Space Science Reviews

, Volume 197, Issue 1–4, pp 191–269 | Cite as

Origin and Evolution of the Cometary Reservoirs

  • Luke DonesEmail author
  • Ramon Brasser
  • Nathan Kaib
  • Hans Rickman


Comets have three known reservoirs: the roughly spherical Oort Cloud (for long-period comets), the flattened Kuiper Belt (for ecliptic comets), and, surprisingly, the asteroid belt (for main-belt comets). Comets in the Oort Cloud were thought to have formed in the region of the giant planets and then placed in quasi-stable orbits at distances of thousands or tens of thousands of AU through the gravitational effects of the planets and the Galaxy. The planets were long assumed to have formed in place. However, the giant planets may have undergone two episodes of migration. The first would have taken place in the first few million years of the Solar System, during or shortly after the formation of the giant planets, when gas was still present in the protoplanetary disk around the Sun. The Grand Tack (Walsh et al. in Nature 475:206–209, 2011) models how this stage of migration could explain the low mass of Mars and deplete, then repopulate the asteroid belt, with outer-belt asteroids originating between, and outside of, the orbits of the giant planets. The second stage of migration would have occurred later (possibly hundreds of millions of years later) due to interactions with a remnant disk of planetesimals, i.e., a massive ancestor of the Kuiper Belt. Safronov (Evolution of the Protoplanetary Cloud and Formation of the Earth and the Planets, 1969) and Fernández and Ip (Icarus 58:109–120, 1984) proposed that the giant planets would have migrated as they interacted with leftover planetesimals; Jupiter would have moved slightly inward, while Saturn and (especially) Uranus and Neptune would have moved outward from the Sun. Malhotra (Nature 365:819–821, 1993) showed that Pluto’s orbit in the 3:2 resonance with Neptune was a natural outcome if Neptune captured Pluto into resonance while it migrated outward. Building on this work, Tsiganis et al. (Nature 435:459–461, 2005) proposed the Nice model, in which the giant planets formed closer together than they are now, and underwent a dynamical instability that led to a flood of comets and asteroids throughout the Solar System (Gomes et al. in Nature 435:466–469, 2005b). In this scenario, it is somewhat a matter of luck whether an icy planetesimal ends up in the Kuiper Belt or Oort Cloud (Brasser and Morbidelli in Icarus 225:40–49, 2013), as a Trojan asteroid (Morbidelli et al. in Nature 435:462–465, 2005; Nesvorný and Vokrouhlický in Astron. J. 137:5003–5011, 2009; Nesvorný et al. in Astrophys. J. 768:45, 2013), or as a distant “irregular” satellite of a giant planet (Nesvorný et al. in Astron. J. 133:1962–1976, 2007). Comets could even have been captured into the asteroid belt (Levison et al. in Nature 460:364–366, 2009). The remarkable finding of two “inner Oort Cloud” bodies, Sedna and 2012 \(\mbox{VP}_{113}\), with perihelion distances of 76 and 81 AU, respectively (Brown et al. in Astrophys. J. 617:645–649, 2004; Trujillo and Sheppard in Nature 507:471–474, 2014), along with the discovery of other likely inner Oort Cloud bodies (Chen et al. in Astrophys. J. Lett. 775:8, 2013; Brasser and Schwamb in Mon. Not. R. Astron. Soc. 446:3788–3796, 2015), suggests that the Sun formed in a denser environment, i.e., in a star cluster (Brasser et al. in Icarus 184:59–82, 2006, 191:413–433, 2007, 217:1–19, 2012b; Kaib and Quinn in Icarus 197:221–238, 2008). The Sun may have orbited closer or further from the center of the Galaxy than it does now, with implications for the structure of the Oort Cloud (Kaib et al. in Icarus 215:491–507, 2011).

We focus on the formation of cometary nuclei; the orbital properties of the cometary reservoirs; physical properties of comets; planetary migration; the formation of the Oort Cloud in various environments; the formation and evolution of the Kuiper Belt and Scattered Disk; and the populations and size distributions of the cometary reservoirs. We close with a brief discussion of cometary analogs around other stars and a summary.


Comets Long-period comets Jupiter-family comets Main-belt comets Oort Cloud Kuiper Belt Comets: individual: 67P/Churyumov-Gerasimenko 



We thank Bob Johnston for discussions about his database of comets; my tweeps Alessondra Springmann, Sarah Hörst, Chris Granade, Brian Wolven, and especially Andy Kass for help fixing a last-minute BibTeX disaster; Bill Bottke, Robert Jedicke, and Mikael Granvik for data on the size distribution of asteroids; Paul Weissman for sharing his work in advance of publication; Alfred McEwen and Alan Delamere for information on HiRISE observations of comet C/2013 A1; Scott Sheppard, Meg Schwamb, Lucie Maquet, Kevin Walsh, Konstantin Batygin, and Cory Shankman for providing figures; David Nesvorný for discussions about the Kuiper Belt and the Late Heavy Bombardment; the referees for helpful comments; and Nirmala Kumar at Springer and the editors, especially Kathy Mandt, for their patience. The Astrophysics Data System Abstract Service and the arXiv were of great value in searching the literature. We thank Iggy Confidential for motivation during the revisions.


  1. F.C. Adams, The birth environment of the Solar System. Annu. Rev. Astron. Astrophys. 48, 47–85 (2010) ADSCrossRefGoogle Scholar
  2. F.C. Adams, G. Laughlin, Constraints on the birth aggregate of the Solar System. Icarus 150, 151–162 (2001) ADSCrossRefGoogle Scholar
  3. C.B. Agnor, D.N.C. Lin, On the migration of Jupiter and Saturn: constraints from linear models of secular resonant coupling with the terrestrial planets. Astrophys. J. 745, 143 (2012) ADSCrossRefGoogle Scholar
  4. M.F. A’Hearn, M.J.S. Belton, W.A. Delamere, L.M. Feaga, D. Hampton, J. Kissel, K.P. Klaasen, L.A. McFadden, K.J. Meech, H.J. Melosh, et al., EPOXI at comet Hartley 2. Science 332, 1396–1400 (2011) ADSCrossRefGoogle Scholar
  5. C.M.O. Alexander, R. Bowden, M.L. Fogel, K.T. Howard, C.D.K. Herd, L.R. Nittler, The provenances of asteroids, and their contributions to the volatile inventories of the terrestrial planets. Science 337, 721–723 (2012) ADSCrossRefGoogle Scholar
  6. R. Alexander, Planet formation in evolving protoplanetary discs, in Exploring the Formation and Evolution of Planetary Systems, ed. by M. Booth, B.C. Matthews, J.R. Graham. IAU Symposium, vol. 299 (2014), pp. 179–189 Google Scholar
  7. R. Alexander, I. Pascucci, S. Andrews, P. Armitage, L. Cieza, The dispersal of protoplanetary disks, ed. by H. Beuther, R.S. Klessen, C.P. Dullemond, T. Henning (Univ. Arizona Press, 2014), pp. 475–496 Google Scholar
  8. M. Alexandersen, B. Gladman, J.J. Kavelaars, J.-M. Petit, S. Gwyn, C. Shankman, A carefully characterised and tracked trans-Neptunian survey, the size-distribution of the Plutinos and the number of Neptunian Trojans. ArXiv e-prints 1411.7953 [astro-ph] (2014)
  9. L. Allen, S.T. Megeath, R. Gutermuth, P.C. Myers, S. Wolk, F.C. Adams, J. Muzerolle, E. Young, J.L. Pipher, The structure and evolution of young stellar clusters, in Protostars and Planets V, ed. by B. Reipurth, D. Jewitt, K. Keil (2007), pp. 361–376 Google Scholar
  10. R.L. Allen, G.M. Bernstein, R. Malhotra, The edge of the Solar System. Astrophys. J. Lett. 549, 241–244 (2001) ADSCrossRefGoogle Scholar
  11. K. Altwegg, H. Balsiger, A. Bar-Nun, J.J. Berthelier, A. Bieler, P. Bochsler, C. Briois, U. Calmonte, M. Combi, J. De Keyser, et al., 67P/Churyumov-Gerasimenko, a Jupiter family comet with a high D/H ratio. Science 347, 1261952 (2015) CrossRefGoogle Scholar
  12. S.M. Andrews, Observations of solids in protoplanetary disks. ArXiv e-prints 1507.04758 [astro-ph] (2015)
  13. S.M. Andrews, D.J. Wilner, A.M. Hughes, C. Qi, K.A. Rosenfeld, K.I. Öberg, T. Birnstiel, C. Espaillat, L.A. Cieza, J.P. Williams, et al., The TW Hya disk at 870 μm: comparison of CO and dust radial structures. Astrophys. J. 744, 162 (2012) ADSCrossRefGoogle Scholar
  14. W. Applebaum, Keplerian astronomy after Kepler: researches and problems. Hist. Sci. 34, 451–504 (1996) MathSciNetCrossRefGoogle Scholar
  15. P.J. Armitage, Lecture notes on the formation and early evolution of planetary systems (version 4, August 26, 2014). ArXiv e-prints astro-ph/0701485 (2014)
  16. P.J. Armitage, Physical processes in protoplanetary disks. ArXiv e-prints 1509.06382 [astro-ph] (2015)
  17. P.J. Armitage, Astrophysics of Planet Formation (Cambridge University Press, Cambridge, 2010) Google Scholar
  18. E. Asphaug, W. Benz, Size, density, and structure of comet Shoemaker-Levy 9 inferred from the physics of tidal breakup. Icarus 121, 225–248 (1996) ADSCrossRefGoogle Scholar
  19. C.A.L. Bailer-Jones, Close encounters of the stellar kind. Astron. Astrophys. 575, 35 (2015) ADSCrossRefGoogle Scholar
  20. M.E. Bailey, S.V.M. Clube, W.M. Napier, The Origin of Comets (Pergamon Press, Elmsford, 1990) Google Scholar
  21. R.B. Baldwin, Was there a ‘terminal lunar cataclysm’ 3.9 to 4.0 billion years ago? Icarus 23, 157–166 (1974) ADSCrossRefGoogle Scholar
  22. P. Barge, J. Sommeria, Did planet formation begin inside persistent gaseous vortices? Astron. Astrophys. 295, 1–4 (1995) ADSGoogle Scholar
  23. A.C. Barr, R.M. Canup, Origin of the Ganymede-Callisto dichotomy by impacts during the Late Heavy Bombardment. Nat. Geosci. 3, 164–167 (2010) ADSCrossRefGoogle Scholar
  24. J.A. Barranco, P.S. Marcus, Three-dimensional vortices in stratified protoplanetary disks. Astrophys. J. 623, 1157–1170 (2005) ADSCrossRefGoogle Scholar
  25. M.A. Barucci, I.N. Belskaya, M. Fulchignoni, M. Birlan, Taxonomy of Centaurs and Trans-Neptunian objects. Astron. J. 130, 1291–1298 (2005) ADSCrossRefGoogle Scholar
  26. C. Baruteau, A. Crida, S.-J. Paardekooper, F. Masset, J. Guilet, B. Bitsch, R. Nelson, W. Kley, J. Papaloizou, Planet-disk interactions and early evolution of planetary systems, in Protostars and Planets VI, ed. by H. Beuther, R.S. Klessen, C.P. Dullemond, T. Henning (Univ. Arizona Press, Tucson, 2014), pp. 667–689 Google Scholar
  27. F. Bash, The present, past and future velocity of nearby stars—the path of the Sun in \(10^{8}~\mbox{years}\), in The Galaxy and the Solar System, ed. by R. Smoluchowski, J.M. Bahcall, M.S. Matthews (Univ. Arizona Press, Tucson, 1986), pp. 35–46 Google Scholar
  28. K. Batygin, M.E. Brown, H. Betts, Instability-driven dynamical evolution model of a primordially five-planet outer Solar System. Astrophys. J. Lett. 744, 3 (2012) ADSCrossRefGoogle Scholar
  29. K. Batygin, M.E. Brown, W.C. Fraser, Retention of a primordial cold classical Kuiper Belt in an instability-driven model of Solar System formation. Astrophys. J. 738, 13 (2011) ADSCrossRefGoogle Scholar
  30. K. Batygin, A. Morbidelli, M.J. Holman, Chaotic disintegration of the inner Solar System. Astrophys. J. 799, 120 (2015) ADSCrossRefGoogle Scholar
  31. M.J.S. Belton, The mass disruption of Jupiter family comets. Icarus 245, 87–93 (2015) ADSCrossRefGoogle Scholar
  32. P.G. Benavidez, A. Campo Bagatin, Collisional evolution of trans-Neptunian populations: effects of fragmentation physics and estimates of the abundances of gravitational aggregates. Planet. Space Sci. 57, 201–215 (2009) ADSCrossRefGoogle Scholar
  33. G.M. Bernstein, D.E. Trilling, R.L. Allen, M.E. Brown, M. Holman, R. Malhotra, The size distribution of trans-Neptunian bodies. Astron. J. 128, 1364–1390 (2004) ADSCrossRefGoogle Scholar
  34. G.M. Bernstein, D.E. Trilling, R.L. Allen, M.E. Brown, M. Holman, R. Malhotra, Erratum: “the size distribution of trans-Neptunian bodies”. Astron. J. 131, 2364 (2006) ADSCrossRefGoogle Scholar
  35. I. Bertini, Main belt comets: a new class of small bodies in the solar system. Planet. Space Sci. 59, 365–377 (2011) ADSCrossRefGoogle Scholar
  36. H. Beuther, R.S. Klessen, C.P. Dullemond, T. Henning, Protostars and Planets VI (Univ. Arizona Press, Tucson, 2014) Google Scholar
  37. J.-P. Bibring, M.G.G.T. Taylor, C. Alexander, U. Auster, J. Biele, A.E. Finzi, F. Goesmann, G. Klingelhoefer, W. Kofman, S. Mottola, et al., Philae’s first days on the comet. Science 349, 493 (2015) ADSCrossRefGoogle Scholar
  38. E.B. Bierhaus, L. Dones, Craters and ejecta on Pluto and Charon: anticipated results from the New Horizons flyby. Icarus 246, 165–182 (2015) ADSCrossRefGoogle Scholar
  39. E.B. Bierhaus, L. Dones, J.L. Alvarellos, K. Zahnle, The role of ejecta in the small crater populations on the mid-sized Saturnian satellites. Icarus 218, 602–621 (2012) ADSCrossRefGoogle Scholar
  40. B. Bitsch, M. Lambrechts, A. Johansen, The growth of planets by pebble accretion in evolving protoplanetary discs. Astron. Astrophys. 582, 112 (2015) ADSCrossRefGoogle Scholar
