astro-ph] (2015)

  • S.M. Lawler, C.A. Beichman, G. Bryden, D.R. Ciardi, A.M. Tanner, K.Y.L. Su, K.R. Stapelfeldt, C.M. Lisse, D.E. Harker, Explorations beyond the snow line: Spitzer/IRS spectra of debris disks around solar-type stars. Astrophys. J. 705, 89–111 (2009)

    Article  ADS  Google Scholar 

  • Z.M. Leinhardt, S.T. Stewart, Full numerical simulations of catastrophic small body collisions. Icarus 199, 542–559 (2009)

    Article  ADS  Google Scholar 

  • H.F. Levison, Comet taxonomy, in Completing the Inventory of the Solar System, ed. by T. Rettig, J.M. Hahn. Astronomical Society of the Pacific Conference Series, vol. 107 (1996), pp. 173–191

    Google Scholar 

  • H.F. Levison, M.J. Duncan, From the Kuiper Belt to Jupiter-family comets: the spatial distribution of ecliptic comets. Icarus 127, 13–32 (1997)

    Article  ADS  Google Scholar 

  • H.F. Levison, A. Morbidelli, The formation of the Kuiper Belt by the outward transport of bodies during Neptune’s migration. Nature 426, 419–421 (2003)

    Article  ADS  Google Scholar 

  • H.F. Levison, S.A. Stern, On the size dependence of the inclination distribution of the main Kuiper Belt. Astron. J. 121, 1730–1735 (2001)

    Article  ADS  Google Scholar 

  • H.F. Levison, G.R. Stewart, Remarks on modeling the formation of Uranus and Neptune. Icarus 153, 224–228 (2001)

    Article  ADS  Google Scholar 

  • H.F. Levison, L. Dones, M.J. Duncan, The origin of Halley-type comets: probing the inner Oort Cloud. Astron. J. 121, 2253–2267 (2001)

    Article  ADS  Google Scholar 

  • H.F. Levison, K.A. Kretke, M.J. Duncan, Growing the gas-giant planets by the gradual accumulation of pebbles. Nature 524, 322–324 (2015)

    Article  ADS  Google Scholar 

  • H.F. Levison, J.J. Lissauer, M.J. Duncan, Modeling the diversity of outer planetary systems. Astron. J. 116, 1998–2014 (1998)

    Article  ADS  Google Scholar 

  • H.F. Levison, E. Thommes, M.J. Duncan, Modeling the formation of giant planet cores. I. Evaluating key processes. Astron. J. 139, 1297–1314 (2010)

    Article  ADS  Google Scholar 

  • H.F. Levison, L. Dones, C.R. Chapman, S.A. Stern, M.J. Duncan, K. Zahnle, Could the lunar “Late Heavy Bombardment” have been triggered by the formation of Uranus and Neptune? Icarus 151, 286–306 (2001)

    Article  ADS  Google Scholar 

  • H.F. Levison, D. Terrell, P.A. Wiegert, L. Dones, M.J. Duncan, On the origin of the unusual orbit of comet 2P/Encke. Icarus 182, 161–168 (2006a)

    Article  ADS  Google Scholar 

  • H.F. Levison, M.J. Duncan, L. Dones, B.J. Gladman, The Scattered Disk as a source of Halley-type comets. Icarus 184, 619–633 (2006b)

    Article  ADS  Google Scholar 

  • H.F. Levison, A. Morbidelli, R. Gomes, D. Backman, Planet migration in planetesimal disks, in Protostars and Planets V, ed. by B. Reipurth, D. Jewitt, K. Keil (Univ. Arizona Press, Tucson, 2007), pp. 669–684

    Google Scholar 

  • H.F. Levison, A. Morbidelli, C. Van Laerhoven, R. Gomes, K. Tsiganis, Origin of the structure of the Kuiper Belt during a dynamical instability in the orbits of Uranus and Neptune. Icarus 196, 258–273 (2008)

    Article  ADS  Google Scholar 

  • H.F. Levison, W.F. Bottke, M. Gounelle, A. Morbidelli, D. Nesvorný, K. Tsiganis, Contamination of the asteroid belt by primordial trans-Neptunian objects. Nature 460, 364–366 (2009)

    Article  ADS  Google Scholar 

  • H.F. Levison, M.J. Duncan, R. Brasser, D.E. Kaufmann, Capture of the Sun’s Oort Cloud from stars in its birth cluster. Science 329, 187–190 (2010)

    Article  ADS  Google Scholar 

  • H.F. Levison, A. Morbidelli, K. Tsiganis, D. Nesvorný, R. Gomes, Late orbital instabilities in the outer planets induced by interaction with a self-gravitating planetesimal disk. Astron. J. 142, 152 (2011)

    Article  ADS  Google Scholar 

  • H.F. Levison, K.A. Kretke, K.J. Walsh, W.F. Bottke, Growing the terrestrial planets from the gradual accumulation of submeter-sized objects. Proc. Natl. Acad. Sci. USA (2015b). doi:10.1073/pnas.1513364112

    Google Scholar 

  • A.R. Lewis, T. Quinn, N.A. Kaib, The influence of outer Solar System architecture on the structure and evolution of the Oort Cloud. Astron. J. 146, 16 (2013)

    Article  ADS  Google Scholar 

  • G. Li, F.C. Adams, Cross-sections for planetary systems interacting with passing stars and binaries. Mon. Not. R. Astron. Soc. 448, 344–363 (2015)

    Article  ADS  Google Scholar 

  • Z.-Y. Li, R. Banerjee, R.E. Pudritz, J.K. Jørgensen, H. Shang, R. Krasnopolsky, A. Maury, The earliest stages of star and planet formation: core collapse, and the formation of disks and outflows, in Protostars and Planets VI, ed. by H. Beuther, R.S. Klessen, C.P. Dullemond, T. Henning (Univ. Arizona Press, Tucson, 2014), pp. 173–194

    Google Scholar 

  • D.N.C. Lin, J. Papaloizou, On the tidal interaction between protoplanets and the protoplanetary disk. III—orbital migration of protoplanets. Astrophys. J. 309, 846–857 (1986)

    Article  ADS  Google Scholar 

  • D.N.C. Lin, P. Bodenheimer, D.C. Richardson, Orbital migration of the planetary companion of 51 Pegasi to its present location. Nature 380, 606–607 (1996)

    Article  ADS  Google Scholar 

  • D.C. Lis, N. Biver, D. Bockelée-Morvan, P. Hartogh, E.A. Bergin, G.A. Blake, J. Crovisier, M. de Val-Borro, E. Jehin, M. Küppers, et al., A Herschel study of D/H in water in the Jupiter-family comet 45P/Honda-Mrkos-Pajdušáková and prospects for D/H measurements with CCAT. Astrophys. J. Lett. 774, 3 (2013)

    Article  ADS  Google Scholar 

  • J.J. Lissauer, R.I. Dawson, S. Tremaine, Advances in exoplanet science from Kepler. Nature 513, 336–344 (2014)

    Article  ADS  Google Scholar 

  • J.J. Lissauer, O. Hubickyj, G. D’Angelo, P. Bodenheimer, Models of Jupiter’s growth incorporating thermal and hydrodynamic constraints. Icarus 199, 338–350 (2009)

    Article  ADS  Google Scholar 

  • C.M. Lisse, M.C. Wyatt, C.H. Chen, A. Morlok, D.M. Watson, P. Manoj, P. Sheehan, T.M. Currie, P. Thebault, M.L. Sitko, Spitzer evidence for a Late-Heavy Bombardment and the formation of ureilites in \(\eta\) Corvi at \({\sim}1~\mbox{Gyr}\). Astrophys. J. 747, 93 (2012)

    Article  ADS  Google Scholar 

  • S.H. Lubow, S. Ida, Planet migration, in Exoplanets, ed. by S. Seager (Univ. Arizona Press, Tucson, 2011), pp. 347–371

    Google Scholar 

  • J. Luu, B.G. Marsden, D. Jewitt, C.A. Trujillo, C.W. Hergenrother, J. Chen, W.B. Offutt, A new dynamical class of object in the outer Solar System. Nature 387, 573–575 (1997)

    Article  ADS  Google Scholar 

  • P.S. Lykawka, Trans-Neptunian Objects as natural probes to the unknown Solar System. Monogr. Environ. Earth Planets 1, 121–186 (2012)