  41. B. Bitsch, A. Morbidelli, E. Lega, A. Crida, Stellar irradiated discs and implications on migration of embedded planets. II. Accreting-discs. Astron. Astrophys. 564, 135 (2014) ADSCrossRefGoogle Scholar
  42. J. Blum, B. Gundlach, S. Mühle, J.M. Trigo-Rodriguez, Comets formed in solar-nebula instabilities!—An experimental and modeling attempt to relate the activity of comets to their formation process. Icarus 235, 156–169 (2014) ADSCrossRefGoogle Scholar
  43. J. Blum, B. Gundlach, S. Mühle, J.M. Trigo-Rodriguez, Corrigendum to ‘Comets formed in solar-nebula instabilities!—An experimental and modeling attempt to relate the activity of comets to their formation process’ [Icarus 235 (2014) 156–169]. Icarus 248, 135–136 (2015) ADSCrossRefGoogle Scholar
  44. D. Bockelée-Morvan, J. Crovisier, M.J. Mumma, H.A. Weaver, The composition of cometary volatiles, in Comets II, ed. by M.C. Festou, H.U. Keller, H.A. Weaver, (Univ. Arizona Press, Tucson, 2004), pp. 391–423 Google Scholar
  45. D. Bockelée-Morvan, N. Biver, B. Swinyard, M. de Val-Borro, J. Crovisier, P. Hartogh, D.C. Lis, R. Moreno, S. Szutowicz, E. Lellouch, et al., Herschel measurements of the D/H and 16O/18O ratios in water in the Oort-cloud comet C/2009 P1 (Garradd). Astron. Astrophys. 544, 15 (2012) ADSCrossRefGoogle Scholar
  46. D. Bockelée-Morvan, U. Calmonte, S. Charnley, J. Duprat, C. Engrand, A. Gicquel, M. Hässig, E. Jehin, H. Kawakita, B. Marty, et al., Cometary isotopic measurements. Space Sci. Rev. (2015). doi: 10.1007/s11214-015-0156-9 Google Scholar
  47. A.C. Boley, The two modes of gas giant planet formation. Astrophys. J. Lett. 695, 53–57 (2009) ADSCrossRefGoogle Scholar
  48. A. Bonsor, A.J. Mustill, M.C. Wyatt, Dynamical effects of stellar mass-loss on a Kuiper-like belt. Mon. Not. R. Astron. Soc. 414, 930–939 (2011) ADSCrossRefGoogle Scholar
  49. A. Bonsor, S.N. Raymond, J.-C. Augereau, C.W. Ormel, Planetesimal-driven migration as an explanation for observations of high levels of warm, exozodiacal dust. Mon. Not. R. Astron. Soc. 441, 2380–2391 (2014) ADSCrossRefGoogle Scholar
  50. W.F. Bottke, H.F. Levison, D. Nesvorný, L. Dones, Can planetesimals left over from terrestrial planet formation produce the lunar Late Heavy Bombardment? Icarus 190, 203–223 (2007) ADSCrossRefGoogle Scholar
  51. W.F. Bottke, D. Vokrouhlický, D. Minton, D. Nesvorný, A. Morbidelli, R. Brasser, B. Simonson, H.F. Levison, An Archaean heavy bombardment from a destabilized extension of the asteroid belt. Nature 485, 78–81 (2012) ADSCrossRefGoogle Scholar
  52. W.F. Bottke, D. Vokrouhlický, S. Marchi, T. Swindle, E.R.D. Scott, J.R. Weirich, H. Levison, Dating the Moon-forming impact event with asteroidal meteorites. Science 348, 321–323 (2015) ADSCrossRefGoogle Scholar
  53. T.S. Boyajian, D.M. LaCourse, S.A. Rappaport, D. Fabrycky, D.A. Fischer, D. Gandolfi, G.M. Kennedy, M.C. Liu, A. Moor, K. Olah, et al., Planet Hunters X. KIC 8462852—where’s the flux? ArXiv e-prints 1509.03622 [astro-ph] (2015)
  54. R. Brasser, M.J. Duncan, An analytical method to compute comet cloud formation efficiency and its application. Celest. Mech. Dyn. Astron. 100, 1–26 (2008) ADSMathSciNetCrossRefzbMATHGoogle Scholar
  55. R. Brasser, M.-H. Lee, Tilting Saturn without tilting Jupiter: constraints on giant planet migration. Astron. J. (2015). doi: 10.1088/0004-6256/150/5/157 Google Scholar
  56. R. Brasser, A. Morbidelli, Oort Cloud and Scattered Disc formation during a late dynamical instability in the Solar System. Icarus 225, 40–49 (2013) ADSCrossRefGoogle Scholar
  57. R. Brasser, M.E. Schwamb, Re-assessing the formation of the inner Oort Cloud in an embedded star cluster—II. Probing the inner edge. Mon. Not. R. Astron. Soc. 446, 3788–3796 (2015) ADSCrossRefGoogle Scholar
  58. R. Brasser, J.-H. Wang, An updated estimate of the number of Jupiter-family comets using a simple fading law. Astron. Astrophys. 573, 102 (2015) ADSCrossRefGoogle Scholar
  59. R. Brasser, M.J. Duncan, H.F. Levison, Embedded star clusters and the formation of the Oort Cloud. Icarus 184, 59–82 (2006) ADSCrossRefGoogle Scholar
  60. R. Brasser, M.J. Duncan, H.F. Levison, Embedded star clusters and the formation of the Oort Cloud. II. The effect of the primordial solar nebula. Icarus 191, 413–433 (2007) ADSCrossRefGoogle Scholar
  61. R. Brasser, M.J. Duncan, H.F. Levison, Embedded star clusters and the formation of the Oort Cloud. III. Evolution of the inner cloud during the Galactic phase. Icarus 196, 274–284 (2008) ADSCrossRefGoogle Scholar
  62. R. Brasser, A. Higuchi, N. Kaib, Oort Cloud formation at various galactic distances. Astron. Astrophys. 516, 72 (2010) ADSCrossRefzbMATHGoogle Scholar
  63. R. Brasser, K.J. Walsh, D. Nesvorný, Constraining the primordial orbits of the terrestrial planets. Mon. Not. R. Astron. Soc. 433, 3417–3427 (2013) ADSCrossRefGoogle Scholar
  64. R. Brasser, A. Morbidelli, R. Gomes, K. Tsiganis, H.F. Levison, Constructing the secular architecture of the solar system II: the terrestrial planets. Astron. Astrophys. 507, 1053–1065 (2009) ADSCrossRefGoogle Scholar
  65. R. Brasser, M.E. Schwamb, P.S. Lykawka, R.S. Gomes, An Oort Cloud origin for the high-inclination, high-perihelion Centaurs. Mon. Not. R. Astron. Soc. 420, 3396–3402 (2012a) ADSCrossRefGoogle Scholar
  66. R. Brasser, M.J. Duncan, H.F. Levison, M.E. Schwamb, M.E. Brown, Reassessing the formation of the inner Oort Cloud in an embedded star cluster. Icarus 217, 1–19 (2012b) ADSCrossRefGoogle Scholar
  67. S. Breiter, R. Ratajczak, Vectorial elements for the Galactic disc tide effects in cometary motion. Mon. Not. R. Astron. Soc. 364, 1222–1228 (2005) ADSCrossRefGoogle Scholar
  68. G.D. Brin, D.A. Mendis, Dust release and mantle development in comets. Astrophys. J. 229, 402–408 (1979) ADSCrossRefGoogle Scholar
  69. M.E. Brown, The inclination distribution of the Kuiper Belt. Astron. J. 121, 2804–2814 (2001) ADSCrossRefGoogle Scholar
  70. M.E. Brown, The largest Kuiper Belt Objects, in The Solar System Beyond Neptune, ed. by M.A. Barucci, H. Boehnhardt, D.P. Cruikshank, A. Morbidelli, R. Dotson (Univ. Arizona Press, Tucson, 2008), pp. 335–344 Google Scholar
  71. M.E. Brown, C. Trujillo, D. Rabinowitz, Discovery of a candidate inner Oort Cloud planetoid. Astrophys. J. 617, 645–649 (2004) ADSCrossRefGoogle Scholar
  72. M.E. Brown, C.A. Trujillo, D.L. Rabinowitz, Discovery of a planetary-sized object in the scattered Kuiper Belt. Astrophys. J. Lett. 635, 97–100 (2005) ADSCrossRefGoogle Scholar
  73. D. Brownlee, The Stardust mission: analyzing samples from the edge of the Solar System. Annu. Rev. Earth Planet. Sci. 42, 179–205 (2014) ADSCrossRefGoogle Scholar
  74. D. Brownlee, P. Tsou, J. Aléon, C.M.O. Alexander, T. Araki, S. Bajt, G.A. Baratta, R. Bastien, P. Bland, P. Bleuet, et al., Comet 81P/Wild 2 under a microscope. Science 314, 1711–1716 (2006) ADSCrossRefGoogle Scholar
  75. S.J. Bus, M.F. A’Hearn, E. Bowell, S.A. Stern, (2060) Chiron: evidence for activity near aphelion. Icarus 150, 94–103 (2001) ADSCrossRefGoogle Scholar
  76. H. Campins, K. Hargrove, N. Pinilla-Alonso, E.S. Howell, M.S. Kelley, J. Licandro, T. Mothé-Diniz, Y. Fernández, J. Ziffer, Water ice and organics on the surface of the asteroid 24 Themis. Nature 464, 1320–1321 (2010) ADSCrossRefGoogle Scholar
  77. R.M. Canup, A giant impact origin of Pluto-Charon. Science 307, 546–550 (2005) ADSCrossRefGoogle Scholar
  78. R.W. Carlson, L.E. Borg, A.M. Gaffney, M. Boyet, Rb-Sr, Sm-Nd and Lu-Hf isotope systematics of the lunar Mg-suite: the age of the lunar crust and its relation to the time of Moon formation. Philos. Trans. R. Soc. Lond. A 372, 30246 (2014) ADSCrossRefGoogle Scholar
  79. D. Carrera, A. Johansen, M.B. Davies, How to form planetesimals from mm-sized chondrules and chondrule aggregates. Astron. Astrophys. 579, 43 (2015) ADSCrossRefGoogle Scholar
  80. A. Carusi, Ľ. Kresák, G.B. Valsecchi, Conservation of the Tisserand parameter at close encounters of interplanetary objects with Jupiter. Earth Moon Planets 68, 71–94 (1995) ADSCrossRefGoogle Scholar
  81. A. Carusi, L. Kresak, E. Perozzi, G.B. Valsecchi, Peculiar orbital histories of some short-period comets. Bull. Am. Astron. Soc. 16, 704 (1984) ADSGoogle Scholar
  82. A. Carusi, L. Kresak, E. Perozzi, G.B. Valsecchi, Long-Term Evolution of Short-Period Comets (Adam Hilger, Bristol, 1985) Google Scholar
  83. A. Carusi, L. Kresak, E. Perozzi, G.B. Valsecchi, High-order librations of Halley-type comets. Astron. Astrophys. 187, 899–905 (1987) ADSGoogle Scholar
  84. J.E. Chambers, Making more terrestrial planets. Icarus 152, 205–224 (2001) ADSCrossRefGoogle Scholar
  85. J.E. Chambers, Planetesimal formation by turbulent concentration. Icarus 208, 505–517 (2010) ADSCrossRefGoogle Scholar
  86. J.E. Chambers, Giant planet formation with pebble accretion. Icarus 233, 83–100 (2014) ADSCrossRefGoogle Scholar
  87. S.L. Chapin, Early ideas about comets 1650–1700. Leafl., Astron. Soc. Pac. 6(278), 221–228 (1952) ADSGoogle Scholar
  88. C.R. Chapman, B.A. Cohen, D.H. Grinspoon, What are the real constraints on the existence and magnitude of the Late Heavy Bombardment? Icarus 189, 233–245 (2007) ADSCrossRefGoogle Scholar
  89. J. Chen, D. Jewitt, On the rate at which comets split. Icarus 108, 265–271 (1994) ADSCrossRefGoogle Scholar
  90. Y.-T. Chen, J.J. Kavelaars, S. Gwyn, L. Ferrarese, P. Côté, A. Jordán, V. Suc, J.-C. Cuillandre, W.-H. Ip, Discovery of a new member of the inner Oort Cloud from the Next Generation Virgo Cluster Survey. Astrophys. J. Lett. 775, 8 (2013) ADSCrossRefGoogle Scholar
  91. E. Chiang, A.N. Youdin, Forming planetesimals in solar and extrasolar nebulae. Annu. Rev. Earth Planet. Sci. 38, 493–522 (2010) ADSCrossRefGoogle Scholar
  92. R. Cloutier, D. Tamayo, D. Valencia, Could Jupiter or Saturn have ejected a fifth giant planet? Astrophys. J. 813, 8 (2015) ADSCrossRefGoogle Scholar
  93. R. Cloutier, T. Currie, G.H. Rieke, S.J. Kenyon, Z. Balog, R. Jayawardhana, A deep Spitzer survey of circumstellar disks in the young double cluster, h and \(\chi\) Persei. Astrophys. J. 796, 127 (2014) ADSCrossRefGoogle Scholar
  94. A.L. Cochran, A.-C. Levasseur-Regourd, M. Cordiner, E. Hadamcik, J. Lasue, A. Gicquel, D.G. Schleicher, S.B. Charnley, M.J. Mumma, L. Paganini, et al., The composition of comets. Space Sci. Rev. (2015). doi: 10.1007/s11214-015-0183-6 Google Scholar
  95. B.A. Cohen, N.E. Petro, S.J. Lawrence, What do Nectaris Basin impact melt rocks look like and where can we find them? in Early Solar System Impact Bombardment III, (2015), p. 3019. Google Scholar
  96. B.A. Cohen, T.D. Swindle, D.A. Kring, Support for the lunar cataclysm hypothesis from lunar meteorite impact melt ages. Science 290, 1754–1756 (2000) ADSCrossRefGoogle Scholar
  97. C.J. Cohen, E.C. Hubbard, Libration of the close approaches of Pluto to Neptune. Astron. J. 70, 10–13 (1965) ADSMathSciNetCrossRefGoogle Scholar
  98. M. Ćuk, Chronology and sources of lunar impact bombardment. Icarus 218, 69–79 (2012) ADSCrossRefGoogle Scholar
  99. M. Ćuk, B.J. Gladman, S.T. Stewart, Constraints on the source of lunar cataclysm impactors. Icarus 207, 590–594 (2010) ADSCrossRefGoogle Scholar
  100. M. Ćuk, B.J. Gladman, S.T. Stewart, Rebuttal to the comment by Malhotra and Strom on “Constraints on the source of lunar cataclysm impactors”. Icarus 216, 363–365 (2011) ADSCrossRefGoogle Scholar
  101. J.N. Cuzzi, R.C. Hogan, W.F. Bottke, Towards initial mass functions for asteroids and Kuiper Belt Objects. Icarus 208, 518–538 (2010) ADSCrossRefGoogle Scholar
  102. J.N. Cuzzi, R.C. Hogan, K. Shariff, Toward planetesimals: dense chondrule clumps in the protoplanetary nebula. Astrophys. J. 687, 1432–1447 (2008) ADSCrossRefGoogle Scholar
  103. J.N. Cuzzi, R.C. Hogan, J.M. Paque, A.R. Dobrovolskis, Size-selective concentration of chondrules and other small particles in protoplanetary nebula turbulence. Astrophys. J. 546, 496–508 (2001) ADSCrossRefGoogle Scholar
  104. B.J.R. Davidsson, P.J. Gutiérrez, Estimating the nucleus density of comet 19P/Borrelly. Icarus 168, 392–408 (2004) ADSCrossRefGoogle Scholar
  105. B.J.R. Davidsson, P.J. Gutiérrez, Nucleus properties of comet 67P/Churyumov Gerasimenko estimated from non-gravitational force modeling. Icarus 176, 453–477 (2005) ADSCrossRefGoogle Scholar
  106. B.J.R. Davidsson, P.J. Gutiérrez, Non-gravitational force modeling of comet 81P/Wild 2. I. A nucleus bulk density estimate. Icarus 180, 224–242 (2006) ADSCrossRefGoogle Scholar
  107. B.J.R. Davidsson, P.J. Gutiérrez, H. Rickman, Nucleus properties of comet 9P/Tempel 1 estimated from non-gravitational force modeling. Icarus 187, 306–320 (2007) ADSCrossRefGoogle Scholar