    Article  ADS  Google Scholar 

  • R. Malhotra, The origin of Pluto’s peculiar orbit. Nature 365, 819–821 (1993)

    Article  ADS  Google Scholar 

  • R. Malhotra, The origin of Pluto’s orbit: implications for the Solar System beyond Neptune. Astron. J. 110, 420–429 (1995)

    Article  ADS  Google Scholar 

  • R. Malhotra, R.G. Strom, Comment on ”constraints on the source of lunar cataclysm impactors” (Cuk et al., 2010, Icarus 207, 590–594). Icarus 216, 359–362 (2011)

    Article  ADS  Google Scholar 

  • R. Malhotra, M.J. Duncan, H.F. Levison, Dynamics of the Kuiper Belt, in Protostars and Planets IV, ed. by V. Mannings, S.S. Russell, A. Boss (Univ. Arizona Press, Tucson, 2000), pp. 1231–1245

    Google Scholar 

  • D. Malmberg, F. de Angeli, M.B. Davies, R.P. Church, D. Mackey, M.I. Wilkinson, Close encounters in young stellar clusters: implications for planetary systems in the solar neighbourhood. Mon. Not. R. Astron. Soc. 378, 1207–1216 (2007)

    Article  ADS  Google Scholar 

  • K.E. Mandt, O. Mousis, B. Marty, T. Cavalié, W. Harris, P. Hartogh, K. Willacy, Constraints from comets on the formation and volatile acquisition of the planets and satellites. Space Sci. Rev. (2015). doi:10.1007/s11214-015-0161-z

    Google Scholar 

  • L. Maquet, The recent dynamical history of comet 67P/Churyumov-Gerasimenko. Astron. Astrophys. 579, 78 (2015)

    Article  ADS  Google Scholar 

  • S. Marchi, W.F. Bottke, D.A. Kring, A. Morbidelli, The onset of the lunar cataclysm as recorded in its ancient crater populations. Earth Planet. Sci. Lett. 325, 27–38 (2012)

    Article  ADS  Google Scholar 

  • S. Marchi, W.F. Bottke, B.A. Cohen, K. Wünnemann, D.A. Kring, H.Y. McSween, M.C. de Sanctis, D.P. O’Brien, P. Schenk, C.A. Raymond, C.T. Russell, High-velocity collisions from the lunar cataclysm recorded in asteroidal meteorites. Nat. Geosci. 6, 303–307 (2013)

    Article  ADS  Google Scholar 

  • S. Marchi, W.F. Bottke, L.T. Elkins-Tanton, M. Bierhaus, K. Wuennemann, A. Morbidelli, D.A. Kring, Widespread mixing and burial of Earth’s Hadean crust by asteroid impacts. Nature 511, 578–582 (2014)

    Article  ADS  Google Scholar 

  • B. Marsden, G. Williams, Catalogue of Cometary Orbits, 15th edn. (Smithsonian Astrophysical Observatory, Cambridge, 2003)

    Google Scholar 

  • B.G. Marsden, G.V. Williams, Catalogue of Cometary Orbits, 8th edn. (Smithsonian Astrophysical Observatory, Cambridge, 1993)

    Google Scholar 

  • B.G. Marsden, G.V. Williams, Catalogue of Cometary Orbits, 17th edn. (Smithsonian Astrophysical Observatory, Cambridge, 2008)

    Google Scholar 

  • B.G. Marsden, Z. Sekanina, E. Everhart, New osculating orbits for 110 comets and analysis of original orbits for 200 comets. Astron. J. 83, 64–71 (1978)

    Article  ADS  Google Scholar 

  • B.G. Marsden, Z. Sekanina, D.K. Yeomans, Comets and nongravitational forces. V. Astron. J. 78, 211–225 (1973)

    Article  ADS  Google Scholar 

  • C.A. Martínez-Barbosa, A.G.A. Brown, S. Portegies Zwart, Radial migration of the Sun in the Milky Way: a statistical study. Mon. Not. R. Astron. Soc. 446, 823–841 (2015)

    Article  ADS  Google Scholar 

  • F. Masset, M. Snellgrove, Reversing type II migration: resonance trapping of a lighter giant protoplanet. Mon. Not. R. Astron. Soc. 320, 55–59 (2001)

    Article  ADS  Google Scholar 

  • J. Matese, D. Whitmire, Tidal imprint of distant Galactic matter on the Oort comet cloud. Astrophys. J. Lett. 472, 41–43 (1996)

    Article  ADS  Google Scholar 

  • B.C. Matthews, A.V. Krivov, M.C. Wyatt, G. Bryden, C. Eiroa, Observations, modeling, and theory of debris disks, in Protostars and Planets VI (Univ. Arizona Press, Tucson, 2014), pp. 521–544

    Google Scholar 

  • M. Mayor, D. Queloz, A Jupiter-mass companion to a solar-type star. Nature 378, 355–359 (1995)

    Article  ADS  Google Scholar 

  • J.A.M. McDonnell, J. Kissel, E. Gruen, R.J.L. Grard, Y. Langevin, R.E. Olearczyk, C.H. Perry, J.C. Zarnecki, Giotto’s Dust Impact Detection System (DIDSY) and Particulate Impact Analyzer (PIA): interim assessment of the dust distribution and properties within the coma, in ESLAB Symposium on the Exploration of Halley’s Comet, ed. by B. Battrick, E.J. Rolfe, R. Reinhard. ESA Special Publication, vol. 250 (1986), pp. 25–38

    Google Scholar 

  • T.A. McGlynn, R.D. Chapman, On the nondetection of extrasolar comets. Astrophys. J. Lett. 346, 105–108 (1989)

    Article  ADS  Google Scholar 

  • K.D. McKeegan, J. Aléon, J. Bradley, D. Brownlee, H. Busemann, A. Butterworth, M. Chaussidon, S. Fallon, C. Floss, J. Gilmour, et al., Isotopic compositions of cometary matter returned by Stardust. Science 314, 1724 (2006)

    Article  ADS  Google Scholar 

  • T.R. Medupe, Indigenous astronomy in Southern Africa, in Handbook of Archaeoastronomy and Ethnoastronomy, ed. by C.L.N. Ruggles (Springer, Berlin, 2015), pp. 1031–1036

    Google Scholar 

  • K.J. Meech, O.R. Hainaut, B.G. Marsden, Comet nucleus size distributions from HST and Keck telescopes. Icarus 170, 463–491 (2004)

    Article  ADS  Google Scholar 

  • K.J. Meech, M.F. A’Hearn, J.A. Adams, P. Bacci, J. Bai, L. Barrera, M. Battelino, J.M. Bauer, E. Becklin, B. Bhatt, N. Biver, et al., EPOXI: comet 103P/Hartley 2 observations from a worldwide campaign. Astrophys. J. Lett. 734, 1 (2011)

    Article  ADS  Google Scholar 

  • S.N. Milam, J.A. Stansberry, G. Sonneborn, C. Thomas, The James Webb Space Telescope’s plan for operations and instrument capabilities for observations in the Solar System. ArXiv e-prints 1510.04567 [astro-ph] (2015)

  • D.A. Minton, H.F. Levison, Planetesimal-driven migration of terrestrial planet embryos. Icarus 232, 118–132 (2014)

    Article  ADS  Google Scholar 

  • D.A. Minton, R. Malhotra, A record of planet migration in the main asteroid belt. Nature 457, 1109–1111 (2009)

    Article  ADS  Google Scholar 

  • S. Molinari, J. Bally, S. Glover, T. Moore, A. Noriega-Crespo, R. Plume, L. Testi, E. Vázquez-Semadeni, A. Zavagno, J.-P. Bernard, P. Martin, The Milky Way as a star formation engine, ed. by H. Beuther, R.S. Klessen, C.P. Dullemond, T. Henning (Univ. Arizona Press, 2014), pp. 125–148

  • S.L. Montgomery, B.Y. Welsh, Detection of variable gaseous absorption features in the debris disks around young A-type stars. Publ. Astron. Soc. Pac. 124, 1042–1056 (2012)

    Article  ADS  Google Scholar 

  • A. Morbidelli, Origin and dynamical evolution of comets and their reservoirs. ArXiv e-prints astro-ph/0512256 (2005)