  108. B. Davidsson, H. Sierks, C. Güttler, F. Marzari, M. Pajola, H. Rickman, A.-T. Auger, M.R. El-Maarry, The primordial nucleus of comet 67P/Churyumov-Gerasimenko. Astron. Astrophys. (2015), submitted Google Scholar
  109. M.B. Davies, F.C. Adams, P. Armitage, J. Chambers, E. Ford, A. Morbidelli, S.N. Raymond, D. Veras, The long-term dynamical evolution of planetary systems, ed. by H. Beuther, R.S. Klessen, C.P. Dullemond, T. Henning (Univ. Arizona Press, 2014), pp. 787–808 Google Scholar
  110. A.M. Davis, K.D. McKeegan, Short-lived radionuclides and early Solar System chronology, in Treatise on Geochemistry, 2nd edn., ed. by K.K. Turekian, H.D. Holland (Elsevier, Amsterdam, 2014), pp. 361–395 CrossRefGoogle Scholar
  111. A.M. Davis, C.M.O. Alexander, F.J. Ciesla, M. Gounelle, A.N. Krot, M.I. Petaev, T. Stephan, Samples of the Solar System: recent developments, in Protostars and Planets VI, ed. by H. Beuther, R.S. Klessen, C.P. Dullemond, T. Henning (Univ. Arizona Press, Tucson, 2014), pp. 809–831 Google Scholar
  112. R.I. Dawson, R. Murray-Clay, Neptune’s wild days: constraints from the eccentricity distribution of the classical Kuiper Belt. Astrophys. J. 750, 43 (2012) ADSCrossRefGoogle Scholar
  113. R. Deienno, T. Yokoyama, E.C. Nogueira, N. Callegari, M.T. Santos, Effects of the planetary migration on some primordial satellites of the outer planets. I. Uranus’ case. Astron. Astrophys. 536, 57 (2011) ADSCrossRefGoogle Scholar
  114. R. Deienno, D. Nesvorný, D. Vokrouhlický, T. Yokoyama, Orbital perturbations of the Galilean satellites during planetary encounters. Astron. J. 148, 25 (2014) ADSCrossRefGoogle Scholar
  115. A. Delsanti, D. Jewitt, The Solar System beyond the planets, in Solar System Update, ed. by P. Blondel, J.W. Mason (Springer, Berlin, 2006), pp. 267–294 CrossRefGoogle Scholar
  116. A.H. Delsemme, D.C. Miller, The continuum of comet Burnham (1960 II): the differentiation of a short period comet. Planet. Space Sci. 19, 1229–1257 (1971) ADSCrossRefGoogle Scholar
  117. F.E. DeMeo, B. Carry, Solar System evolution from compositional mapping of the asteroid belt. Nature 505, 629–634 (2014) ADSCrossRefGoogle Scholar
  118. F.E. DeMeo, R.P. Binzel, B. Carry, D. Polishook, N.A. Moskovitz, Unexpected D-type interlopers in the inner main belt. Icarus 229, 392–399 (2014) ADSCrossRefGoogle Scholar
  119. R.P. Di Sisto, A. Brunini, The origin and distribution of the Centaur population. Icarus 190, 224–235 (2007) ADSCrossRefGoogle Scholar
  120. R.P. Di Sisto, J.A. Fernández, A. Brunini, On the population, physical decay and orbital distribution of Jupiter family comets: numerical simulations. Icarus 203, 140–154 (2009) ADSCrossRefGoogle Scholar
  121. L. Dones, P.R. Weissman, H.F. Levison, M.J. Duncan, Oort Cloud formation and dynamics, in Comets II, ed. by M.C. Festou, H.U. Keller, H.A. Weaver (Univ. Arizona Press, Tucson, 2004), pp. 153–174 Google Scholar
  122. L. Dones, C.R. Chapman, W.B. McKinnon, H.J. Melosh, M.R. Kirchoff, G. Neukum, K.J. Zahnle, Icy satellites of Saturn: impact cratering and age determination, in Saturn from Cassini-Huygens, ed. by M.K. Dougherty, L.W. Esposito, S.M. Krimigis (2009), pp. 613–635 CrossRefGoogle Scholar
  123. B. Donn, J. Rahe, Structure and origin of cometary nuclei, in IAU Colloq. 61: Comet Discoveries, Statistics, and Observational Selection, ed. by L.L. Wilkening (1982), pp. 203–226 Google Scholar
  124. P.M. Doyle, K. Jogo, K. Nagashima, A.N. Krot, S. Wakita, F.J. Ciesla, I.D. Hutcheon, Early aqueous activity on the ordinary and carbonaceous chondrite parent bodies recorded by fayalite. Nat. Commun. 6, 7444 (2015) ADSCrossRefGoogle Scholar
  125. R. Duffard, D. Lazzaro, S. Pinto, J. Carvano, C. Angeli, A. Alvarez-Candal, S. Fernández, New activity of Chiron: results from 5 years of photometric monitoring. Icarus 160, 44–51 (2002) ADSCrossRefGoogle Scholar
  126. D. Dukes, M.R. Krumholz, Was the Sun born in a massive cluster? Astrophys. J. 754, 56 (2012) ADSCrossRefGoogle Scholar
  127. M. Duncan, T. Quinn, S. Tremaine, The formation and extent of the Solar System comet cloud. Astron. J. 94, 1330–1338 (1987) ADSCrossRefGoogle Scholar
  128. M.J. Duncan, H.F. Levison, A scattered comet disk and the origin of Jupiter family comets. Science 276, 1670–1672 (1997) ADSCrossRefGoogle Scholar
  129. M.J. Duncan, H.F. Levison, S.M. Budd, The dynamical structure of the Kuiper Belt. Astron. J. 110, 3073–3081 (1995) ADSCrossRefGoogle Scholar
  130. P.A. Dybczyński, Simulating observable comets. I. The effects of a single stellar passage through or near the Oort cometary cloud. Astron. Astrophys. 396, 283–292 (2002) ADSCrossRefGoogle Scholar
  131. P.A. Dybczyński, M. Królikowska, Where do long-period comets come from? Moving through the Jupiter-Saturn barrier. Mon. Not. R. Astron. Soc. 416, 51–69 (2011) ADSGoogle Scholar
  132. P.A. Dybczyński, M. Królikowska, Near-parabolic comets observed in 2006–2010—II. Their past and future motion under the influence of the Galaxy field and known nearby stars. Mon. Not. R. Astron. Soc. 448, 588–600 (2015) ADSCrossRefGoogle Scholar
  133. P. Eberhardt, M. Reber, D. Krankowsky, R.R. Hodges, The D/H and 18O/16O ratios in water from comet P/Halley. Astron. Astrophys. 302, 301 (1995) ADSGoogle Scholar
  134. S. Eggers, H.U. Keller, P. Kroupa, W.J. Markiewicz, Origin and dynamics of comets and star formation. Planet. Space Sci. 45, 1099–1104 (1997) ADSCrossRefGoogle Scholar
  135. D.J. Eicher, Comets!: Visitors from Deep Space (Cambridge University Press, Cambridge, 2013) CrossRefGoogle Scholar
  136. J.L. Elliot, S.D. Kern, K.B. Clancy, A.A.S. Gulbis, R.L. Millis, M.W. Buie, L.H. Wasserman, E.I. Chiang, A.B. Jordan, D.E. Trilling, K.J. Meech, The Deep Ecliptic Survey: a search for Kuiper Belt Objects and Centaurs. II. Dynamical classification, the Kuiper Belt plane, and the core population. Astron. J. 129, 1117–1162 (2005) ADSCrossRefGoogle Scholar
  137. V.V. Emel’yanenko, D.J. Asher, M.E. Bailey, A new class of trans-Neptunian objects in high-eccentricity orbits. Mon. Not. R. Astron. Soc. 338, 443–451 (2003) ADSCrossRefGoogle Scholar
  138. V.V. Emel’yanenko, D.J. Asher, M.E. Bailey, Centaurs from the Oort Cloud and the origin of Jupiter-family comets. Mon. Not. R. Astron. Soc. 361, 1345–1351 (2005) ADSCrossRefGoogle Scholar
  139. E. Everhart, Comet discoveries and observational selection. Astron. J. 72, 716–726 (1967a) ADSCrossRefGoogle Scholar
  140. E. Everhart, Intrinsic distributions of cometary perihelia and magnitudes. Astron. J. 72, 1002–1011 (1967b) ADSCrossRefGoogle Scholar
  141. E. Everhart, Change in total energy of comets passing through the Solar System. Astron. J. 73, 1039–1052 (1968) ADSCrossRefGoogle Scholar
  142. E. Everhart, The origin of short-period comets. Astrophys. Lett. 10, 131–135 (1972) ADSGoogle Scholar
  143. P. Farinella, D.R. Davis, Short-period comets: primordial bodies or collisional fragments? Science 273, 938–941 (1996) ADSCrossRefGoogle Scholar
  144. F. Feng, C.A.L. Bailer-Jones, Finding the imprints of stellar encounters in long period comets. Mon. Not. R. Astron. Soc. 454(3), 3267–3276 (2015) ADSCrossRefGoogle Scholar
  145. J.A. Fernández, On the existence of a comet belt beyond Neptune. Mon. Not. R. Astron. Soc. 192, 481–491 (1980) ADSCrossRefGoogle Scholar
  146. J.A. Fernández, The formation of the Oort Cloud and the primitive galactic environment. Icarus 129, 106–119 (1997) ADSCrossRefGoogle Scholar
  147. J.A. Fernández, A. Brunini, The buildup of a tightly bound comet cloud around an early Sun immersed in a dense galactic environment: numerical experiments. Icarus 145, 580–590 (2000) ADSCrossRefGoogle Scholar
  148. J.A. Fernández, W.-H. Ip, Some dynamical aspects of the accretion of Uranus and Neptune—the exchange of orbital angular momentum with planetesimals. Icarus 58, 109–120 (1984) ADSCrossRefGoogle Scholar
  149. J.A. Fernández, A. Sosa, Magnitude and size distribution of long-period comets in Earth-crossing or approaching orbits. Mon. Not. R. Astron. Soc. 423, 1674–1690 (2012) ADSCrossRefGoogle Scholar
  150. J.A. Fernández, G. Tancredi, H. Rickman, J. Licandro, The population, magnitudes, and sizes of Jupiter family comets. Astron. Astrophys. 352, 327–340 (1999) ADSGoogle Scholar
  151. J.A. Fernández, Comets: Nature, Dynamics, Origin, and Their Cosmogonical Relevance. Astrophysics and Space Science Library (Springer, Berlin, 2005) CrossRefGoogle Scholar
  152. Y.R. Fernández, D.C. Jewitt, S.S. Sheppard, Albedos of asteroids in comet-like orbits. Astron. J. 130, 308–318 (2005) ADSCrossRefGoogle Scholar
  153. Y.R. Fernández, M.S. Kelley, P.L. Lamy, I. Toth, O. Groussin, C.M. Lisse, M.F. A’Hearn, J.M. Bauer, H. Campins, A. Fitzsimmons, et al., Thermal properties, sizes, and size distribution of Jupiter-family cometary nuclei. Icarus 226, 1138–1170 (2013) ADSCrossRefGoogle Scholar
  154. M.C. Festou, H.U. Keller, H.A. Weaver (eds.), Comets II (Univ. Arizona Press, Tucson, 2004) Google Scholar
  155. M. Fischer-Gödde, H. Becker, What is the age of the Nectaris basin? New Re-Os constraints for a pre-4.0 Ga bombardment history of the Moon, in Lunar and Planetary Science Conference, vol. 42 (2011), p. 1414 Google Scholar
  156. M. Fouchard, C. Froeschlé, J.J. Matese, G. Valsecchi, Comparison between different models of Galactic tidal effects on cometary orbits. Celest. Mech. Dyn. Astron. 93, 229–262 (2005) ADSCrossRefMathSciNetzbMATHGoogle Scholar
  157. M. Fouchard, C. Froeschlé, J.J. Matese, G.B. Valsecchi, Erratum: Comparison between different models of Galactic tidal effects on cometary orbits. Celest. Mech. Dyn. Astron. 96, 341–344 (2006a) ADSCrossRefzbMATHGoogle Scholar
  158. M. Fouchard, C. Froeschlé, G. Valsecchi, H. Rickman, Long-term effects of the Galactic tide on cometary dynamics. Celest. Mech. Dyn. Astron. 95, 299–326 (2006b) ADSCrossRefMathSciNetzbMATHGoogle Scholar
  159. M. Fouchard, C. Froeschlé, H. Rickman, G.B. Valsecchi, The key role of massive stars in Oort Cloud comet dynamics. Icarus 214, 334–347 (2011a) ADSCrossRefGoogle Scholar
  160. M. Fouchard, H. Rickman, C. Froeschlé, G.B. Valsecchi, The last revolution of new comets: the role of stars and their detectability. Astron. Astrophys. 535, 86 (2011b) ADSCrossRefGoogle Scholar
  161. M. Fouchard, H. Rickman, C. Froeschlé, G.B. Valsecchi, Planetary perturbations for Oort Cloud comets. I. Distributions and dynamics. Icarus 222, 20–31 (2013) ADSCrossRefzbMATHGoogle Scholar
  162. M. Fouchard, H. Rickman, C. Froeschlé, G.B. Valsecchi, Planetary perturbations for Oort Cloud comets: II. Implications for the origin of observable comets. Icarus 231, 110–121 (2014) ADSCrossRefGoogle Scholar
  163. P.J. Francis, The demographics of long-period comets. Astrophys. J. 635, 1348–1361 (2005) ADSCrossRefGoogle Scholar
  164. W.C. Fraser, The collisional divot in the Kuiper Belt size distribution. Astrophys. J. 706, 119–129 (2009) ADSCrossRefGoogle Scholar
  165. W.C. Fraser, J.J. Kavelaars, The size distribution of Kuiper Belt Objects for \(D \gtrsim 10~\mbox{km}\). Astron. J. 137, 72–82 (2009) ADSCrossRefGoogle Scholar
  166. W.C. Fraser, M.E. Brown, M.E. Schwamb, The luminosity function of the hot and cold Kuiper Belt populations. Icarus 210, 944–955 (2010) ADSCrossRefGoogle Scholar
  167. W.C. Fraser, M.E. Brown, A. Morbidelli, A. Parker, K. Batygin, The absolute magnitude distribution of Kuiper Belt Objects. Astrophys. J. 782, 100 (2014) ADSCrossRefGoogle Scholar
  168. C.I. Fuentes, M.J. Holman, A Subaru archival search for faint trans-Neptunian objects. Astron. J. 136, 83–97 (2008) ADSCrossRefGoogle Scholar
  169. E.J. Gaidos, Paleodynamics: Solar System formation and the early environment of the Sun. Icarus 114, 258–268 (1995) ADSCrossRefGoogle Scholar
  170. J. García-Sánchez, P.R. Weissman, R.A. Preston, D.L. Jones, J.-F. Lestrade, D.W. Latham, R.P. Stefanik, J.M. Paredes, Stellar encounters with the Solar System. Astron. Astrophys. 379, 634–659 (2001) ADSCrossRefGoogle Scholar
  171. R. Genzel, F. Eisenhauer, S. Gillessen, The Galactic center massive black hole and nuclear star cluster. Rev. Mod. Phys. 82, 3121–3195 (2010) ADSCrossRefGoogle Scholar
  172. A.M. Gilbert, P.A. Wiegert, Searching for main-belt comets using the Canada-France-Hawaii Telescope Legacy Survey. Icarus 201, 714–718 (2009) ADSCrossRefGoogle Scholar
  173. A.M. Gilbert, P.A. Wiegert, Updated results of a search for main-belt comets using the Canada-France-Hawaii Telescope Legacy Survey. Icarus 210, 998–999 (2010) ADSCrossRefGoogle Scholar
  174. B. Gladman, B.G. Marsden, C. Vanlaerhoven, Nomenclature in the outer Solar System, in The Solar System Beyond Neptune, ed. by M.A. Barucci, H. Boehnhardt, D.P. Cruikshank, A. Morbidelli, R. Dotson (Univ. Arizona Press, Tucson, 2008), pp. 43–57 Google Scholar
  175. B. Gladman, J.J. Kavelaars, P.D. Nicholson, T.J. Loredo, J.A. Burns, Pencil-beam surveys for faint trans-Neptunian objects. Astron. J. 116, 2042–2054 (1998) ADSCrossRefGoogle Scholar
  176. B. Gladman, J.J. Kavelaars, J.-M. Petit, A. Morbidelli, M.J. Holman, T. Loredo, The structure of the Kuiper Belt: size distribution and radial extent. Astron. J. 122, 1051–1066 (2001) ADSCrossRefGoogle Scholar
  177. B. Gladman, M. Holman, T. Grav, J. Kavelaars, P. Nicholson, K. Aksnes, J.-M. Petit, Evidence for an extended scattered disk. Icarus 157, 269–279 (2002) ADSCrossRefGoogle Scholar
  178. B. Gladman, J. Kavelaars, J.-M. Petit, M.L.N. Ashby, J. Parker, J. Coffey, R.L. Jones, P. Rousselot, O. Mousis, Discovery of the first retrograde transneptunian object. Astrophys. J. Lett. 697, 91–94 (2009) ADSCrossRefGoogle Scholar
  179. B. Gladman, S.M. Lawler, J.-M. Petit, J. Kavelaars, R.L. Jones, J.W. Parker, C. Van Laerhoven, P. Nicholson, P. Rousselot, A. Bieryla, M.L.N. Ashby, The resonant trans-Neptunian populations. Astron. J. 144, 23 (2012) ADSCrossRefGoogle Scholar
  180. P. Goldreich, S. Tremaine, Disk-satellite interactions. Astrophys. J. 241, 425–441 (1980) ADSMathSciNetCrossRefGoogle Scholar
  181. P. Goldreich, W.R. Ward, The formation of planetesimals. Astrophys. J. 183, 1051–1062 (1973) ADSCrossRefGoogle Scholar
  182. R.S. Gomes, The origin of the Kuiper Belt high-inclination population. Icarus 161, 404–418 (2003) ADSCrossRefGoogle Scholar
  183. R.S. Gomes, A. Morbidelli, H.F. Levison, Planetary migration in a planetesimal disk: why did Neptune stop at 30 AU? Icarus 170, 492–507 (2004) ADSCrossRefGoogle Scholar
  184. R.S. Gomes, E.C. Nogueira, R. Brasser, The fate of regular satellites during the Nice model’s planetary close encounters, in AAS/Division for Planetary Sciences Meeting Abstracts, vol. 44 (2012). 415.02 Google Scholar
  185. R.S. Gomes, T. Gallardo, J.A. Fernández, A. Brunini, On the origin of the high-perihelion Scattered Disk: the role of the Kozai mechanism and mean motion resonances. Celest. Mech. Dyn. Astron. 91, 109–129 (2005a) ADSCrossRefzbMATHGoogle Scholar
  186. R. Gomes, H.F. Levison, K. Tsiganis, A. Morbidelli, Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets. Nature 435, 466–469 (2005b) ADSCrossRefGoogle Scholar
  187. M. Gounelle, G. Meynet, Solar system genealogy revealed by extinct short-lived radionuclides in meteorites. Astron. Astrophys. 545, 4 (2012) ADSCrossRefGoogle Scholar
  188. J.S. Greaves, M.C. Wyatt, W.S. Holland, W.R.F. Dent, The debris disc around \(\tau\) Ceti: a massive analogue to the Kuiper Belt. Mon. Not. R. Astron. Soc. 351, 54–58 (2004) ADSCrossRefGoogle Scholar
  189. J.S. Greaves, W.S. Holland, M.C. Wyatt, W.R.F. Dent, E.I. Robson, I.M. Coulson, T. Jenness, G.H. Moriarty-Schieven, G.R. Davis, H.M. Butner, et al., Structure in the \(\epsilon\) Eridani debris disk. Astrophys. J. Lett. 619, 187–190 (2005) ADSCrossRefGoogle Scholar
  190. J.M. Greenberg, Comet Halley—a carrier of interstellar dust chemical evolution. Adv. Space Res. 7, 33–44 (1987) ADSCrossRefGoogle Scholar
  191. J.M. Greenberg, J.I. Hage, From interstellar dust to comets—a unification of observational constraints. Astrophys. J. 361, 260–274 (1990) ADSCrossRefGoogle Scholar
  192. P. Gronkowski, M. Wesołowski, A model of cometary outbursts: a new simple approach to the classical question. Mon. Not. R. Astron. Soc. 451, 3068–3077 (2015) ADSCrossRefGoogle Scholar
  193. O. Groussin, G. Hahn, P.L. Lamy, R. Gonczi, G.B. Valsecchi, The long-term evolution and initial size of comets 46P/Wirtanen and 67P/Churyumov-Gerasimenko. Mon. Not. R. Astron. Soc. 376, 1399–1406 (2007) ADSCrossRefGoogle Scholar
  194. O. Groussin, L. Jorda, A.-T. Auger, E. Kührt, R. Gaskell, C. Capanna, F. Scholten, F. Preusker, P. Lamy, S. Hviid, et al., Gravitational slopes, geomorphology, and material strengths of the nucleus of comet 67P/Churyumov-Gerasimenko from OSIRIS observations. ArXiv e-prints 1509.02707 [astro-ph] (2015)
  195. M.S. Gudipati, N. Abou Mrad, J. Blum, S.B. Charnley, T. Chiavassa, M.A. Cordiner, O. Mousis, G. Danger, F. Duvernay, B. Gundlach, et al., Laboratory studies towards understanding comets. Space Sci. Rev. (2015). doi: 10.1007/s11214-015-0192-5 Google Scholar
  196. A. Guilbert-Lepoutre, S. Besse, O. Mousis, M. Ali-Dib, S. Höfner, D. Koschny, P. Hager, On the evolution of comets. Space Sci. Rev. (2015). doi: 10.1007/s11214-015-0148-9 Google Scholar
  197. C. Güttler, J. Blum, A. Zsom, C.W. Ormel, C.P. Dullemond, The outcome of protoplanetary dust growth: pebbles, boulders, or planetesimals? I. Mapping the zoo of laboratory collision experiments. Astron. Astrophys. 513, 56 (2010) CrossRefGoogle Scholar
  198. M. Guzzo, E. Lega, A study of the past dynamics of comet 67P/Churyumov-Gerasimenko with fast Lyapunov indicators. Astron. Astrophys. 579, 79 (2015) ADSCrossRefGoogle Scholar
  199. F. Habashi, Hevel, Johannes, in Biographical Encyclopedia of Astronomers, ed. by T. Hockey, V. Trimble, T.R. Williams, K. Bracher, R.A. Jarrell, J.D. Marché II, J. Palmeri, D.W.E. Green (2014) pp. 967–970 Google Scholar
  200. G. Hahn, H. Rickman, Asteroids in cometary orbits. Icarus 61, 417–442 (1985) ADSCrossRefGoogle Scholar
  201. J.M. Hahn, R. Malhotra, Orbital evolution of planets embedded in a planetesimal disk. Astron. J. 117, 3041–3053 (1999) ADSCrossRefGoogle Scholar
  202. J.M. Hahn, R. Malhotra, Neptune’s migration into a stirred-up Kuiper Belt: a detailed comparison of simulations to observations. Astron. J. 130, 2392–2414 (2005) ADSCrossRefGoogle Scholar
  203. A. Halle, P. Di Matteo, M. Haywood, F. Combes, Quantifying stellar radial migration in an N-body simulation: blurring, churning, and the outer regions of galaxy discs. Astron. Astrophys. 578, 58 (2015) ADSCrossRefGoogle Scholar
  204. D.P. Hamilton, W.R. Ward, Tilting Saturn. II. Numerical model. Astron. J. 128, 2510–2517 (2004) ADSCrossRefGoogle Scholar
  205. M.S. Hanner, A comparison of the dust properties in recent periodic comets. Adv. Space Res. 4, 189–196 (1984) ADSCrossRefGoogle Scholar
  206. B.M.S. Hansen, Formation of the terrestrial planets from a narrow annulus. Astrophys. J. 703, 1131–1140 (2009) ADSCrossRefGoogle Scholar
  207. J.K. Harmon, M.C. Nolan, S.J. Ostro, D.B. Campbell, Radar studies of comet nuclei and grain comae, in Comets II, ed. by M.C. Festou, H.U. Keller, H.A. Weaver (Univ. Arizona Press, Tucson, 2004), pp. 265–279 Google Scholar
  208. W.K. Hartmann, Lunar ‘cataclysm’—a misconception. Icarus 24, 181–187 (1975) ADSCrossRefGoogle Scholar
  209. W.K. Hartmann, Megaregolith evolution and cratering cataclysm models—lunar cataclysm as a misconception (28 years later). Meteorit. Planet. Sci. 38, 579–593 (2003) ADSCrossRefGoogle Scholar
  210. W.K. Hartmann, History of the terminal cataclysm concept: a cataclysm that never happened? in AAS/Division for Planetary Sciences Meeting Abstracts, vol. 46 (2014). 106.03 Google Scholar
  211. W.K. Hartmann, D.J. Tholen, D.P. Cruikshank, The relationship of active comets, “extinct” comets, and dark asteroids. Icarus 69, 33–50 (1987) ADSCrossRefGoogle Scholar
  212. W.K. Hartmann, G. Ryder, L. Dones, D. Grinspoon, The time-dependent intense bombardment of the primordial Earth/Moon system, in Origin of the Earth and Moon, ed. by R.M. Canup, K. Righter (Univ. Arizona Press, Tucson, 2000), pp. 493–512 Google Scholar
  213. P. Hartogh, D.C. Lis, D. Bockelée-Morvan, M. de Val-Borro, N. Biver, M. Küppers, M. Emprechtinger, E.A. Bergin, J. Crovisier, M. Rengel, et al., Ocean-like water in the Jupiter-family comet 103P/Hartley 2. Nature 478, 218–220 (2011) ADSCrossRefGoogle Scholar
  214. I. Hasegawa, S. Nakano, Orbit of periodic comet 153P/Ikeya-Zhang. Mon. Not. R. Astron. Soc. 345, 883–888 (2003) ADSCrossRefGoogle Scholar
  215. L.A. Haskin, The Imbrium impact event and the thorium distribution at the lunar highlands surface. J. Geophys. Res. 103, 1679–1689 (1998) ADSCrossRefGoogle Scholar
  216. L.A. Haskin, R.L. Korotev, K.M. Rockow, B.L. Jolliff, The case for an Imbrium origin of the Apollo Th-rich impact-melt breccias. Meteorit. Planet. Sci. 33, 959–975 (1998) ADSCrossRefGoogle Scholar
  217. C. Hayashi, Structure of the solar nebula, growth and decay of magnetic fields and effects of magnetic and turbulent viscosities on the nebula. Prog. Theor. Phys. Suppl. 70, 35–53 (1981) ADSCrossRefGoogle Scholar
  218. M.R. Hayden, J. Bovy, J.A. Holtzman, D.L. Nidever, J.C. Bird, D.H. Weinberg, B.H. Andrews, S.R. Majewski, C. Allende Prieto, F. Anders, et al., Chemical cartography with APOGEE: metallicity distribution functions and the chemical structure of the Milky Way disk. Astrophys. J. 808, 132 (2015) ADSCrossRefGoogle Scholar
  219. T. Heidarzadeh, A History of Physical Theories of Comets, from Aristotle to Whipple (Springer, Berlin, 2008) CrossRefGoogle Scholar
  220. J. Heisler, Monte Carlo simulations of the Oort comet cloud. Icarus 88, 104–121 (1990) ADSCrossRefGoogle Scholar
  221. J. Heisler, S. Tremaine, The influence of the galactic tidal field on the Oort comet cloud. Icarus 65, 13–26 (1986) ADSCrossRefGoogle Scholar
  222. J. Heisler, S. Tremaine, C. Alcock, The frequency and intensity of comet showers from the Oort Cloud. Icarus 70, 269–288 (1987) ADSCrossRefGoogle Scholar
  223. A. Higuchi, E. Kokubo, Effect of stellar encounters on comet cloud formation. Astron. J. 150, 26 (2015) ADSCrossRefGoogle Scholar
  224. A. Higuchi, E. Kokubo, H. Kinoshita, T. Mukai, Orbital evolution of planetesimals due to the galactic tide: formation of the comet cloud. Astron. J. 134, 1693–1706 (2007) ADSCrossRefGoogle Scholar
  225. L.A. Hillenbrand, J.M. Carpenter, J.S. Kim, M.R. Meyer, D.E. Backman, A. Moro-Martín, D.J. Hollenbach, D.C. Hines, I. Pascucci, J. Bouwman, The complete census of 70 μm-bright debris disks within “The Formation and Evolution of Planetary Systems” Spitzer Legacy Survey of Sun-like stars. Astrophys. J. 677, 630–656 (2008) ADSCrossRefGoogle Scholar
  226. J.G. Hills, Comet showers and the steady-state infall of comets from the Oort cloud. Astron. J. 86, 1730–1740 (1981) ADSCrossRefGoogle Scholar
  227. J.R. Hind, The Comets: A Descriptive Treatise upon Those Bodies with a Condensed Account of the Numerous Modern Discoveries Respecting Them, and a Table of All the Calculated Comets, from the Earliest Ages to the Present Time (John W. Parker and Son, London, 1852) Google Scholar
  228. M. Hirabayashi, D.J. Scheeres, D.P. Sánchez, T. Gabriel, Constraints on the physical properties of main belt comet P/2013 R3 from its breakup event. Astrophys. J. Lett. 789, 12 (2014) ADSCrossRefGoogle Scholar
  229. P.-Y. Ho, Ancient and medieval observations of comets and novae in Chinese sources. Vistas Astron. 5, 127–225 (1962) ADSCrossRefGoogle Scholar
  230. R.C. Hogan, J.N. Cuzzi, Cascade model for particle concentration and enstrophy in fully developed turbulence with mass-loading feedback. Phys. Rev. E 75(5), 056305 (2007) ADSCrossRefGoogle Scholar
  231. M.D. Hopkins, S.J. Mojzsis, A protracted timeline for lunar bombardment from mineral chemistry, Ti thermometry and U-Pb geochronology of Apollo 14 melt breccia zircons. Contrib. Mineral. Petrol. 169, 30 (2015) ADSCrossRefGoogle Scholar
  232. P.F. Hopkins, Jumping the gap: the formation conditions and mass function of pebble-pile planetesimals. ArXiv e-prints 1401.2458 [astro-ph] (2014)
  233. J. Horner, N.W. Evans, Biases in cometary catalogues and Planet X. Mon. Not. R. Astron. Soc. 335, 641–654 (2002) ADSCrossRefGoogle Scholar
  234. A.W. Howard, Observed properties of extrasolar planets. Science 340, 572–576 (2013) ADSCrossRefGoogle Scholar
  235. H.H. Hsieh, The Hawaii trails project: comet-hunting in the main asteroid belt. Astron. Astrophys. 505, 1297–1310 (2009) ADSCrossRefGoogle Scholar
  236. H.H. Hsieh, D.C. Jewitt, Y.R. Fernández, The strange case of 133P/Elst-Pizarro: a comet among the asteroids. Astron. J. 127, 2997–3017 (2004) ADSCrossRefGoogle Scholar
  237. H.H. Hsieh, K.J. Meech, J. Pittichová, Main-belt comet 238P/Read revisited. Astrophys. J. Lett. 736, 18 (2011) ADSCrossRefGoogle Scholar
  238. H.H. Hsieh, D. Jewitt, P. Lacerda, S.C. Lowry, C. Snodgrass, The return of activity in main-belt comet 133P/Elst-Pizarro. Mon. Not. R. Astron. Soc. 403, 363–377 (2010) ADSCrossRefGoogle Scholar
  239. H.H. Hsieh, L. Denneau, R.J. Wainscoat, N. Schörghofer, B. Bolin, A. Fitzsimmons, R. Jedicke, J. Kleyna, M. Micheli, P. Vereš, et al., The main-belt comets: the Pan-STARRS1 perspective. Icarus 248, 289–312 (2015) ADSCrossRefGoogle Scholar
  240. W.F. Hübner, Über die Gasproduktion der Kometen. Z. Astrophys. 63, 22 (1965) ADSGoogle Scholar