  • A. Morbidelli, A. Crida, The dynamics of Jupiter and Saturn in the gaseous protoplanetary disk. Icarus 191, 158–171 (2007)

    Article  ADS  Google Scholar 

  • A. Morbidelli, H.F. Levison, Scenarios for the origin of the orbits of the trans-Neptunian objects 2000 \(\mbox{CR}_{105}\) and 2003 \(\mbox{VB}_{12}\) (Sedna). Astron. J. 128, 2564–2576 (2004)

    Article  ADS  Google Scholar 

  • A. Morbidelli, H. Rickman, Comets as collisional fragments of a primordial planetesimal disk. ArXiv e-prints 1504.04512 [astro-ph] (2015)

  • A. Morbidelli, H.F. Levison, K. Tsiganis, R. Gomes, Chaotic capture of Jupiter’s Trojan asteroids in the early Solar System. Nature 435, 462–465 (2005)

    Article  ADS  Google Scholar 

  • A. Morbidelli, K. Tsiganis, A. Crida, H.F. Levison, R. Gomes, Dynamics of the giant planets of the Solar System in the gaseous protoplanetary disk and their relationship to the current orbital architecture. Astron. J. 134, 1790–1798 (2007)

    Article  ADS  Google Scholar 

  • A. Morbidelli, W.F. Bottke, D. Nesvorný, H.F. Levison, Asteroids were born big. Icarus 204, 558–573 (2009a)

    Article  ADS  Google Scholar 

  • A. Morbidelli, H.F. Levison, W.F. Bottke, L. Dones, D. Nesvorný, Considerations on the magnitude distributions of the Kuiper Belt and of the Jupiter Trojans. Icarus 202, 310–315 (2009b)

    Article  ADS  Google Scholar 

  • A. Morbidelli, R. Brasser, K. Tsiganis, R. Gomes, H.F. Levison, Constructing the secular architecture of the solar system. I. The giant planets. Astron. Astrophys. 507, 1041–1052 (2009c)

    Article  ADS  Google Scholar 

  • A. Morbidelli, R. Brasser, R. Gomes, H.F. Levison, K. Tsiganis, Evidence from the asteroid belt for a violent past evolution of Jupiter’s orbit. Astron. J. 140, 1391–1401 (2010)

    Article  ADS  Google Scholar 

  • A. Morbidelli, S. Marchi, W.F. Bottke, D.A. Kring, A sawtooth-like timeline for the first billion years of lunar bombardment. Earth Planet. Sci. Lett. 355, 144–151 (2012)

    Article  ADS  Google Scholar 

  • A. Morbidelli, M. Lambrechts, S. Jacobson, B. Bitsch, The great dichotomy of the Solar System: small terrestrial embryos and massive giant planet cores. Icarus 258, 418–429 (2015)

    Article  ADS  Google Scholar 

  • A. Moro-Martín, E.L. Turner, A. Loeb, Will the Large Synoptic Survey Telescope detect extra-solar planetesimals entering the Solar System? Astrophys. J. 704, 733–742 (2009)

    Article  ADS  Google Scholar 

  • A. Moro-Martín, J.M. Carpenter, M.R. Meyer, L.A. Hillenbrand, R. Malhotra, D. Hollenbach, J. Najita, T. Henning, J.S. Kim, J. Bouwman, et al., Are debris disks and massive planets correlated? Astrophys. J. 658, 1312–1321 (2007)

    Article  ADS  Google Scholar 

  • A. Moro-Martín, J.P. Marshall, G. Kennedy, B. Sibthorpe, B.C. Matthews, C. Eiroa, M.C. Wyatt, J.-F. Lestrade, J. Maldonado, D. Rodriguez, et al., Does the presence of planets affect the frequency and properties of extrasolar Kuiper belts? Results from the Herschel Debris and Dunes surveys. Astrophys. J. 801, 143 (2015)

    Article  ADS  Google Scholar 

  • N. Movshovitz, E. Asphaug, D. Korycansky, Numerical modeling of the disruption of comet D/1993 F2 Shoemaker-Levy 9 representing the progenitor by a gravitationally bound assemblage of randomly shaped polyhedra. Astrophys. J. 759, 93 (2012)

    Article  ADS  Google Scholar 

  • N. Movshovitz, F. Nimmo, D. Korycansky, E. Asphaug, J. Owen, Disruption and reaccretion of midsized moons during an outer solar system late heavy bombardment. Geophys. Res. Lett. 42, 256–263 (2015)

    Article  ADS  Google Scholar 

  • M.J. Mumma, S.B. Charnley, The chemical composition of comets—emerging taxonomies and natal heritage. Annu. Rev. Astron. Astrophys. 49, 471–524 (2011)

    Article  ADS  Google Scholar 

  • C.D. Murray, S.F. Dermott, Solar System Dynamics (Cambridge University Press, Cambridge, 1999)

    MATH  Google Scholar 

  • N. Murray, B. Hansen, M. Holman, S. Tremaine, Migrating planets. Science 279, 69–72 (1998)

    Article  ADS  Google Scholar 

  • R.A. Murray-Clay, H.E. Schlichting, Using Kuiper Belt binaries to constrain Neptune’s migration history. Astrophys. J. 730, 132 (2011)

    Article  ADS  Google Scholar 

  • P.C. Myers, Filamentary structure of star-forming complexes. Astrophys. J. 700, 1609–1625 (2009)

    Article  ADS  Google Scholar 

  • Y. Nakagawa, M. Sekiya, C. Hayashi, Settling and growth of dust particles in a laminar phase of a low-mass solar nebula. Icarus 67, 375–390 (1986)

    Article  ADS  Google Scholar 

  • T. Nakamura, T. Noguchi, A. Tsuchiyama, T. Ushikubo, N.T. Kita, J.W. Valley, M.E. Zolensky, Y. Kakazu, K. Sakamoto, E. Mashio, et al., Chondrulelike objects in short-period comet 81P/Wild 2. Science 321, 1664 (2008)

    Article  ADS  Google Scholar 

  • D. Nesvorný, Young Solar System’s fifth giant planet? Astrophys. J. Lett. 742, 22 (2011)

    Article  ADS  Google Scholar 

  • D. Nesvorný, Evidence for slow migration of Neptune from the inclination distribution of Kuiper Belt Objects. Astron. J. 150, 73 (2015a)

    Article  ADS  Google Scholar 

  • D. Nesvorný, Jumping Neptune can explain the Kuiper Belt kernel. Astron. J. 150, 68 (2015b)

    Article  ADS  Google Scholar 

  • D. Nesvorný, A. Morbidelli, Statistical study of the early Solar System’s instability with four, five, and six giant planets. Astron. J. 144, 117 (2012)

    Article  ADS  Google Scholar 

  • D. Nesvorný, D. Vokrouhlický, Chaotic capture of Neptune Trojans. Astron. J. 137, 5003–5011 (2009)

    Article  ADS  Google Scholar 

  • D. Nesvorný, M. Broz, V. Carruba, Identification and dynamical properties of asteroid families, in Asteroids IV, ed. by P. Michel, F. DeMeo, W. Bottke (2015). ArXiv e-prints 1502.01628 [astro-ph]

    Google Scholar 

  • D. Nesvorný, D. Vokrouhlický, R. Deienno, Capture of irregular satellites at Jupiter. Astrophys. J. Lett. 784, 22 (2014)

    Article  ADS  Google Scholar 

  • D. Nesvorný, D. Vokrouhlický, A. Morbidelli, Capture of irregular satellites during planetary encounters. Astron. J. 133, 1962–1976 (2007)

    Article  ADS  Google Scholar 

  • D. Nesvorný, D. Vokrouhlický, A. Morbidelli, Capture of Trojans by jumping Jupiter. Astrophys. J. 768, 45 (2013)

    Article  ADS  Google Scholar 

  • D. Nesvorný, D. Vokrouhlický, W.F. Bottke, K. Noll, H.F. Levison, Observed binary fraction sets limits on the extent of collisional grinding in the Kuiper Belt. Astron. J. 141, 159 (2011)

    Article  ADS  Google Scholar 

  • D. Nesvorný, D. Vokrouhlický, R. Deienno, K.J. Walsh, Excitation of the orbital inclination of Iapetus during planetary encounters. Astron. J. 148, 52 (2014)