  241. D.W. Hughes, Cometary magnitude distribution and the ratio between the numbers of long- and short-period comets. Icarus 73, 149–162 (1988) ADSCrossRefGoogle Scholar
  242. D.W. Hughes, The magnitude distribution, perihelion distribution and flux of long-period comets. Mon. Not. R. Astron. Soc. 326, 515–523 (2001) ADSCrossRefGoogle Scholar
  243. J.R. Hurley, O.R. Pols, S.J. Aarseth, C.A. Tout, A complete N-body model of the old open cluster M67. Mon. Not. R. Astron. Soc. 363, 293–314 (2005) ADSCrossRefGoogle Scholar
  244. D.M. Hurwitz, D.A. Kring, Differentiation of the South Pole-Aitken basin impact melt sheet: implications for lunar exploration. J. Geophys. Res., Planets 119, 1110–1133 (2014) ADSCrossRefGoogle Scholar
  245. B.A. Ivanov, G. Neukum, W.F. Bottke, W.K. Hartmann, The comparison of size-frequency distributions of impact craters and asteroids and the planetary cratering rate, in Asteroids III, ed. by W.F.J. Bottke, A. Cellino, P. Paolicchi, R.P. Binzel (Univ. Arizona Press, Tucson, 2002), pp. 89–101 Google Scholar
  246. A. Izidoro, N. Haghighipour, O.C. Winter, M. Tsuchida, Terrestrial planet formation in a protoplanetary disk with a local mass depletion: a successful scenario for the formation of Mars. Astrophys. J. 782, 31 (2014) ADSCrossRefGoogle Scholar
  247. A. Izidoro, S.N. Raymond, A. Morbidelli, O.C. Winter, Terrestrial planet formation constrained by Mars and the structure of the asteroid belt. Mon. Not. R. Astron. Soc. 453, 3619–3634 (2015) ADSCrossRefGoogle Scholar
  248. S.A. Jacobson, K.J. Walsh, Earth and terrestrial planet formation. ArXiv e-prints 1502.03852 [astro-ph] (2015)
  249. J.H. Jeans, The origin of binary systems. Mon. Not. R. Astron. Soc. 79, 408–416 (1919) ADSCrossRefGoogle Scholar
  250. D. Jewitt, From comets to asteroids: when hairy stars go bald. Earth Moon Planets 72, 185–201 (1996) ADSCrossRefGoogle Scholar
  251. D. Jewitt, The active asteroids. Astron. J. 143, 66 (2012) ADSCrossRefGoogle Scholar
  252. D. Jewitt, Properties of near-Sun asteroids. Astron. J. 145, 133 (2013) ADSCrossRefGoogle Scholar
  253. D. Jewitt, Color systematics of comets and related bodies. ArXiv e-prints 1510.07069 [astro-ph] (2015)
  254. D. Jewitt, J. Li, Activity in Geminid parent (3200) Phaethon. Astron. J. 140, 1519–1527 (2010) ADSCrossRefGoogle Scholar
  255. D. Jewitt, J. Luu, Discovery of the candidate Kuiper Belt Object 1992 \(\mbox{QB}_{1}\). Nature 362, 730–732 (1993) ADSCrossRefGoogle Scholar
  256. D. Jewitt, H. Hsieh, J. Agarwal, The active asteroids, in Asteroids IV, ed. by P. Michel, F. DeMeo, W. Bottke, (2015). ArXiv e-prints 1502.02361 [astro-ph] Google Scholar
  257. D. Jewitt, J. Luu, C. Trujillo, Large Kuiper Belt Objects: the Mauna Kea 8K CCD survey. Astron. J. 115, 2125–2135 (1998) ADSCrossRefGoogle Scholar
  258. D.C. Jewitt, From Kuiper Belt Object to cometary nucleus: the missing ultrared matter. Astron. J. 123, 1039–1049 (2002) ADSCrossRefGoogle Scholar
  259. D. Jewitt, H. Weaver, J. Agarwal, M. Mutchler, M. Drahus, A recent disruption of the main-belt asteroid P/2010 A2. Nature 467, 817–819 (2010) ADSCrossRefGoogle Scholar
  260. D. Jewitt, H. Weaver, M. Mutchler, S. Larson, J. Agarwal, Hubble Space Telescope observations of main-belt comet (596) Scheila. Astrophys. J. Lett. 733, 4 (2011) ADSCrossRefGoogle Scholar
  261. D. Jewitt, J. Agarwal, J. Li, H. Weaver, M. Mutchler, S. Larson, Disintegrating asteroid P/2013 R3. Astrophys. J. Lett. 784, 8 (2014) ADSCrossRefGoogle Scholar
  262. D. Jewitt, J. Li, J. Agarwal, H. Weaver, M. Mutchler, S. Larson, Nucleus and mass loss from active asteroid 313P/Gibbs. Astron. J. 150, 76 (2015) ADSCrossRefGoogle Scholar
  263. A. Johansen, H. Klahr, Planetesimal formation through streaming and gravitational instabilities. Earth Moon Planets 108, 39–43 (2011) ADSCrossRefGoogle Scholar
  264. A. Johansen, A.N. Youdin, Y. Lithwick, Adding particle collisions to the formation of asteroids and Kuiper belt objects via streaming instabilities. Astron. Astrophys. 537, 125 (2012) ADSCrossRefGoogle Scholar
  265. A. Johansen, J.S. Oishi, M.-M. Mac Low, H. Klahr, T. Henning, A. Youdin, Rapid planetesimal formation in turbulent circumstellar disks. Nature 448, 1022–1025 (2007) ADSCrossRefGoogle Scholar
  266. A. Johansen, J. Blum, H. Tanaka, C. Ormel, M. Bizzarro, H. Rickman, The multifaceted planetesimal formation process, in Protostars and Planets VI, ed. by H. Beuther, R.S. Klessen, C.P. Dullemond, T. Henning (Univ. Arizona Press, Tucson, 2014), pp. 547–570 Google Scholar
  267. A. Johansen, M.-M. Mac Low, P. Lacerda, M. Bizzarro, Growth of asteroids, planetary embryos, and Kuiper Belt Objects by chondrule accretion. Sci. Adv. 1, 15109 (2015a) ADSCrossRefGoogle Scholar
  268. A. Johansen, E. Jacquet, J.N. Cuzzi, A. Morbidelli, M. Gounelle, New paradigms for asteroid formation, in Asteroids IV, ed. by P. Michel, F. DeMeo, W. Bottke (2015b). ArXiv e-prints 1505.02941 [astro-ph] Google Scholar
  269. L. Jones, M. Brown, Solar System science with the Large Synoptic Survey Telescope, in AAS/Division for Planetary Sciences Meeting Abstracts, vol. 47 (2015). 312.22 Google Scholar
  270. L. Jorda, R. Gaskell, C. Capanna, S. Hviid, P. Lamy, G. Faury, O. Groussin, P. Gutiérrez, C. Jackman, H.U. Keller, et al., The global shape and density of comet 67P/Churyumov-Gerasimenko from pre-perihelion Rosetta/OSIRIS observations. Icarus (2015), in preparation Google Scholar
  271. Y.C. Joshi, Displacement of the Sun from the Galactic plane. Mon. Not. R. Astron. Soc. 378, 768–776 (2007) ADSCrossRefGoogle Scholar
  272. P.C. Joss, On the origin of short-period comets. Astron. Astrophys. 25, 271–273 (1973) ADSGoogle Scholar
  273. M. Jura, An upper bound to the space density of interstellar comets. Astron. J. 141, 155 (2011) ADSCrossRefGoogle Scholar
  274. M. Jutzi, E. Asphaug, The shape and structure of cometary nuclei as a result of low-velocity accretion. Science 348, 1355–1358 (2015) ADSCrossRefGoogle Scholar
  275. N.A. Kaib, J.E. Chambers, The fragility of the terrestrial planets during a giant planet instability. ArXiv e-prints 1510.08448 [astro-ph] (2015)
  276. N.A. Kaib, N.B. Cowan, The feeding zones of terrestrial planets and insights into Moon formation. Icarus 252, 161–174 (2015) ADSCrossRefGoogle Scholar
  277. N.A. Kaib, T. Quinn, The formation of the Oort Cloud in open cluster environments. Icarus 197, 221–238 (2008) ADSCrossRefGoogle Scholar
  278. N.A. Kaib, T. Quinn, Reassessing the source of long-period comets. Science 325, 1234–1236 (2009) ADSCrossRefGoogle Scholar
  279. N.A. Kaib, R. Roškar, T. Quinn, Sedna and the Oort Cloud around a migrating Sun. Icarus 215, 491–507 (2011) ADSCrossRefGoogle Scholar
  280. P. Kalas, J.R. Graham, M.P. Fitzgerald, M. Clampin, STIS coronagraphic imaging of Fomalhaut: main belt structure and the orbit of Fomalhaut b. Astrophys. J. 775, 56 (2013) ADSCrossRefGoogle Scholar
  281. J. Kavelaars, L. Jones, B. Gladman, J.W. Parker, J.-M. Petit, The orbital and spatial distribution of the Kuiper Belt, in The Solar System Beyond Neptune, ed. by M.A. Barucci, H. Boehnhardt, D.P. Cruikshank, A. Morbidelli, R. Dotson (Univ. Arizona Press, Tucson, 2008), pp. 59–69 Google Scholar
  282. H.U. Keller, Comets: dirty snowballs or icy dirtballs, in Physics and Mechanics of Cometary Materials, ed. by J.J. Hunt, T.D. Guyenne. ESA Special Publication, vol. 302 (1989), pp. 39–45 Google Scholar
  283. H.U. Keller, C. Arpigny, C. Barbieri, R.M. Bonnet, S. Cazes, M. Coradini, C.B. Cosmovici, W.A. Delamere, W.F. Huebner, D.W. Hughes, et al., First Halley multicolour camera imaging results from Giotto. Nature 321, 320–326 (1986) ADSCrossRefGoogle Scholar
  284. M.S.P. Kelley, C.E. Woodward, D. Bodewits, T.L. Farnham, M.S. Gudipati, D.E. Harker, D.C. Hines, M.M. Knight, L. Kolokolova, A. Li, I. de Pater, S. Protopapa, R.W. Russell, M.L. Sitko, D.H. Wooden, Cometary science with the James Webb Space Telescope. ArXiv e-prints 1510.05878 [astro-ph] (2015a)
  285. M.S.P. Kelley, D.J. Lindler, D. Bodewits, M.F. A’Hearn, C.M. Lisse, L. Kolokolova, J. Kissel, B. Hermalyn, Erratum to “a distribution of large particles in the coma of comet 103P/Hartley 2” [Icarus 222 (2013) 634–652]. Icarus 262, 187–189 (2015b) ADSCrossRefGoogle Scholar
  286. M.S. Kelley, D.J. Lindler, D. Bodewits, M.F. A’Hearn, C.M. Lisse, L. Kolokolova, J. Kissel, B. Hermalyn, A distribution of large particles in the coma of comet 103P/Hartley 2. Icarus 222, 634–652 (2013) ADSCrossRefGoogle Scholar
  287. G.M. Kennedy, M.C. Wyatt, Do two-temperature debris discs have multiple belts? Mon. Not. R. Astron. Soc. 444, 3164–3182 (2014) ADSCrossRefGoogle Scholar
  288. S.J. Kenyon, B.C. Bromley, Prospects for detection of catastrophic collisions in debris disks. Astron. J. 130, 269–279 (2005) ADSCrossRefGoogle Scholar
  289. S.J. Kenyon, J.X. Luu, Accretion in the early Kuiper Belt. I. Coagulation and velocity evolution. Astron. J. 115, 2136–2160 (1998) ADSCrossRefGoogle Scholar
  290. S.J. Kenyon, J.X. Luu, Accretion in the early outer Solar System. Astrophys. J. 526, 465–470 (1999) ADSCrossRefGoogle Scholar
  291. F. Kiefer, A. Lecavelier des Etangs, J. Boissier, A. Vidal-Madjar, H. Beust, A.-M. Lagrange, G. Hébrard, R. Ferlet, Two families of exocomets in the \(\beta\) Pictoris system. Nature 514, 462–464 (2014) ADSCrossRefGoogle Scholar
  292. Y. Kim, M. Ishiguro, F. Usui, Physical properties of asteroids in comet-like orbits in infrared asteroid survey catalogs. Astrophys. J. 789, 151 (2014) ADSCrossRefGoogle Scholar
  293. D.R. Kirsh, M. Duncan, R. Brasser, H.F. Levison, Simulations of planet migration driven by planetesimal scattering. Icarus 199, 197–209 (2009) ADSCrossRefGoogle Scholar
  294. J. Kissel, D.E. Brownlee, K. Buchler, B.C. Clark, H. Fechtig, E. Grün, K. Hornung, E.B. Igenbergs, E.K. Jessberger, F.R. Krueger, et al., Composition of comet Halley dust particles from Giotto observations. Nature 321, 336–337 (1986) ADSCrossRefGoogle Scholar
  295. M.M. Knight, M.F. A’Hearn, D.A. Biesecker, G. Faury, D.P. Hamilton, P. Lamy, A. Llebaria, Photometric study of the Kreutz comets observed by SOHO from 1996 to 2005. Astron. J. 139, 926–949 (2010) ADSCrossRefGoogle Scholar
  296. C. Koeberl, The Late Heavy Bombardment in the inner Solar System: is there any connection to Kuiper Belt Objects? Earth Moon Planets 92, 79–87 (2003) ADSCrossRefGoogle Scholar
  297. W. Kofman, A. Herique, Y. Barbin, J.-P. Barriot, V. Ciarletti, S. Clifford, P. Edenhofer, C. Elachi, C. Eyraud, J.-P. Goutail, et al., Properties of the 67P/Churyumov-Gerasimenko interior revealed by CONSERT radar. Science 349(2), 020639 (2015) ADSGoogle Scholar
  298. E. Kokubo, S. Ida, Oligarchic growth of protoplanets. Icarus 131, 171–178 (1998) ADSCrossRefGoogle Scholar
  299. M.B.N. Kouwenhoven, S.P. Goodwin, R.J. Parker, M.B. Davies, D. Malmberg, P. Kroupa, The formation of very wide binaries during the star cluster dissolution phase. Mon. Not. R. Astron. Soc. 404, 1835–1848 (2010) ADSGoogle Scholar
  300. L. Kresák, Dynamics, interrelations and evolution of the systems of asteroids and comets. Moon Planets 22, 83–98 (1980) ADSCrossRefGoogle Scholar
  301. L. Kresák, Comet discoveries, statistics, and observational selection, in Comets, ed. by L.L. Wilkening (Univ. Arizona Press, Tucson, 1982), pp. 56–82 Google Scholar
  302. L. Kresák, Dormant phases in the aging of periodic comets. Astron. Astrophys. 187, 906–908 (1987) ADSGoogle Scholar
  303. L. Kresák, M. Kresáková, The absolute magnitudes of periodic comets. I—catalogue. Bull. Astron. Inst. Czechoslov. 40, 269–284 (1989) ADSGoogle Scholar
  304. K.A. Kretke, H.F. Levison, Challenges in forming the Solar System’s giant planet cores via pebble accretion. Astron. J. 148, 109 (2014) ADSCrossRefGoogle Scholar
  305. K.A. Kretke, H.F. Levison, Evidence for pebbles in comets. Icarus 262, 9–13 (2015) ADSCrossRefGoogle Scholar
  306. D.A. Kring, B.A. Cohen, Cataclysmic bombardment throughout the inner solar system 3.9–4.0 Ga. J. Geophys. Res., Planets 107, 5009 (2002) ADSCrossRefGoogle Scholar
  307. M. Królikowska, A study of the original orbits of “hyperbolic” comets. Astron. Astrophys. 376, 316–324 (2001) ADSCrossRefGoogle Scholar
  308. M. Królikowska, 67P/Churyumov-Gerasimenko—potential target for the Rosetta mission. Acta Astron. 53, 195–209 (2003) ADSGoogle Scholar
  309. M. Królikowska, Non-gravitational effects in long-period comets and the size of the Oort Cloud. Acta Astron. 56, 385–412 (2006) ADSGoogle Scholar
  310. M. Królikowska, Warsaw catalogue of cometary orbits: 119 near-parabolic comets. Astron. Astrophys. 567, 126 (2014) ADSCrossRefGoogle Scholar