    Article  ADS  Google Scholar 

  • G. Neukum, B.A. Ivanov, W.K. Hartmann, Cratering records in the inner Solar System in relation to the lunar reference system. Space Sci. Rev. 96, 55–86 (2001)

    Article  ADS  Google Scholar 

  • F. Nimmo, D.G. Korycansky, Impact-driven ice loss in outer Solar System satellites: consequences for the Late Heavy Bombardment. Icarus 219, 508–510 (2012)

    Article  ADS  Google Scholar 

  • K.S. Noll, A.H. Parker, W.M. Grundy, All bright cold classical KBOs are binary, in AAS/Division for Planetary Sciences Meeting Abstracts, vol. 46 (2014). 507.05

    Google Scholar 

  • K.S. Noll, W.M. Grundy, E.I. Chiang, J.-L. Margot, S.D. Kern, Binaries in the Kuiper Belt, in The Solar System Beyond Neptune, ed. by M.A. Barucci, H. Boehnhardt, D.P. Cruikshank, A. Morbidelli, R. Dotson (Univ. Arizona Press, Tucson, 2008a), pp. 345–363

    Google Scholar 

  • K.S. Noll, W.M. Grundy, D.C. Stephens, H.F. Levison, S.D. Kern, Evidence for two populations of classical transneptunian objects: the strong inclination dependence of classical binaries. Icarus 194, 758–768 (2008b)

    Article  ADS  Google Scholar 

  • M.D. Norman, A.A. Nemchin, A 4.2 billion year old impact basin on the Moon: U-Pb dating of zirconolite and apatite in lunar melt rock 67955. Earth Planet. Sci. Lett. 388, 387–398 (2014)

    Article  ADS  Google Scholar 

  • J. Norwood, H. Hammel, S. Milam, J. Stansberry, J. Lunine, N. Chanover, D. Hines, G. Sonneborn, M. Tiscareno, M. Brown, P. Ferruit, Solar System observations with JWST. ArXiv e-prints 1403.6845 [astro-ph] (2014)

  • M. Ogihara, H. Kobayashi, S.-i. Inutsuka, T.K. Suzuki, Formation of terrestrial planets in disks evolving via disk winds and implications for the origin of the Solar System’s terrestrial planets. Astron. Astrophys. 579, 65 (2015)

    Article  ADS  Google Scholar 

  • A. Önehag, A. Korn, B. Gustafsson, E. Stempels, D.A. Vandenberg, M67-1194, an unusually Sun-like solar twin in M67. Astron. Astrophys. 528, 85 (2011)

    Article  Google Scholar 

  • J.H. Oort, The structure of the cloud of comets surrounding the Solar System and a hypothesis concerning its origin. Bull. Astron. Inst. Neth. 11, 91–110 (1950)

    ADS  Google Scholar 

  • J.H. Oort, M. Schmidt, Differences between new and old comets. Bull. Astron. Inst. Neth. 11, 259–269 (1951)

    ADS  Google Scholar 

  • E. Öpik, Note on stellar perturbations of nearly parabolic orbits. Proc. Am. Acad. Arts Sci. 67, 169–183 (1932)

    Article  MATH  Google Scholar 

  • C.W. Ormel, S. Ida, H. Tanaka, Migration rates of planets due to scattering of planetesimals. Astrophys. J. 758, 80 (2012)

    Article  ADS  Google Scholar 

  • S. Ouzman, Flashes of brilliance: San rock paintings of heaven’s things, in Seeing and Knowing: Understanding Rock Art with and Without Ethnography, ed. by G. Blundell, C. Chippindale, B. Smith (Wits Univ. Press, 2010), pp. 10–31

  • M. Pan, R. Sari, Shaping the Kuiper Belt size distribution by shattering large but strengthless bodies. Icarus 173, 342–348 (2005)

    Article  ADS  Google Scholar 

  • D. Pankenier, Z. Xu, Y. Jiang, Archaeoastronomy in East Asia: Historical Observational Records of Comets and Meteor Showers from China, Japan, and Korea (Cambria Press, Amherst, 2008)

    Google Scholar 

  • J. Papaloizou, D.N.C. Lin, On the tidal interaction between protoplanets and the primordial solar nebula. I—linear calculation of the role of angular momentum exchange. Astrophys. J. 285, 818–834 (1984)

    Article  ADS  Google Scholar 

  • J.C.B. Papaloizou, C. Terquem, Planet formation and migration. Rep. Prog. Phys. 69, 119–180 (2006)

    Article  ADS  Google Scholar 

  • A.H. Parker, The intrinsic Neptune Trojan orbit distribution: implications for the primordial disk and planet migration. Icarus 247, 112–125 (2015)

    Article  ADS  Google Scholar 

  • A.H. Parker, J.J. Kavelaars, Destruction of binary minor planets during Neptune scattering. Astrophys. J. Lett. 722, 204–208 (2010)

    Article  ADS  Google Scholar 

  • A.H. Parker, J.J. Kavelaars, J.-M. Petit, L. Jones, B. Gladman, J. Parker, Characterization of seven ultra-wide trans-Neptunian binaries. Astrophys. J. 743, 1 (2011)

    Article  ADS  Google Scholar 

  • S.J. Peale, On the density of Halley’s comet. Icarus 82, 36–49 (1989)

    Article  ADS  Google Scholar 

  • N. Peixinho, A. Delsanti, A. Doressoundiram, Reanalyzing the visible colors of Centaurs and KBOs: what is there and what we might be missing. Astron. Astrophys. 577, 35 (2015)

    Article  ADS  Google Scholar 

  • J.-M. Petit, O. Mousis, KBO binaries: how numerous were they? Icarus 168, 409–419 (2004)

    Article  ADS  Google Scholar 

  • J.-M. Petit, J.J. Kavelaars, B.J. Gladman, J.L. Margot, P.D. Nicholson, R.L. Jones, J.W. Parker, M.L.N. Ashby, A. Campo Bagatin, P. Benavidez, et al., The extreme Kuiper Belt binary 2001 \(\mbox{QW}_{322}\). Science 322, 432–434 (2008)

    Article  ADS  Google Scholar 

  • J.-M. Petit, J.J. Kavelaars, B.J. Gladman, R.L. Jones, J.W. Parker, C. Van Laerhoven, P. Nicholson, G. Mars, P. Rousselot, O. Mousis, et al., The Canada-France Ecliptic Plane Survey—full data release: the orbital structure of the Kuiper Belt. Astron. J. 142, 131 (2011)

    Article  ADS  Google Scholar 

  • S. Pfalzner, M.B. Davies, M. Gounelle, A. Johansen, C. Muenker, P. Lacerda, S. Portegies Zwart, L. Testi, M. Trieloff, D. Veras, The formation of the Solar System. Phys. Scr. 90, 068001 (2015)

    Article  ADS  Google Scholar 

  • B. Pichardo, E. Moreno, C. Allen, L.R. Bedin, A. Bellini, L. Pasquini, The Sun was not born in M67. Astron. J. 143, 73 (2012)

    Article  ADS  Google Scholar 

  • A. Pierens, R.P. Nelson, Constraints on resonant-trapping for two planets embedded in a protoplanetary disc. Astron. Astrophys. 482, 333–340 (2008)

    Article  ADS  MATH  Google Scholar 

  • R.E. Pike, J.J. Kavelaars, J.M. Petit, B.J. Gladman, M. Alexandersen, K. Volk, C.J. Shankman, The 5:1 Neptune Resonance as Probed by CFEPS: dynamics and population. Astron. J. 149, 202 (2015)

    Article  ADS  Google Scholar 

  • N. Piskunov, H. Rickman, B. Gustafsson, Introduction: Nobel Symposium 135: Physics of Planetary Systems (18–22 June 2007, Lidingö, Stockholm, Sweden). Phys. Scr. T 130, 011001 (2008)

    Article  ADS  Google Scholar 

  • D. Prialnik, E.D. Rosenberg, Can ice survive in main-belt comets? Long-term evolution models of comet 133P/Elst-Pizarro. Mon. Not. R. Astron. Soc. 399, 79–83 (2009)

    Article  ADS  Google Scholar 

  • D. Prialnik, J. Benkhoff, M. Podolak, Modeling the structure and activity of comet nuclei, in Comets II, ed. by M.C. Festou, H.U. Keller, H.A. Weaver (Univ. Arizona Press, Tucson, 2004), pp. 359–387

    Google Scholar 

  • C. Qi, K.I. Öberg, D.J. Wilner, P. D’Alessio, E. Bergin, S.M. Andrews, G.A. Blake, M.R. Hogerheijde, E.F. van Dishoeck, Imaging of the CO snow line in a solar nebula analog. Science 341, 630–632 (2013)

    Article  ADS  Google Scholar 

  • T. Quinn, S. Tremaine, M. Duncan, Planetary perturbations and the origins of short-period comets. Astrophys. J. 355, 667–679 (1990)

    Article  ADS  Google Scholar 

  • N. Raettig, H. Klahr, W. Lyra, Particle trapping and streaming instability in vortices in protoplanetary disks. Astrophys. J. 804, 35 (2015)

    Article  ADS  Google Scholar 

  • S.N. Raymond, A. Morbidelli, The Grand Tack model: a critical review, in Complex Planetary Systems, ed. by Z. Knežević, A. Lemaître. IAU Symposium, vol. 310 (Cambridge University Press, Cambridge, 2014), pp. 194–203

    Google Scholar 

  • S.N. Raymond, D.P. O’Brien, A. Morbidelli, N.A. Kaib, Building the terrestrial planets: constrained accretion in the inner Solar System. Icarus 203, 644–662 (2009)

    Article  ADS  Google Scholar 

  • M. Reyes-Ruiz, H. Aceves, C.E. Chavez, Stability of the outer planets in multiresonant configurations with a self-gravitating planetesimal disk. Astrophys. J. 804, 91 (2015)

    Article  ADS  Google Scholar 

  • J.E. Richardson, H.J. Melosh, C.M. Lisse, B. Carcich, A ballistics analysis of the Deep Impact ejecta plume: determining comet Tempel 1’s gravity, mass, and density. Icarus 191, 176–209 (2007)

    Article  ADS  Google Scholar 

  • H. Rickman, Masses and densities of comets Halley and Kopff, in Comet Nucleus Sample Return Mission, ed. by O. Melita. ESA Special Publication, vol. 249 (1986), pp. 195–205

    Google Scholar 

  • H. Rickman, The nucleus of comet Halley—surface structure, mean density, gas and dust production. Adv. Space Res. 9, 59–71 (1989)

    Article  ADS  Google Scholar 

  • H. Rickman, The Oort Cloud and long-period comets. Meteorit. Planet. Sci. 49, 8–20 (2014)

    Article  ADS  Google Scholar 

  • H. Rickman, C. Froeschlé, Thermal models for the nucleus of comet P/Halley, in Cometary Exploration: Proceedings of the International Conference, ed. by T.I. Gombosi (Akademiai Kiado, 1983), pp. 75–84

  • H. Rickman, L. Jorda, Comet 46P/Wirtanen, the target of the Rosetta mission. Adv. Space Res. 21, 1491–1504 (1998)

    Article  ADS  Google Scholar 

  • H. Rickman, J.A. Fernandez, B.A.S. Gustafson, Formation of stable dust mantles on short-period comet nuclei. Astron. Astrophys. 237, 524–535 (1990)

    ADS  Google Scholar 

  • H. Rickman, L. Kamel, M.C. Festou, C. Froeschle, Estimates of masses, volumes and densities of short-period comet nuclei, in Diversity and Similarity of Comets, ed. by E.J. Rolfe, B. Battrick. ESA Special Publication, vol. 278 (1987), pp. 471–481

    Google Scholar 

  • H. Rickman, L. Kamel, C. Froeschle, M.C. Festou, Nongravitational effects and the aging of periodic comets. Astron. J. 102, 1446–1463 (1991)

    Article  ADS  Google Scholar 

  • H. Rickman, M. Fouchard, C. Froeschlé, G.B. Valsecchi, Injection of Oort Cloud comets: the fundamental role of stellar perturbations. Celest. Mech. Dyn. Astron. 102, 111–132 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • H. Rickman, S. Marchi, M.F. A’Hearn, C. Barbieri, M.R. El-Maarry, C. Güttler, W.-H. Ip, H.U. Keller, P. Lamy, F. Marzari, et al., Comet 67P/Churyumov-Gerasimenko: constraints on its origin from OSIRIS observations. ArXiv e-prints 1505.07021 [astro-ph] (2015)

  • A.S. Rivkin, J.P. Emery, Detection of ice and organics on an asteroidal surface. Nature 464, 1322–1323 (2010)

    Article  ADS  Google Scholar 

  • A.S. Rivkin, F. Marchis, J.A. Stansberry, D. Takir, C. Thomas, the JWST Asteroids Focus Group, Asteroids and the James Webb Space Telescope. ArXiv e-prints 1510.08414 [astro-ph] (2015)

  • A. Roberge, Astronomy: Hurling comets around a planetary nursery. Nature 514, 440–441 (2014)

    Article  ADS  Google Scholar 

  • K. Ros, A. Johansen, Ice condensation as a planet formation mechanism. Astron. Astrophys. 552, 137 (2013)

    Article  ADS  Google Scholar 

  • R. Roškar, V.P. Debattista, T.R. Quinn, G.S. Stinson, J. Wadsley, Riding the spiral waves: implications of stellar migration for the properties of galactic disks. Astrophys. J. Lett. 684, 79–82 (2008)

    Article  ADS  Google Scholar 

  • D.C. Rubie, S.A. Jacobson, A. Morbidelli, D.P. O’Brien, E.D. Young, J. de Vries, F. Nimmo, H. Palme, D.J. Frost, Accretion and differentiation of the terrestrial planets with implications for the compositions of early-formed Solar System bodies and accretion of water. Icarus 248, 89–108 (2015)

    Article  ADS  Google Scholar 

  • J.A. Ruffner, Isaac Newton’s Historia Cometarum and the quest for elliptical orbits. J. Hist. Astron. 41, 425–451 (2010)

    Article  ADS  Google Scholar 

  • C.L.N. Ruggles, Handbook of Archaeoastronomy and Ethnoastronomy (Springer, Berlin, 2015)

    Book  Google Scholar 

  • G. Ryder, Lunar samples, lunar accretion and the early bombardment of the Moon. Eos 71, 313 (1990)

    Article  ADS  Google Scholar 

  • V.S. Safronov, Evolution of the protoplanetary cloud and formation of the Earth and the planets (Evoliutsiia doplanetnogo oblaka i obrazovanie zemli i planet, Moscow, Izdatel’stvo Nauka. Jerusalem, Israel Program for Scientific Translations, Ltd., 1972), 1969

  • R.Z. Sagdeev, P.E. Elyasberg, V.I. Moroz, Estimate of the mass and density of the nucleus of comet Halley. Sov. Astron. Lett. 13, 259–263 (1987)

    ADS  Google Scholar 

  • H.E. Schlichting, E.O. Ofek, M. Wenz, R. Sari, A. Gal-Yam, M. Livio, E. Nelan, S. Zucker, A single sub-kilometre Kuiper Belt Object from a stellar occultation in archival data. Nature 462, 895–897 (2009)

    Article  ADS  Google Scholar 

  • H.E. Schlichting, E.O. Ofek, R. Sari, E.P. Nelan, A. Gal-Yam, M. Wenz, P. Muirhead, N. Javanfar, M. Livio, Measuring the Abundance of sub-kilometer-sized Kuiper Belt Objects using stellar occultations. Astrophys. J. 761, 150 (2012)

    Article  ADS  Google Scholar 

  • M.E. Schwamb, Solar System: stranded in no-man’s-land. Nature 507, 435–436 (2014)

    Article  ADS  Google Scholar 

  • M.E. Schwamb, M.E. Brown, W.C. Fraser, The small numbers of large Kuiper Belt Objects. Astron. J. 147, 2 (2014)

    Article  ADS  Google Scholar 

  • M.E. Schwamb, M.E. Brown, D. Rabinowitz, B.G. Marsden, 2007 OR10. Minor Planet Electronic Circulars, 42 (2009)

  • M.E. Schwamb, M.E. Brown, D.L. Rabinowitz, D. Ragozzine, Properties of the distant Kuiper Belt: results from the Palomar Distant Solar System Survey. Astrophys. J. 720, 1691–1707 (2010)

    Article  ADS  Google Scholar 

  • S. Seager (ed.), Exoplanets. Space Science Series (Univ. Arizona Press, Tucson, 2010)