  311. M. Królikowska, P.A. Dybczyński, Where do long-period comets come from? 26 comets from the non-gravitational Oort spike. Mon. Not. R. Astron. Soc. 404, 1886–1902 (2010) ADSGoogle Scholar
  312. M. Królikowska, S. Szutowicz, Non-gravitational motion of the Jupiter-family comet 81P/Wild 2. I. The dynamical evolution. Astron. Astrophys. 448, 401–409 (2006) ADSCrossRefGoogle Scholar
  313. M. Królikowska, G. Sitarski, E.M. Pittich, S. Szutowicz, K. Ziołkowski, H. Rickman, R. Gabryszewski, B. Rickman, New catalogue of one-apparition comets discovered in the years 1901–1950. I. Comets from the Oort spike. Astron. Astrophys. 571, 63 (2014) ADSCrossRefGoogle Scholar
  314. G.W. Kronk, Cometography: A Catalog of Comets, vol. 1: Ancient–1799 (Cambridge University Press, Cambridge, 1999) Google Scholar
  315. G.W. Kronk, Cometography: A Catalog of Comets, vol. 2: 1800–1899 (Cambridge University Press, Cambridge, 2003) Google Scholar
  316. G.W. Kronk, Cometography: A Catalog of Comets, vol. 3, 1900–1932, vol. 3 (Cambridge University Press, Cambridge, 2007) Google Scholar
  317. G.W. Kronk, Cometography: A Catalog of Comets, vol. 4, 1933–1959, vol. 4 (Cambridge University Press, Cambridge, 2009) Google Scholar
  318. G.W. Kronk, M. Meyer, Cometography: A Catalog of Comets, vol. 5, 1960–1982, vol. 5 (Cambridge University Press, Cambridge, 2010) Google Scholar
  319. M.R. Krumholz, M.R. Bate, H.G. Arce, J.E. Dale, R. Gutermuth, R.I. Klein, Z.-Y. Li, F. Nakamura, Q. Zhang, Star cluster formation and feedback, in Protostars and Planets VI, ed. by H. Beuther, R.S. Klessen, C.P. Dullemond, T. Henning (Univ. Arizona Press, Tucson, 2014), pp. 243–266 Google Scholar
  320. E. Kuehrt, H.U. Keller, The formation of cometary surface crusts. Icarus 109, 121–132 (1994) ADSCrossRefGoogle Scholar
  321. G. Kuiper, On the origin of the Solar System, in Astrophysics: A Topical Symposium, ed. by J.A. Hynek (McGraw–Hill, New York, 1951), pp. 357–424 Google Scholar
  322. M. Küppers, L. O’Rourke, D. Bockelée-Morvan, V. Zakharov, S. Lee, P. von Allmen, B. Carry, D. Teyssier, A. Marston, T. Müller, et al., Localized sources of water vapour on the dwarf planet (1) Ceres. Nature 505, 525–527 (2014) ADSCrossRefGoogle Scholar
  323. C.J. Lada, The physics and modes of star cluster formation: observations. Philos. Trans. R. Soc. Lond. A 368, 713–731 (2010) ADSCrossRefGoogle Scholar
  324. C.J. Lada, E.A. Lada, Embedded clusters in molecular clouds. Annu. Rev. Astron. Astrophys. 41, 57–115 (2003) ADSCrossRefGoogle Scholar
  325. G. Laibe, J.-F. Gonzalez, S.T. Maddison, Revisiting the “radial-drift barrier” of planet formation and its relevance in observed protoplanetary discs. Astron. Astrophys. 537, 61 (2012) ADSCrossRefGoogle Scholar
  326. M. Lambrechts, A. Johansen, Rapid growth of gas-giant cores by pebble accretion. Astron. Astrophys. 544, 32 (2012) ADSCrossRefGoogle Scholar
  327. M. Lambrechts, A. Johansen, Forming the cores of giant planets from the radial pebble flux in protoplanetary discs. Astron. Astrophys. 572, 107 (2014) ADSCrossRefGoogle Scholar
  328. H.J.G.L.M. Lamers, M. Gieles, N. Bastian, H. Baumgardt, N.V. Kharchenko, S. Portegies Zwart, An analytical description of the disruption of star clusters in tidal fields with an application to Galactic open clusters. Astron. Astrophys. 441, 117–129 (2005) ADSCrossRefGoogle Scholar
  329. P.L. Lamy, A. Herique, I. Toth, The subsurface structure and density of cometary nuclei. Space Sci. Rev. (2015). doi: 10.1007/s11214-015-0160-0 Google Scholar
  330. P.L. Lamy, I. Toth, Y.R. Fernandez, H.A. Weaver, The sizes, shapes, albedos, and colors of cometary nuclei, in Comets II, ed. by M.C. Festou, H.U. Keller, H.A. Weaver (Univ. Arizona Press, Tucson, 2004), pp. 223–264 Google Scholar
  331. D. Lardner, On the classification of comets and the distribution of their orbits in space. Mon. Not. R. Astron. Soc. 13, 188 (1853) ADSCrossRefGoogle Scholar
  332. J. Laskar, Large scale chaos and the spacing of the inner planets. Astron. Astrophys. 317, 75–78 (1997) ADSGoogle Scholar
  333. J. Laskar, M. Gastineau, Existence of collisional trajectories of Mercury, Mars and Venus with the Earth. Nature 459, 817–819 (2009) ADSCrossRefGoogle Scholar
  334. G. Laughlin, J.J. Lissauer, Exoplanetary geophysics—an emerging discipline. ArXiv e-prints 1501.05685 [astro-ph] (2015)
  335. S.M. Lawler, C.A. Beichman, G. Bryden, D.R. Ciardi, A.M. Tanner, K.Y.L. Su, K.R. Stapelfeldt, C.M. Lisse, D.E. Harker, Explorations beyond the snow line: Spitzer/IRS spectra of debris disks around solar-type stars. Astrophys. J. 705, 89–111 (2009) ADSCrossRefGoogle Scholar
  336. Z.M. Leinhardt, S.T. Stewart, Full numerical simulations of catastrophic small body collisions. Icarus 199, 542–559 (2009) ADSCrossRefGoogle Scholar
  337. H.F. Levison, Comet taxonomy, in Completing the Inventory of the Solar System, ed. by T. Rettig, J.M. Hahn. Astronomical Society of the Pacific Conference Series, vol. 107 (1996), pp. 173–191 Google Scholar
  338. H.F. Levison, M.J. Duncan, From the Kuiper Belt to Jupiter-family comets: the spatial distribution of ecliptic comets. Icarus 127, 13–32 (1997) ADSCrossRefGoogle Scholar
  339. H.F. Levison, A. Morbidelli, The formation of the Kuiper Belt by the outward transport of bodies during Neptune’s migration. Nature 426, 419–421 (2003) ADSCrossRefGoogle Scholar
  340. H.F. Levison, S.A. Stern, On the size dependence of the inclination distribution of the main Kuiper Belt. Astron. J. 121, 1730–1735 (2001) ADSCrossRefGoogle Scholar
  341. H.F. Levison, G.R. Stewart, Remarks on modeling the formation of Uranus and Neptune. Icarus 153, 224–228 (2001) ADSCrossRefGoogle Scholar
  342. H.F. Levison, L. Dones, M.J. Duncan, The origin of Halley-type comets: probing the inner Oort Cloud. Astron. J. 121, 2253–2267 (2001) ADSCrossRefGoogle Scholar
  343. H.F. Levison, K.A. Kretke, M.J. Duncan, Growing the gas-giant planets by the gradual accumulation of pebbles. Nature 524, 322–324 (2015) ADSCrossRefGoogle Scholar
  344. H.F. Levison, J.J. Lissauer, M.J. Duncan, Modeling the diversity of outer planetary systems. Astron. J. 116, 1998–2014 (1998) ADSCrossRefGoogle Scholar
  345. H.F. Levison, E. Thommes, M.J. Duncan, Modeling the formation of giant planet cores. I. Evaluating key processes. Astron. J. 139, 1297–1314 (2010) ADSCrossRefGoogle Scholar
  346. H.F. Levison, L. Dones, C.R. Chapman, S.A. Stern, M.J. Duncan, K. Zahnle, Could the lunar “Late Heavy Bombardment” have been triggered by the formation of Uranus and Neptune? Icarus 151, 286–306 (2001) ADSCrossRefGoogle Scholar
  347. H.F. Levison, D. Terrell, P.A. Wiegert, L. Dones, M.J. Duncan, On the origin of the unusual orbit of comet 2P/Encke. Icarus 182, 161–168 (2006a) ADSCrossRefGoogle Scholar
  348. H.F. Levison, M.J. Duncan, L. Dones, B.J. Gladman, The Scattered Disk as a source of Halley-type comets. Icarus 184, 619–633 (2006b) ADSCrossRefGoogle Scholar
  349. H.F. Levison, A. Morbidelli, R. Gomes, D. Backman, Planet migration in planetesimal disks, in Protostars and Planets V, ed. by B. Reipurth, D. Jewitt, K. Keil (Univ. Arizona Press, Tucson, 2007), pp. 669–684 Google Scholar
  350. H.F. Levison, A. Morbidelli, C. Van Laerhoven, R. Gomes, K. Tsiganis, Origin of the structure of the Kuiper Belt during a dynamical instability in the orbits of Uranus and Neptune. Icarus 196, 258–273 (2008) ADSCrossRefGoogle Scholar
  351. H.F. Levison, W.F. Bottke, M. Gounelle, A. Morbidelli, D. Nesvorný, K. Tsiganis, Contamination of the asteroid belt by primordial trans-Neptunian objects. Nature 460, 364–366 (2009) ADSCrossRefGoogle Scholar
  352. H.F. Levison, M.J. Duncan, R. Brasser, D.E. Kaufmann, Capture of the Sun’s Oort Cloud from stars in its birth cluster. Science 329, 187–190 (2010) ADSCrossRefGoogle Scholar
  353. H.F. Levison, A. Morbidelli, K. Tsiganis, D. Nesvorný, R. Gomes, Late orbital instabilities in the outer planets induced by interaction with a self-gravitating planetesimal disk. Astron. J. 142, 152 (2011) ADSCrossRefGoogle Scholar
  354. H.F. Levison, K.A. Kretke, K.J. Walsh, W.F. Bottke, Growing the terrestrial planets from the gradual accumulation of submeter-sized objects. Proc. Natl. Acad. Sci. USA (2015b). doi: 10.1073/pnas.1513364112 Google Scholar
  355. A.R. Lewis, T. Quinn, N.A. Kaib, The influence of outer Solar System architecture on the structure and evolution of the Oort Cloud. Astron. J. 146, 16 (2013) ADSCrossRefGoogle Scholar
  356. G. Li, F.C. Adams, Cross-sections for planetary systems interacting with passing stars and binaries. Mon. Not. R. Astron. Soc. 448, 344–363 (2015) ADSCrossRefGoogle Scholar
  357. Z.-Y. Li, R. Banerjee, R.E. Pudritz, J.K. Jørgensen, H. Shang, R. Krasnopolsky, A. Maury, The earliest stages of star and planet formation: core collapse, and the formation of disks and outflows, in Protostars and Planets VI, ed. by H. Beuther, R.S. Klessen, C.P. Dullemond, T. Henning (Univ. Arizona Press, Tucson, 2014), pp. 173–194 Google Scholar
  358. D.N.C. Lin, J. Papaloizou, On the tidal interaction between protoplanets and the protoplanetary disk. III—orbital migration of protoplanets. Astrophys. J. 309, 846–857 (1986) ADSCrossRefGoogle Scholar
  359. D.N.C. Lin, P. Bodenheimer, D.C. Richardson, Orbital migration of the planetary companion of 51 Pegasi to its present location. Nature 380, 606–607 (1996) ADSCrossRefGoogle Scholar
  360. D.C. Lis, N. Biver, D. Bockelée-Morvan, P. Hartogh, E.A. Bergin, G.A. Blake, J. Crovisier, M. de Val-Borro, E. Jehin, M. Küppers, et al., A Herschel study of D/H in water in the Jupiter-family comet 45P/Honda-Mrkos-Pajdušáková and prospects for D/H measurements with CCAT. Astrophys. J. Lett. 774, 3 (2013) ADSCrossRefGoogle Scholar
  361. J.J. Lissauer, R.I. Dawson, S. Tremaine, Advances in exoplanet science from Kepler. Nature 513, 336–344 (2014) ADSCrossRefGoogle Scholar
  362. J.J. Lissauer, O. Hubickyj, G. D’Angelo, P. Bodenheimer, Models of Jupiter’s growth incorporating thermal and hydrodynamic constraints. Icarus 199, 338–350 (2009) ADSCrossRefGoogle Scholar
  363. C.M. Lisse, M.C. Wyatt, C.H. Chen, A. Morlok, D.M. Watson, P. Manoj, P. Sheehan, T.M. Currie, P. Thebault, M.L. Sitko, Spitzer evidence for a Late-Heavy Bombardment and the formation of ureilites in \(\eta\) Corvi at \({\sim}1~\mbox{Gyr}\). Astrophys. J. 747, 93 (2012) ADSCrossRefGoogle Scholar
  364. S.H. Lubow, S. Ida, Planet migration, in Exoplanets, ed. by S. Seager (Univ. Arizona Press, Tucson, 2011), pp. 347–371 Google Scholar
  365. J. Luu, B.G. Marsden, D. Jewitt, C.A. Trujillo, C.W. Hergenrother, J. Chen, W.B. Offutt, A new dynamical class of object in the outer Solar System. Nature 387, 573–575 (1997) ADSCrossRefGoogle Scholar
  366. P.S. Lykawka, Trans-Neptunian Objects as natural probes to the unknown Solar System. Monogr. Environ. Earth Planets 1, 121–186 (2012) ADSCrossRefGoogle Scholar
  367. R. Malhotra, The origin of Pluto’s peculiar orbit. Nature 365, 819–821 (1993) ADSCrossRefGoogle Scholar
  368. R. Malhotra, The origin of Pluto’s orbit: implications for the Solar System beyond Neptune. Astron. J. 110, 420–429 (1995) ADSCrossRefGoogle Scholar
  369. R. Malhotra, R.G. Strom, Comment on ”constraints on the source of lunar cataclysm impactors” (Cuk et al., 2010, Icarus 207, 590–594). Icarus 216, 359–362 (2011) ADSCrossRefGoogle Scholar
  370. R. Malhotra, M.J. Duncan, H.F. Levison, Dynamics of the Kuiper Belt, in Protostars and Planets IV, ed. by V. Mannings, S.S. Russell, A. Boss (Univ. Arizona Press, Tucson, 2000), pp. 1231–1245 Google Scholar
  371. D. Malmberg, F. de Angeli, M.B. Davies, R.P. Church, D. Mackey, M.I. Wilkinson, Close encounters in young stellar clusters: implications for planetary systems in the solar neighbourhood. Mon. Not. R. Astron. Soc. 378, 1207–1216 (2007) ADSCrossRefGoogle Scholar
  372. K.E. Mandt, O. Mousis, B. Marty, T. Cavalié, W. Harris, P. Hartogh, K. Willacy, Constraints from comets on the formation and volatile acquisition of the planets and satellites. Space Sci. Rev. (2015). doi: 10.1007/s11214-015-0161-z Google Scholar
  373. L. Maquet, The recent dynamical history of comet 67P/Churyumov-Gerasimenko. Astron. Astrophys. 579, 78 (2015) ADSCrossRefGoogle Scholar
  374. S. Marchi, W.F. Bottke, D.A. Kring, A. Morbidelli, The onset of the lunar cataclysm as recorded in its ancient crater populations. Earth Planet. Sci. Lett. 325, 27–38 (2012) ADSCrossRefGoogle Scholar
  375. S. Marchi, W.F. Bottke, B.A. Cohen, K. Wünnemann, D.A. Kring, H.Y. McSween, M.C. de Sanctis, D.P. O’Brien, P. Schenk, C.A. Raymond, C.T. Russell, High-velocity collisions from the lunar cataclysm recorded in asteroidal meteorites. Nat. Geosci. 6, 303–307 (2013) ADSCrossRefGoogle Scholar