    Google Scholar 

  • Z. Sekanina, P.W. Chodas, Origin of the Marsden and Kracht Groups of sunskirting comets. I. Association with comet 96P/Machholz and its interplanetary complex. Astron. Astrophys. Suppl. Ser. 161, 551–586 (2005)

    Article  ADS  Google Scholar 

  • J.A. Sellwood, J.J. Binney, Radial mixing in galactic discs. Mon. Not. R. Astron. Soc. 336, 785–796 (2002)

    Article  ADS  Google Scholar 

  • C. Shankman, B.J. Gladman, N. Kaib, J.J. Kavelaars, J.M. Petit, A possible divot in the size distribution of the Kuiper Belt’s scattering objects. Astrophys. J. Lett. 764, 2 (2013)

    Article  ADS  Google Scholar 

  • A. Shannon, Y. Wu, Y. Lithwick, Forming the cold classical Kuiper Belt in a light disk. ArXiv e-prints 1510.01323 [astro-ph] (2015a)

  • A. Shannon, A.P. Jackson, D. Veras, M. Wyatt, Eight billion asteroids in the Oort Cloud. Mon. Not. R. Astron. Soc. 446, 2059–2064 (2015b)

    Article  ADS  Google Scholar 

  • S.S. Sheppard, C.A. Trujillo, A thick cloud of Neptune Trojans and their colors. Science 313, 511–514 (2006)

    Article  ADS  Google Scholar 

  • S.S. Sheppard, C.A. Trujillo, The size distribution of the Neptune Trojans and the missing intermediate-sized planetesimals. Astrophys. J. Lett. 723, 233–237 (2010)

    Article  ADS  Google Scholar 

  • H. Sierks, C. Barbieri, P.L. Lamy, R. Rodrigo, D. Koschny, H. Rickman, H.U. Keller, J. Agarwal, M.F. A’Hearn, F. Angrilli, et al., On the nucleus structure and activity of comet 67P/Churyumov-Gerasimenko. Science 347, 1044 (2015)

    Article  ADS  Google Scholar 

  • J.A. Simpson, D. Rabinowitz, A.J. Tuzzolino, L.V. Ksanfomaliti, R.Z. Sagdeev, The dust coma of comet P/Halley—measurements on the Vega-1 and Vega-2 spacecraft. Astron. Astrophys. 187, 742–752 (1987)

    ADS  Google Scholar 

  • B.A. Smith, R.J. Terrile, A circumstellar disk around Beta Pictoris. Science 226, 1421–1424 (1984)

    Article  ADS  Google Scholar 

  • C. Snodgrass, A. Fitzsimmons, S.C. Lowry, P. Weissman, The size distribution of Jupiter Family comet nuclei. Mon. Not. R. Astron. Soc. 414, 458–469 (2011)

    Article  ADS  Google Scholar 

  • M. Solontoi, Ž. Ivezić, M. Jurić, A.C. Becker, L. Jones, A.A. West, S. Kent, R.H. Lupton, M. Claire, G.R. Knapp, et al., Ensemble properties of comets in the Sloan Digital Sky Survey. Icarus 218, 571–584 (2012)

    Article  ADS  Google Scholar 

  • A. Sosa, J.A. Fernández, Masses of long-period comets derived from non-gravitational effects—analysis of the computed results and the consistency and reliability of the non-gravitational parameters. Mon. Not. R. Astron. Soc. 416, 767–782 (2011)

    ADS  Google Scholar 

  • Space Studies Board, Vision and Voyages for Planetary Science in the Decade 2013–2022 (National Academies Press, Washington, 2012)

    Google Scholar 

  • P.D. Spudis, The Once and Future Moon (Smithsonian Institution Press, Washington, 1996)

    Google Scholar 

  • P.D. Spudis, D.E. Wilhelms, M.S. Robinson, The sculptured hills of the Taurus Highlands: implications for the relative age of Serenitatis, basin chronologies and the cratering history of the Moon. J. Geophys. Res., Planets 116, E00H03 (2011)

    Article  ADS  Google Scholar 

  • S.W. Stahler, F. Palla, The Formation of Stars (Wiley, New York, 2004)

    Book  Google Scholar 

  • D.I. Steel, D.J. Asher, On the origin of comet Encke. Mon. Not. R. Astron. Soc. 281, 937–944 (1996)

    Article  ADS  Google Scholar 

  • D.C. Stephens, K.S. Noll, Detection of six trans-Neptunian binaries with NICMOS: a high fraction of binaries in the cold classical disk. Astron. J. 131, 1142–1148 (2006)

    Article  ADS  Google Scholar 

  • F.R. Stephenson, K.K.C. Yau, Far Eastern observations of Halley’s comet—240 BC to AD 1368. J. Br. Interplanet. Soc. 38, 195–216 (1985)

    ADS  Google Scholar 

  • S.A. Stern, On the number of planets in the outer solar system—evidence of a substantial population of 1000-km bodies. Icarus 90, 271–281 (1991)

    Article  ADS  Google Scholar 

  • S.A. Stern, Collisional time scales in the Kuiper Disk and their implications. Astron. J. 110, 856 (1995)

    Article  ADS  Google Scholar 

  • S.A. Stern, On the collisional environment, accretion time scales, and architecture of the massive, primordial Kuiper Belt. Astron. J. 112, 1203 (1996)

    Article  ADS  Google Scholar 

  • S.T. Stewart, Z.M. Leinhardt, Velocity-dependent catastrophic disruption criteria for planetesimals. Astrophys. J. Lett. 691, 133–137 (2009)

    Article  ADS  Google Scholar 

  • D. Stöffler, G. Ryder, Stratigraphy and isotope ages of lunar geologic units: chronological standard for the inner Solar System. Space Sci. Rev. 96, 9–54 (2001)

    Article  ADS  Google Scholar 

  • R.G. Strom, R. Malhotra, T. Ito, F. Yoshida, D.A. Kring, The origin of planetary impactors in the inner Solar System. Science 309, 1847–1850 (2005)

    Article  ADS  Google Scholar 

  • R.G. Strom, R. Malhotra, Z.-Y. Xiao, T. Ito, F. Yoshida, L.R. Ostrach, The inner Solar System cratering record and the evolution of impactor populations. Res. Astron. Astrophys. 15, 407 (2015)

    Article  ADS  Google Scholar 

  • K.Y.L. Su, Y.-H. Chu, G.H. Rieke, P.J. Huggins, R. Gruendl, R. Napiwotzki, T. Rauch, W.B. Latter, K. Volk, A debris disk around the central star of the Helix Nebula? Astrophys. J. Lett. 657, 41–45 (2007)

    Article  ADS  Google Scholar 

  • J.M. Sunshine, M.F. A’Hearn, O. Groussin, J.-Y. Li, M.J.S. Belton, W.A. Delamere, J. Kissel, K.P. Klaasen, L.A. McFadden, K.J. Meech, H.J. Melosh, et al., Exposed water ice deposits on the surface of comet 9P/Tempel 1. Science 311, 1453–1455 (2006)

    Article  ADS  Google Scholar 

  • G. Tancredi, The dynamical memory of Jupiter family comets. Astron. Astrophys. 299, 288 (1995)

    ADS  Google Scholar 

  • G. Tancredi, Chaotic dynamics of planet-encountering bodies. Celest. Mech. Dyn. Astron. 70, 181–200 (1998)

    Article  ADS  MATH  Google Scholar 

  • G. Tancredi, A criterion to classify asteroids and comets based on the orbital parameters. Icarus 234, 66–80 (2014)

    Article  ADS  Google Scholar 

  • G. Tancredi, J.A. Fernández, H. Rickman, J. Licandro, Nuclear magnitudes and the size distribution of Jupiter family comets. Icarus 182, 527–549 (2006)

    Article  ADS  Google Scholar 

  • H. Tang, N. Dauphas, Abundance, distribution, and origin of \(^{60}\mbox{Fe}\) in the solar protoplanetary disk. Earth Planet. Sci. Lett. 359, 248–263 (2012)

    Article  ADS  Google Scholar 

  • M.G.G.T. Taylor, C. Alexander, N. Altobelli, M. Fulle, M. Fulchignoni, E. Grün, P. Weissman, Rosetta begins its comet tale. Science 347, 387 (2015)

    Article  ADS  Google Scholar 

  • S.C. Tegler, W. Romanishin, Extremely red Kuiper-Belt objects in near-circular orbits beyond 40 AU. Nature 407, 979–981 (2000)

    Article  ADS  Google Scholar 

  • F. Tera, D.A. Papanastassiou, G.J. Wasserburg, Isotopic evidence for a terminal lunar cataclysm. Earth Planet. Sci. Lett. 22, 1–21 (1974)

    Article  ADS  Google Scholar 

  • L. Testi, T. Birnstiel, L. Ricci, S. Andrews, J. Blum, J. Carpenter, C. Dominik, A. Isella, A. Natta, J.P. Williams, D.J. Wilner, Dust evolution in protoplanetary disks, in Protostars and Planets VI, ed. by H. Beuther, R.S. Klessen, C.P. Dullemond, T. Henning (Univ. Arizona Press, Tucson, 2014), pp. 339–361

    Google Scholar 

  • E.W. Thommes, M.J. Duncan, H.F. Levison, The formation of Uranus and Neptune in the Jupiter-Saturn region of the Solar System. Nature 402, 635–638 (1999)

    Article  ADS  Google Scholar 

  • M.S. Tiscareno, R. Malhotra, The dynamics of known Centaurs. Astron. J. 126, 3122–3131 (2003)

    Article  ADS  Google Scholar 

  • B. Todorovic-Juchnicwicz, When we may and need to use barycentric orbit of a comet. Acta Astron. 31, 191–196 (1981)

    ADS  Google Scholar 

  • K. Tomida, S. Okuzumi, M.N. Machida, Radiation magnetohydrodynamic simulations of protostellar collapse: nonideal magnetohydrodynamic effects and early formation of circumstellar disks. Astrophys. J. 801, 117 (2015)

    Article  ADS  Google Scholar 

  • M.V. Torbett, Injection of Oort Cloud comets to the inner solar system by galactic tidal fields. Mon. Not. R. Astron. Soc. 223, 885–895 (1986)

    Article  ADS  Google Scholar 

  • I. Toth, Impact-generated activity period of the asteroid 7968 Elst-Pizarro in 1996: identification of the asteroid 427 Galene as the most probable parent body of the impactors. Astron. Astrophys. 360, 375–380 (2000)

    ADS  Google Scholar 

  • S. Tremaine, The distribution of comets around stars, in Planets Around Pulsars, ed. by J.A. Phillips, S.E. Thorsett, S.R. Kulkarni. Astronomical Society of the Pacific Conference Series, vol. 36 (1993), pp. 335–344

    Google Scholar 

  • C.A. Trujillo, S.S. Sheppard, A Sedna-like body with a perihelion of 80 astronomical units. Nature 507, 471–474 (2014)

    Article  ADS  Google Scholar 

  • K. Tsiganis, R. Gomes, A. Morbidelli, H.F. Levison, Origin of the orbital architecture of the giant planets of the Solar System. Nature 435, 459–461 (2005)

    Article  ADS  Google Scholar 

  • E.F. van Dishoeck, E.A. Bergin, D.C. Lis, J.I. Lunine, Water: from clouds to planets, in Protostars and Planets VI, ed. by H. Beuther, R.S. Klessen, C.P. Dullemond, T. Henning (Univ. Arizona Press, Tucson, 2014), pp. 835–858

    Google Scholar 

  • J.-B. Vincent, D. Bodewits, S. Besse, H. Sierks, C. Barbieri, P. Lamy, R. Rodrigo, D. Koschny, H. Rickman, H.U. Keller, et al., Large heterogeneities in comet 67P as revealed by active pits from sinkhole collapse. Nature 523, 63–66 (2015)

    Article  ADS  Google Scholar 

  • R. Visser, S.D. Doty, E.F. van Dishoeck, The chemical history of molecules in circumstellar disks. II. Gas-phase species. Astron. Astrophys. 534, 132 (2011)

    Article  ADS  Google Scholar 

  • R. Visser, E.F. van Dishoeck, S.D. Doty, C.P. Dullemond, The chemical history of molecules in circumstellar disks. I. Ices. Astron. Astrophys. 495, 881–897 (2009)

    Article  ADS  Google Scholar 

  • D. Vokrouhlický, D. Nesvorný, Tilting Jupiter (a bit) and Saturn (a lot) during planetary migration. Astrophys. J. 806, 143 (2015)

    Article  ADS  Google Scholar 

  • D. Vokrouhlický, W.F. Bottke, S.R. Chesley, D.J. Scheeres, T.S. Statler, The Yarkovsky and YORP effects, in Asteroids IV (2015). ArXiv e-prints 1502.01249 [astro-ph]

    Google Scholar 

  • K. Volk, R. Malhotra, The scattered disk as the source of the Jupiter Family Comets. Astrophys. J. 687, 714–725 (2008)

    Article  ADS  Google Scholar 

  • S.K. Vsekhsvyatskij, Fizicheskie Kharakteristiki Komet. English translation (Add Izdatel’stvo Fiziko-Matematicheskoj Literatury, Moscow, 1958) (NASA TT F-80, 1964)

  • K. Wahlberg Jansson, A. Johansen, Formation of pebble-pile planetesimals. Astron. Astrophys. 570, 47 (2014)

    Article  ADS  Google Scholar 

  • K.J. Walsh, A. Morbidelli, The effect of an early planetesimal-driven migration of the giant planets on terrestrial planet formation. Astron. Astrophys. 526, 126 (2011)

    Article  ADS  Google Scholar 

  • K.J. Walsh, A. Morbidelli, S.N. Raymond, D.P. O’Brien, A.M. Mandell, A low mass for Mars from Jupiter’s early gas-driven migration. Nature 475, 206–209 (2011)

    Article  ADS  Google Scholar 

  • K.J. Walsh, A. Morbidelli, S.N. Raymond, D.P. O’Brien, A.M. Mandell, Populating the asteroid belt from two parent source regions due to the migration of giant planets—“the Grand Tack”. Meteorit. Planet. Sci. 47, 1941–1947 (2012)

    Article  ADS  Google Scholar 

  • W.R. Ward, Density waves in the solar nebula—differential Lindblad torque. Icarus 67, 164–180 (1986)

    Article  ADS  Google Scholar 

  • W.R. Ward, Protoplanet migration by nebula tides. Icarus 126, 261–281 (1997)

    Article  ADS  Google Scholar 

  • W.R. Ward, D.P. Hamilton, Tilting Saturn. I. Analytic model. Astron. J. 128, 2501–2509 (2004)

    Article  ADS  Google Scholar 

  • A. Waszczak, E.O. Ofek, O. Aharonson, S.R. Kulkarni, D. Polishook, J.M. Bauer, D. Levitan, B. Sesar, R. Laher, J. Surace, PTF Team, Main-belt comets in the Palomar Transient Factory survey—I. The search for extendedness. Mon. Not. R. Astron. Soc. 433, 3115–3132 (2013)

    Article  ADS  Google Scholar 

  • H.A. Weaver, P.D. Feldman, M.F. A’Hearn, N. Dello Russo, S.A. Stern, The carbon monoxide abundance in comet 103P/Hartley 2 during the EPOXI flyby. Astrophys. J. Lett. 734, 5 (2011)

    Article  ADS  Google Scholar 

  • S.J. Weidenschilling, Aerodynamics of solid bodies in the solar nebula. Mon. Not. R. Astron. Soc. 180, 57–70 (1977)

    Article  ADS  Google Scholar 

  • S.J. Weidenschilling, The origin of comets in the solar nebula: a unified model. Icarus 127, 290–306 (1997)

    Article  ADS  Google Scholar 

  • S.J. Weidenschilling, From icy grains to comets, in Comets II, ed. by M.C. Festou, H.U. Keller, H.A. Weaver (2004), pp. 97–104

    Google Scholar 

  • S.J. Weidenschilling, Accretion of planetary embryos in the inner and outer Solar System. Phys. Scr. T 130(1), 014021 (2008)

    Article  ADS  Google Scholar 

  • S.J. Weidenschilling, Initial sizes of planetesimals and accretion of the asteroids. Icarus 214, 671–684 (2011)