  376. S. Marchi, W.F. Bottke, L.T. Elkins-Tanton, M. Bierhaus, K. Wuennemann, A. Morbidelli, D.A. Kring, Widespread mixing and burial of Earth’s Hadean crust by asteroid impacts. Nature 511, 578–582 (2014) ADSCrossRefGoogle Scholar
  377. B. Marsden, G. Williams, Catalogue of Cometary Orbits, 15th edn. (Smithsonian Astrophysical Observatory, Cambridge, 2003) Google Scholar
  378. B.G. Marsden, G.V. Williams, Catalogue of Cometary Orbits, 8th edn. (Smithsonian Astrophysical Observatory, Cambridge, 1993) Google Scholar
  379. B.G. Marsden, G.V. Williams, Catalogue of Cometary Orbits, 17th edn. (Smithsonian Astrophysical Observatory, Cambridge, 2008) Google Scholar
  380. B.G. Marsden, Z. Sekanina, E. Everhart, New osculating orbits for 110 comets and analysis of original orbits for 200 comets. Astron. J. 83, 64–71 (1978) ADSCrossRefGoogle Scholar
  381. B.G. Marsden, Z. Sekanina, D.K. Yeomans, Comets and nongravitational forces. V. Astron. J. 78, 211–225 (1973) ADSCrossRefGoogle Scholar
  382. C.A. Martínez-Barbosa, A.G.A. Brown, S. Portegies Zwart, Radial migration of the Sun in the Milky Way: a statistical study. Mon. Not. R. Astron. Soc. 446, 823–841 (2015) ADSCrossRefGoogle Scholar
  383. F. Masset, M. Snellgrove, Reversing type II migration: resonance trapping of a lighter giant protoplanet. Mon. Not. R. Astron. Soc. 320, 55–59 (2001) ADSCrossRefGoogle Scholar
  384. J. Matese, D. Whitmire, Tidal imprint of distant Galactic matter on the Oort comet cloud. Astrophys. J. Lett. 472, 41–43 (1996) ADSCrossRefGoogle Scholar
  385. B.C. Matthews, A.V. Krivov, M.C. Wyatt, G. Bryden, C. Eiroa, Observations, modeling, and theory of debris disks, in Protostars and Planets VI (Univ. Arizona Press, Tucson, 2014), pp. 521–544 Google Scholar
  386. M. Mayor, D. Queloz, A Jupiter-mass companion to a solar-type star. Nature 378, 355–359 (1995) ADSCrossRefGoogle Scholar
  387. J.A.M. McDonnell, J. Kissel, E. Gruen, R.J.L. Grard, Y. Langevin, R.E. Olearczyk, C.H. Perry, J.C. Zarnecki, Giotto’s Dust Impact Detection System (DIDSY) and Particulate Impact Analyzer (PIA): interim assessment of the dust distribution and properties within the coma, in ESLAB Symposium on the Exploration of Halley’s Comet, ed. by B. Battrick, E.J. Rolfe, R. Reinhard. ESA Special Publication, vol. 250 (1986), pp. 25–38 Google Scholar
  388. T.A. McGlynn, R.D. Chapman, On the nondetection of extrasolar comets. Astrophys. J. Lett. 346, 105–108 (1989) ADSCrossRefGoogle Scholar
  389. K.D. McKeegan, J. Aléon, J. Bradley, D. Brownlee, H. Busemann, A. Butterworth, M. Chaussidon, S. Fallon, C. Floss, J. Gilmour, et al., Isotopic compositions of cometary matter returned by Stardust. Science 314, 1724 (2006) ADSCrossRefGoogle Scholar
  390. T.R. Medupe, Indigenous astronomy in Southern Africa, in Handbook of Archaeoastronomy and Ethnoastronomy, ed. by C.L.N. Ruggles (Springer, Berlin, 2015), pp. 1031–1036 Google Scholar
  391. K.J. Meech, O.R. Hainaut, B.G. Marsden, Comet nucleus size distributions from HST and Keck telescopes. Icarus 170, 463–491 (2004) ADSCrossRefGoogle Scholar
  392. K.J. Meech, M.F. A’Hearn, J.A. Adams, P. Bacci, J. Bai, L. Barrera, M. Battelino, J.M. Bauer, E. Becklin, B. Bhatt, N. Biver, et al., EPOXI: comet 103P/Hartley 2 observations from a worldwide campaign. Astrophys. J. Lett. 734, 1 (2011) ADSCrossRefGoogle Scholar
  393. S.N. Milam, J.A. Stansberry, G. Sonneborn, C. Thomas, The James Webb Space Telescope’s plan for operations and instrument capabilities for observations in the Solar System. ArXiv e-prints 1510.04567 [astro-ph] (2015)
  394. D.A. Minton, H.F. Levison, Planetesimal-driven migration of terrestrial planet embryos. Icarus 232, 118–132 (2014) ADSCrossRefGoogle Scholar
  395. D.A. Minton, R. Malhotra, A record of planet migration in the main asteroid belt. Nature 457, 1109–1111 (2009) ADSCrossRefGoogle Scholar
  396. S. Molinari, J. Bally, S. Glover, T. Moore, A. Noriega-Crespo, R. Plume, L. Testi, E. Vázquez-Semadeni, A. Zavagno, J.-P. Bernard, P. Martin, The Milky Way as a star formation engine, ed. by H. Beuther, R.S. Klessen, C.P. Dullemond, T. Henning (Univ. Arizona Press, 2014), pp. 125–148 Google Scholar
  397. S.L. Montgomery, B.Y. Welsh, Detection of variable gaseous absorption features in the debris disks around young A-type stars. Publ. Astron. Soc. Pac. 124, 1042–1056 (2012) ADSCrossRefGoogle Scholar
  398. A. Morbidelli, Origin and dynamical evolution of comets and their reservoirs. ArXiv e-prints astro-ph/0512256 (2005)
  399. A. Morbidelli, A. Crida, The dynamics of Jupiter and Saturn in the gaseous protoplanetary disk. Icarus 191, 158–171 (2007) ADSCrossRefGoogle Scholar
  400. A. Morbidelli, H.F. Levison, Scenarios for the origin of the orbits of the trans-Neptunian objects 2000 \(\mbox{CR}_{105}\) and 2003 \(\mbox{VB}_{12}\) (Sedna). Astron. J. 128, 2564–2576 (2004) ADSCrossRefGoogle Scholar
  401. A. Morbidelli, H. Rickman, Comets as collisional fragments of a primordial planetesimal disk. ArXiv e-prints 1504.04512 [astro-ph] (2015)
  402. A. Morbidelli, H.F. Levison, K. Tsiganis, R. Gomes, Chaotic capture of Jupiter’s Trojan asteroids in the early Solar System. Nature 435, 462–465 (2005) ADSCrossRefGoogle Scholar
  403. A. Morbidelli, K. Tsiganis, A. Crida, H.F. Levison, R. Gomes, Dynamics of the giant planets of the Solar System in the gaseous protoplanetary disk and their relationship to the current orbital architecture. Astron. J. 134, 1790–1798 (2007) ADSCrossRefGoogle Scholar
  404. A. Morbidelli, W.F. Bottke, D. Nesvorný, H.F. Levison, Asteroids were born big. Icarus 204, 558–573 (2009a) ADSCrossRefGoogle Scholar
  405. A. Morbidelli, H.F. Levison, W.F. Bottke, L. Dones, D. Nesvorný, Considerations on the magnitude distributions of the Kuiper Belt and of the Jupiter Trojans. Icarus 202, 310–315 (2009b) ADSCrossRefGoogle Scholar
  406. A. Morbidelli, R. Brasser, K. Tsiganis, R. Gomes, H.F. Levison, Constructing the secular architecture of the solar system. I. The giant planets. Astron. Astrophys. 507, 1041–1052 (2009c) ADSCrossRefGoogle Scholar
  407. A. Morbidelli, R. Brasser, R. Gomes, H.F. Levison, K. Tsiganis, Evidence from the asteroid belt for a violent past evolution of Jupiter’s orbit. Astron. J. 140, 1391–1401 (2010) ADSCrossRefGoogle Scholar
  408. A. Morbidelli, S. Marchi, W.F. Bottke, D.A. Kring, A sawtooth-like timeline for the first billion years of lunar bombardment. Earth Planet. Sci. Lett. 355, 144–151 (2012) ADSCrossRefGoogle Scholar
  409. A. Morbidelli, M. Lambrechts, S. Jacobson, B. Bitsch, The great dichotomy of the Solar System: small terrestrial embryos and massive giant planet cores. Icarus 258, 418–429 (2015) ADSCrossRefGoogle Scholar
  410. A. Moro-Martín, E.L. Turner, A. Loeb, Will the Large Synoptic Survey Telescope detect extra-solar planetesimals entering the Solar System? Astrophys. J. 704, 733–742 (2009) ADSCrossRefGoogle Scholar
  411. A. Moro-Martín, J.M. Carpenter, M.R. Meyer, L.A. Hillenbrand, R. Malhotra, D. Hollenbach, J. Najita, T. Henning, J.S. Kim, J. Bouwman, et al., Are debris disks and massive planets correlated? Astrophys. J. 658, 1312–1321 (2007) ADSCrossRefGoogle Scholar
  412. A. Moro-Martín, J.P. Marshall, G. Kennedy, B. Sibthorpe, B.C. Matthews, C. Eiroa, M.C. Wyatt, J.-F. Lestrade, J. Maldonado, D. Rodriguez, et al., Does the presence of planets affect the frequency and properties of extrasolar Kuiper belts? Results from the Herschel Debris and Dunes surveys. Astrophys. J. 801, 143 (2015) ADSCrossRefGoogle Scholar
  413. N. Movshovitz, E. Asphaug, D. Korycansky, Numerical modeling of the disruption of comet D/1993 F2 Shoemaker-Levy 9 representing the progenitor by a gravitationally bound assemblage of randomly shaped polyhedra. Astrophys. J. 759, 93 (2012) ADSCrossRefGoogle Scholar
  414. N. Movshovitz, F. Nimmo, D. Korycansky, E. Asphaug, J. Owen, Disruption and reaccretion of midsized moons during an outer solar system late heavy bombardment. Geophys. Res. Lett. 42, 256–263 (2015) ADSCrossRefGoogle Scholar
  415. M.J. Mumma, S.B. Charnley, The chemical composition of comets—emerging taxonomies and natal heritage. Annu. Rev. Astron. Astrophys. 49, 471–524 (2011) ADSCrossRefGoogle Scholar
  416. C.D. Murray, S.F. Dermott, Solar System Dynamics (Cambridge University Press, Cambridge, 1999) zbMATHGoogle Scholar
  417. N. Murray, B. Hansen, M. Holman, S. Tremaine, Migrating planets. Science 279, 69–72 (1998) ADSCrossRefGoogle Scholar
  418. R.A. Murray-Clay, H.E. Schlichting, Using Kuiper Belt binaries to constrain Neptune’s migration history. Astrophys. J. 730, 132 (2011) ADSCrossRefGoogle Scholar
  419. P.C. Myers, Filamentary structure of star-forming complexes. Astrophys. J. 700, 1609–1625 (2009) ADSCrossRefGoogle Scholar
  420. Y. Nakagawa, M. Sekiya, C. Hayashi, Settling and growth of dust particles in a laminar phase of a low-mass solar nebula. Icarus 67, 375–390 (1986) ADSCrossRefGoogle Scholar
  421. T. Nakamura, T. Noguchi, A. Tsuchiyama, T. Ushikubo, N.T. Kita, J.W. Valley, M.E. Zolensky, Y. Kakazu, K. Sakamoto, E. Mashio, et al., Chondrulelike objects in short-period comet 81P/Wild 2. Science 321, 1664 (2008) ADSCrossRefGoogle Scholar
  422. D. Nesvorný, Young Solar System’s fifth giant planet? Astrophys. J. Lett. 742, 22 (2011) ADSCrossRefGoogle Scholar
  423. D. Nesvorný, Evidence for slow migration of Neptune from the inclination distribution of Kuiper Belt Objects. Astron. J. 150, 73 (2015a) ADSCrossRefGoogle Scholar
  424. D. Nesvorný, Jumping Neptune can explain the Kuiper Belt kernel. Astron. J. 150, 68 (2015b) ADSCrossRefGoogle Scholar
  425. D. Nesvorný, A. Morbidelli, Statistical study of the early Solar System’s instability with four, five, and six giant planets. Astron. J. 144, 117 (2012) ADSCrossRefGoogle Scholar
  426. D. Nesvorný, D. Vokrouhlický, Chaotic capture of Neptune Trojans. Astron. J. 137, 5003–5011 (2009) ADSCrossRefGoogle Scholar
  427. D. Nesvorný, M. Broz, V. Carruba, Identification and dynamical properties of asteroid families, in Asteroids IV, ed. by P. Michel, F. DeMeo, W. Bottke (2015). ArXiv e-prints 1502.01628 [astro-ph] Google Scholar
  428. D. Nesvorný, D. Vokrouhlický, R. Deienno, Capture of irregular satellites at Jupiter. Astrophys. J. Lett. 784, 22 (2014) ADSCrossRefGoogle Scholar
  429. D. Nesvorný, D. Vokrouhlický, A. Morbidelli, Capture of irregular satellites during planetary encounters. Astron. J. 133, 1962–1976 (2007) ADSCrossRefGoogle Scholar
  430. D. Nesvorný, D. Vokrouhlický, A. Morbidelli, Capture of Trojans by jumping Jupiter. Astrophys. J. 768, 45 (2013) ADSCrossRefGoogle Scholar
  431. D. Nesvorný, D. Vokrouhlický, W.F. Bottke, K. Noll, H.F. Levison, Observed binary fraction sets limits on the extent of collisional grinding in the Kuiper Belt. Astron. J. 141, 159 (2011) ADSCrossRefGoogle Scholar
  432. D. Nesvorný, D. Vokrouhlický, R. Deienno, K.J. Walsh, Excitation of the orbital inclination of Iapetus during planetary encounters. Astron. J. 148, 52 (2014) ADSCrossRefGoogle Scholar
  433. G. Neukum, B.A. Ivanov, W.K. Hartmann, Cratering records in the inner Solar System in relation to the lunar reference system. Space Sci. Rev. 96, 55–86 (2001) ADSCrossRefGoogle Scholar
  434. F. Nimmo, D.G. Korycansky, Impact-driven ice loss in outer Solar System satellites: consequences for the Late Heavy Bombardment. Icarus 219, 508–510 (2012) ADSCrossRefGoogle Scholar
  435. K.S. Noll, A.H. Parker, W.M. Grundy, All bright cold classical KBOs are binary, in AAS/Division for Planetary Sciences Meeting Abstracts, vol. 46 (2014). 507.05 Google Scholar
  436. K.S. Noll, W.M. Grundy, E.I. Chiang, J.-L. Margot, S.D. Kern, Binaries in the Kuiper Belt, in The Solar System Beyond Neptune, ed. by M.A. Barucci, H. Boehnhardt, D.P. Cruikshank, A. Morbidelli, R. Dotson (Univ. Arizona Press, Tucson, 2008a), pp. 345–363 Google Scholar
  437. K.S. Noll, W.M. Grundy, D.C. Stephens, H.F. Levison, S.D. Kern, Evidence for two populations of classical transneptunian objects: the strong inclination dependence of classical binaries. Icarus 194, 758–768 (2008b) ADSCrossRefGoogle Scholar
  438. M.D. Norman, A.A. Nemchin, A 4.2 billion year old impact basin on the Moon: U-Pb dating of zirconolite and apatite in lunar melt rock 67955. Earth Planet. Sci. Lett. 388, 387–398 (2014) ADSCrossRefGoogle Scholar
  439. J. Norwood, H. Hammel, S. Milam, J. Stansberry, J. Lunine, N. Chanover, D. Hines, G. Sonneborn, M. Tiscareno, M. Brown, P. Ferruit, Solar System observations with JWST. ArXiv e-prints 1403.6845 [astro-ph] (2014)
  440. M. Ogihara, H. Kobayashi, S.-i. Inutsuka, T.K. Suzuki, Formation of terrestrial planets in disks evolving via disk winds and implications for the origin of the Solar System’s terrestrial planets. Astron. Astrophys. 579, 65 (2015) ADSCrossRefGoogle Scholar