    Article  ADS  Google Scholar 

  • S.J. Weidenschilling, J.N. Cuzzi, Formation of planetesimals in the solar nebula, in Protostars and Planets III, ed. by E.H. Levy, J.I. Lunine (1993), pp. 1031–1060

    Google Scholar 

  • M. Weiler, H. Rauer, C. Sterken, Cometary nuclear magnitudes from sky survey observations. Icarus 212, 351–366 (2011)

    Article  ADS  Google Scholar 

  • P. Weissman, P. Hut, Dynamics of cometary showers, in Lunar and Planetary Science Conference. Lunar and Planetary Inst. Technical Report, vol. 17 (1986), pp. 935–936

    Google Scholar 

  • P.R. Weissman, Stellar perturbations of the cometary cloud. Nature 288, 242–243 (1980)

    Article  ADS  Google Scholar 

  • P.R. Weissman, The mass of the Oort Cloud. Astron. Astrophys. 118, 90–94 (1983)

    ADS  Google Scholar 

  • P.R. Weissman, Are cometary nuclei primordial rubble piles? Nature 320, 242–244 (1986)

    Article  ADS  Google Scholar 

  • P.R. Weissman, The Oort Cloud, in Completing the Inventory of the Solar System, ed. by T. Rettig, J.M. Hahn. Astronomical Society of the Pacific Conference Series, vol. 107 (1996), pp. 265–288

    Google Scholar 

  • P.R. Weissman, W.F. Bottke Jr., H.F. Levison, Evolution of comets into asteroids, in Asteroids III, ed. by W.F. Bottke Jr., A. Cellino, P. Paolicchi, R.P. Binzel (Univ. Arizona Press, Tucson, 2002), pp. 669–686

    Google Scholar 

  • P.R. Weissman, M. A’Hearn, Accretion of cometary nuclei in the solar nebula: boulders, not pebbles, in American Astronomical Society, DPS meeting, vol. 47 (2015). 309.05

    Google Scholar 

  • R.S. Westfall, Never at Rest: A Biography of Isaac Newton (Cambridge University Press, Cambridge, 1983)

    MATH  Google Scholar 

  • G.W. Wetherill, Late Heavy Bombardment of the Moon and terrestrial planets, in Lunar and Planetary Science Conference Proceedings, vol. 6 (1975), pp. 1539–1561

    Google Scholar 

  • F.L. Whipple, A comet model. I. The acceleration of comet Encke. Astrophys. J. 111, 375–394 (1950)

    Article  ADS  Google Scholar 

  • F.L. Whipple, Cometary brightness variation and nucleus structure. Moon Planets 18, 343–359 (1978)

    Article  ADS  Google Scholar 

  • P. Wiegert, S. Tremaine, The evolution of long-period comets. Icarus 137, 84–121 (1999)

    Article  ADS  Google Scholar 

  • D.E. Wilhelms, J.F. McCauley, N.J. Trask, The Geologic History of the Moon (US Geological Survey, Washington, 1987)

    Google Scholar 

  • K. Willacy, C. Alexander, M. Ali-Dib, C. Ceccarelli, S. Charnley, M. Doronin, Y. Ellinger, P. Gast, E. Gibb, S. Milam, et al., The composition of the protosolar disk and the formation conditions for comets. Space Sci. Rev. (2015). doi:10.1007/s11214-015-0167-6

    Google Scholar 

  • J.G. Williams, G.S. Benson, Resonances in the Neptune-Pluto system. Astron. J. 76, 167–176 (1971)

    Article  ADS  Google Scholar 

  • J.N. Winn, D.C. Fabrycky, The occurrence and architecture of exoplanetary systems. Annu. Rev. Astron. Astrophys. 53, 409–447 (2015)

    Article  ADS  Google Scholar 

  • S. Wolff, R.I. Dawson, R.A. Murray-Clay, Neptune on tiptoes: dynamical histories that preserve the cold classical Kuiper Belt. Astrophys. J. 746, 171 (2012)

    Article  ADS  Google Scholar 

  • J.T. Wright, K.M.S. Cartier, M. Zhao, D. Jontof-Hutter, E.B. Ford, The Ĝ search for extraterrestrial civilizations with large energy supplies. IV. The signatures and information content of transiting megastructures. ArXiv e-prints 1510.04606 [astro-ph] (2015)

  • M.C. Wyatt, Evolution of debris disks. Annu. Rev. Astron. Astrophys. 46, 339–383 (2008)

    Article  ADS  Google Scholar 

  • S. Wyckoff, M. Kleine, B.A. Peterson, P.A. Wehinger, L.M. Ziurys, Carbon isotope abundances in comets. Astrophys. J. 535, 991–999 (2000)

    Article  ADS  Google Scholar 

  • Z. Xu, D.W. Pankenier, Y. Jiang, East-Asian Archaeoastronomy: Historical Records of Astronomical Observations of China, Japan and Korea (CRC Press, Boca Raton, 2000)

    Google Scholar 

  • D.K. Yeomans, J.D. Giorgini, S.R. Chesley, The history and dynamics of comet 9P/Tempel 1. Space Sci. Rev. 117, 123–135 (2005)

    Article  ADS  Google Scholar 

  • D.K. Yeomans, J. Rahe, R.S. Freitag, The history of comet Halley. J. R. Astron. Soc. Can. 80, 62–86 (1986)

    ADS  Google Scholar 

  • D.K. Yeomans, Comets. A Chronological History of Observation, Science, Myth, and Folklore (Wiley, New York, 1991)

    Google Scholar 

  • A.N. Youdin, J. Goodman, Streaming instabilities in protoplanetary disks. Astrophys. J. 620, 459–469 (2005)

    Article  ADS  Google Scholar 

  • E.D. Young, Inheritance of solar short- and long-lived radionuclides from molecular clouds and the unexceptional nature of the solar system. Earth Planet. Sci. Lett. 392, 16–27 (2014)

    Article  ADS  Google Scholar 

  • K. Zahnle, P. Schenk, H. Levison, L. Dones, Cratering rates in the outer Solar System. Icarus 163, 263–289 (2003)

    Article  ADS  Google Scholar 

  • J.-Q. Zheng, M.J. Valtonen, L. Valtaoja, Capture of comets during the evolution of a star cluster and the origin of the Oort Cloud. Celest. Mech. Dyn. Astron. 49, 265–272 (1990)

    Article  ADS  Google Scholar 

  • M. Ziółkowski, Observations of comets and eclipses in the Andes, in Handbook of Archaeoastronomy and Ethnoastronomy, ed. by C.L.N. Ruggles (Springer, Berlin, 2015), pp. 913–920

    Google Scholar 

  • A. Zsom, C.W. Ormel, C. Güttler, J. Blum, C.P. Dullemond, The outcome of protoplanetary dust growth: pebbles, boulders, or planetesimals? II. Introducing the bouncing barrier. Astron. Astrophys. 513, 57 (2010)

    Article  ADS  Google Scholar 

  • B. Zuckerman, I. Song, A 40 Myr old gaseous circumstellar disk at 49 Ceti: massive CO-rich comet clouds at young A-type stars. Astrophys. J. 758, 77 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank Bob Johnston for discussions about his database of comets; my tweeps Alessondra Springmann, Sarah Hörst, Chris Granade, Brian Wolven, and especially Andy Kass for help fixing a last-minute BibTeX disaster; Bill Bottke, Robert Jedicke, and Mikael Granvik for data on the size distribution of asteroids; Paul Weissman for sharing his work in advance of publication; Alfred McEwen and Alan Delamere for information on HiRISE observations of comet C/2013 A1; Scott Sheppard, Meg Schwamb, Lucie Maquet, Kevin Walsh, Konstantin Batygin, and Cory Shankman for providing figures; David Nesvorný for discussions about the Kuiper Belt and the Late Heavy Bombardment; the referees for helpful comments; and Nirmala Kumar at Springer and the editors, especially Kathy Mandt, for their patience. The Astrophysics Data System Abstract Service and the arXiv were of great value in searching the literature. We thank Iggy Confidential for motivation during the revisions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luke Dones.

Additional information

We thank the NASA Cassini Data Analysis Program for support of some of the work described here.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dones, L., Brasser, R., Kaib, N. et al. Origin and Evolution of the Cometary Reservoirs. Space Sci Rev 197, 191–269 (2015). https://doi.org/10.1007/s11214-015-0223-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-015-0223-2

Keywords

Navigation