  441. A. Önehag, A. Korn, B. Gustafsson, E. Stempels, D.A. Vandenberg, M67-1194, an unusually Sun-like solar twin in M67. Astron. Astrophys. 528, 85 (2011) CrossRefGoogle Scholar
  442. J.H. Oort, The structure of the cloud of comets surrounding the Solar System and a hypothesis concerning its origin. Bull. Astron. Inst. Neth. 11, 91–110 (1950) ADSGoogle Scholar
  443. J.H. Oort, M. Schmidt, Differences between new and old comets. Bull. Astron. Inst. Neth. 11, 259–269 (1951) ADSGoogle Scholar
  444. E. Öpik, Note on stellar perturbations of nearly parabolic orbits. Proc. Am. Acad. Arts Sci. 67, 169–183 (1932) CrossRefzbMATHGoogle Scholar
  445. C.W. Ormel, S. Ida, H. Tanaka, Migration rates of planets due to scattering of planetesimals. Astrophys. J. 758, 80 (2012) ADSCrossRefGoogle Scholar
  446. S. Ouzman, Flashes of brilliance: San rock paintings of heaven’s things, in Seeing and Knowing: Understanding Rock Art with and Without Ethnography, ed. by G. Blundell, C. Chippindale, B. Smith (Wits Univ. Press, 2010), pp. 10–31 Google Scholar
  447. M. Pan, R. Sari, Shaping the Kuiper Belt size distribution by shattering large but strengthless bodies. Icarus 173, 342–348 (2005) ADSCrossRefGoogle Scholar
  448. D. Pankenier, Z. Xu, Y. Jiang, Archaeoastronomy in East Asia: Historical Observational Records of Comets and Meteor Showers from China, Japan, and Korea (Cambria Press, Amherst, 2008) Google Scholar
  449. J. Papaloizou, D.N.C. Lin, On the tidal interaction between protoplanets and the primordial solar nebula. I—linear calculation of the role of angular momentum exchange. Astrophys. J. 285, 818–834 (1984) ADSCrossRefGoogle Scholar
  450. J.C.B. Papaloizou, C. Terquem, Planet formation and migration. Rep. Prog. Phys. 69, 119–180 (2006) ADSCrossRefGoogle Scholar
  451. A.H. Parker, The intrinsic Neptune Trojan orbit distribution: implications for the primordial disk and planet migration. Icarus 247, 112–125 (2015) ADSCrossRefGoogle Scholar
  452. A.H. Parker, J.J. Kavelaars, Destruction of binary minor planets during Neptune scattering. Astrophys. J. Lett. 722, 204–208 (2010) ADSCrossRefGoogle Scholar
  453. A.H. Parker, J.J. Kavelaars, J.-M. Petit, L. Jones, B. Gladman, J. Parker, Characterization of seven ultra-wide trans-Neptunian binaries. Astrophys. J. 743, 1 (2011) ADSCrossRefGoogle Scholar
  454. S.J. Peale, On the density of Halley’s comet. Icarus 82, 36–49 (1989) ADSCrossRefGoogle Scholar
  455. N. Peixinho, A. Delsanti, A. Doressoundiram, Reanalyzing the visible colors of Centaurs and KBOs: what is there and what we might be missing. Astron. Astrophys. 577, 35 (2015) ADSCrossRefGoogle Scholar
  456. J.-M. Petit, O. Mousis, KBO binaries: how numerous were they? Icarus 168, 409–419 (2004) ADSCrossRefGoogle Scholar
  457. J.-M. Petit, J.J. Kavelaars, B.J. Gladman, J.L. Margot, P.D. Nicholson, R.L. Jones, J.W. Parker, M.L.N. Ashby, A. Campo Bagatin, P. Benavidez, et al., The extreme Kuiper Belt binary 2001 \(\mbox{QW}_{322}\). Science 322, 432–434 (2008) ADSCrossRefGoogle Scholar
  458. J.-M. Petit, J.J. Kavelaars, B.J. Gladman, R.L. Jones, J.W. Parker, C. Van Laerhoven, P. Nicholson, G. Mars, P. Rousselot, O. Mousis, et al., The Canada-France Ecliptic Plane Survey—full data release: the orbital structure of the Kuiper Belt. Astron. J. 142, 131 (2011) ADSCrossRefGoogle Scholar
  459. S. Pfalzner, M.B. Davies, M. Gounelle, A. Johansen, C. Muenker, P. Lacerda, S. Portegies Zwart, L. Testi, M. Trieloff, D. Veras, The formation of the Solar System. Phys. Scr. 90, 068001 (2015) ADSCrossRefGoogle Scholar
  460. B. Pichardo, E. Moreno, C. Allen, L.R. Bedin, A. Bellini, L. Pasquini, The Sun was not born in M67. Astron. J. 143, 73 (2012) ADSCrossRefGoogle Scholar
  461. A. Pierens, R.P. Nelson, Constraints on resonant-trapping for two planets embedded in a protoplanetary disc. Astron. Astrophys. 482, 333–340 (2008) ADSCrossRefzbMATHGoogle Scholar
  462. R.E. Pike, J.J. Kavelaars, J.M. Petit, B.J. Gladman, M. Alexandersen, K. Volk, C.J. Shankman, The 5:1 Neptune Resonance as Probed by CFEPS: dynamics and population. Astron. J. 149, 202 (2015) ADSCrossRefGoogle Scholar
  463. N. Piskunov, H. Rickman, B. Gustafsson, Introduction: Nobel Symposium 135: Physics of Planetary Systems (18–22 June 2007, Lidingö, Stockholm, Sweden). Phys. Scr. T 130, 011001 (2008) ADSCrossRefGoogle Scholar
  464. D. Prialnik, E.D. Rosenberg, Can ice survive in main-belt comets? Long-term evolution models of comet 133P/Elst-Pizarro. Mon. Not. R. Astron. Soc. 399, 79–83 (2009) ADSCrossRefGoogle Scholar
  465. D. Prialnik, J. Benkhoff, M. Podolak, Modeling the structure and activity of comet nuclei, in Comets II, ed. by M.C. Festou, H.U. Keller, H.A. Weaver (Univ. Arizona Press, Tucson, 2004), pp. 359–387 Google Scholar
  466. C. Qi, K.I. Öberg, D.J. Wilner, P. D’Alessio, E. Bergin, S.M. Andrews, G.A. Blake, M.R. Hogerheijde, E.F. van Dishoeck, Imaging of the CO snow line in a solar nebula analog. Science 341, 630–632 (2013) ADSCrossRefGoogle Scholar
  467. T. Quinn, S. Tremaine, M. Duncan, Planetary perturbations and the origins of short-period comets. Astrophys. J. 355, 667–679 (1990) ADSCrossRefGoogle Scholar
  468. N. Raettig, H. Klahr, W. Lyra, Particle trapping and streaming instability in vortices in protoplanetary disks. Astrophys. J. 804, 35 (2015) ADSCrossRefGoogle Scholar
  469. S.N. Raymond, A. Morbidelli, The Grand Tack model: a critical review, in Complex Planetary Systems, ed. by Z. Knežević, A. Lemaître. IAU Symposium, vol. 310 (Cambridge University Press, Cambridge, 2014), pp. 194–203 Google Scholar
  470. S.N. Raymond, D.P. O’Brien, A. Morbidelli, N.A. Kaib, Building the terrestrial planets: constrained accretion in the inner Solar System. Icarus 203, 644–662 (2009) ADSCrossRefGoogle Scholar
  471. M. Reyes-Ruiz, H. Aceves, C.E. Chavez, Stability of the outer planets in multiresonant configurations with a self-gravitating planetesimal disk. Astrophys. J. 804, 91 (2015) ADSCrossRefGoogle Scholar
  472. J.E. Richardson, H.J. Melosh, C.M. Lisse, B. Carcich, A ballistics analysis of the Deep Impact ejecta plume: determining comet Tempel 1’s gravity, mass, and density. Icarus 191, 176–209 (2007) ADSCrossRefGoogle Scholar
  473. H. Rickman, Masses and densities of comets Halley and Kopff, in Comet Nucleus Sample Return Mission, ed. by O. Melita. ESA Special Publication, vol. 249 (1986), pp. 195–205 Google Scholar
  474. H. Rickman, The nucleus of comet Halley—surface structure, mean density, gas and dust production. Adv. Space Res. 9, 59–71 (1989) ADSCrossRefGoogle Scholar
  475. H. Rickman, The Oort Cloud and long-period comets. Meteorit. Planet. Sci. 49, 8–20 (2014) ADSCrossRefGoogle Scholar
  476. H. Rickman, C. Froeschlé, Thermal models for the nucleus of comet P/Halley, in Cometary Exploration: Proceedings of the International Conference, ed. by T.I. Gombosi (Akademiai Kiado, 1983), pp. 75–84 Google Scholar
  477. H. Rickman, L. Jorda, Comet 46P/Wirtanen, the target of the Rosetta mission. Adv. Space Res. 21, 1491–1504 (1998) ADSCrossRefGoogle Scholar
  478. H. Rickman, J.A. Fernandez, B.A.S. Gustafson, Formation of stable dust mantles on short-period comet nuclei. Astron. Astrophys. 237, 524–535 (1990) ADSGoogle Scholar
  479. H. Rickman, L. Kamel, M.C. Festou, C. Froeschle, Estimates of masses, volumes and densities of short-period comet nuclei, in Diversity and Similarity of Comets, ed. by E.J. Rolfe, B. Battrick. ESA Special Publication, vol. 278 (1987), pp. 471–481 Google Scholar
  480. H. Rickman, L. Kamel, C. Froeschle, M.C. Festou, Nongravitational effects and the aging of periodic comets. Astron. J. 102, 1446–1463 (1991) ADSCrossRefGoogle Scholar
  481. H. Rickman, M. Fouchard, C. Froeschlé, G.B. Valsecchi, Injection of Oort Cloud comets: the fundamental role of stellar perturbations. Celest. Mech. Dyn. Astron. 102, 111–132 (2008) ADSCrossRefMathSciNetzbMATHGoogle Scholar
  482. H. Rickman, S. Marchi, M.F. A’Hearn, C. Barbieri, M.R. El-Maarry, C. Güttler, W.-H. Ip, H.U. Keller, P. Lamy, F. Marzari, et al., Comet 67P/Churyumov-Gerasimenko: constraints on its origin from OSIRIS observations. ArXiv e-prints 1505.07021 [astro-ph] (2015)
  483. A.S. Rivkin, J.P. Emery, Detection of ice and organics on an asteroidal surface. Nature 464, 1322–1323 (2010) ADSCrossRefGoogle Scholar
  484. A.S. Rivkin, F. Marchis, J.A. Stansberry, D. Takir, C. Thomas, the JWST Asteroids Focus Group, Asteroids and the James Webb Space Telescope. ArXiv e-prints 1510.08414 [astro-ph] (2015)
  485. A. Roberge, Astronomy: Hurling comets around a planetary nursery. Nature 514, 440–441 (2014) ADSCrossRefGoogle Scholar
  486. K. Ros, A. Johansen, Ice condensation as a planet formation mechanism. Astron. Astrophys. 552, 137 (2013) ADSCrossRefGoogle Scholar
  487. R. Roškar, V.P. Debattista, T.R. Quinn, G.S. Stinson, J. Wadsley, Riding the spiral waves: implications of stellar migration for the properties of galactic disks. Astrophys. J. Lett. 684, 79–82 (2008) ADSCrossRefGoogle Scholar
  488. D.C. Rubie, S.A. Jacobson, A. Morbidelli, D.P. O’Brien, E.D. Young, J. de Vries, F. Nimmo, H. Palme, D.J. Frost, Accretion and differentiation of the terrestrial planets with implications for the compositions of early-formed Solar System bodies and accretion of water. Icarus 248, 89–108 (2015) ADSCrossRefGoogle Scholar
  489. J.A. Ruffner, Isaac Newton’s Historia Cometarum and the quest for elliptical orbits. J. Hist. Astron. 41, 425–451 (2010) ADSCrossRefGoogle Scholar
  490. C.L.N. Ruggles, Handbook of Archaeoastronomy and Ethnoastronomy (Springer, Berlin, 2015) CrossRefGoogle Scholar
  491. G. Ryder, Lunar samples, lunar accretion and the early bombardment of the Moon. Eos 71, 313 (1990) ADSCrossRefGoogle Scholar
  492. V.S. Safronov, Evolution of the protoplanetary cloud and formation of the Earth and the planets (Evoliutsiia doplanetnogo oblaka i obrazovanie zemli i planet, Moscow, Izdatel’stvo Nauka. Jerusalem, Israel Program for Scientific Translations, Ltd., 1972), 1969 Google Scholar
  493. R.Z. Sagdeev, P.E. Elyasberg, V.I. Moroz, Estimate of the mass and density of the nucleus of comet Halley. Sov. Astron. Lett. 13, 259–263 (1987) ADSGoogle Scholar
  494. H.E. Schlichting, E.O. Ofek, M. Wenz, R. Sari, A. Gal-Yam, M. Livio, E. Nelan, S. Zucker, A single sub-kilometre Kuiper Belt Object from a stellar occultation in archival data. Nature 462, 895–897 (2009) ADSCrossRefGoogle Scholar
  495. H.E. Schlichting, E.O. Ofek, R. Sari, E.P. Nelan, A. Gal-Yam, M. Wenz, P. Muirhead, N. Javanfar, M. Livio, Measuring the Abundance of sub-kilometer-sized Kuiper Belt Objects using stellar occultations. Astrophys. J. 761, 150 (2012) ADSCrossRefGoogle Scholar
  496. M.E. Schwamb, Solar System: stranded in no-man’s-land. Nature 507, 435–436 (2014) ADSCrossRefGoogle Scholar
  497. M.E. Schwamb, M.E. Brown, W.C. Fraser, The small numbers of large Kuiper Belt Objects. Astron. J. 147, 2 (2014) ADSCrossRefGoogle Scholar
  498. M.E. Schwamb, M.E. Brown, D. Rabinowitz, B.G. Marsden, 2007 OR10. Minor Planet Electronic Circulars, 42 (2009) Google Scholar
  499. M.E. Schwamb, M.E. Brown, D.L. Rabinowitz, D. Ragozzine, Properties of the distant Kuiper Belt: results from the Palomar Distant Solar System Survey. Astrophys. J. 720, 1691–1707 (2010) ADSCrossRefGoogle Scholar
  500. S. Seager (ed.), Exoplanets. Space Science Series (Univ. Arizona Press, Tucson, 2010) Google Scholar
  501. Z. Sekanina, P.W. Chodas, Origin of the Marsden and Kracht Groups of sunskirting comets. I. Association with comet 96P/Machholz and its interplanetary complex. Astron. Astrophys. Suppl. Ser. 161, 551–586 (2005) ADSCrossRefGoogle Scholar
  502. J.A. Sellwood, J.J. Binney, Radial mixing in galactic discs. Mon. Not. R. Astron. Soc. 336, 785–796 (2002) ADSCrossRefGoogle Scholar
  503. C. Shankman, B.J. Gladman, N. Kaib, J.J. Kavelaars, J.M. Petit, A possible divot in the size distribution of the Kuiper Belt’s scattering objects. Astrophys. J. Lett. 764, 2 (2013) ADSCrossRefGoogle Scholar
  504. A. Shannon, Y. Wu, Y. Lithwick, Forming the cold classical Kuiper Belt in a light disk. ArXiv e-prints 1510.01323 [astro-ph] (2015a)
  505. A. Shannon, A.P. Jackson, D. Veras, M. Wyatt, Eight billion asteroids in the Oort Cloud. Mon. Not. R. Astron. Soc. 446, 2059–2064 (2015b) ADSCrossRefGoogle Scholar
  506. S.S. Sheppard, C.A. Trujillo, A thick cloud of Neptune Trojans and their colors. Science 313, 511–514 (2006) ADSCrossRefGoogle Scholar
  507. S.S. Sheppard, C.A. Trujillo, The size distribution of the Neptune Trojans and the missing intermediate-sized planetesimals. Astrophys. J. Lett. 723, 233–237 (2010) ADSCrossRefGoogle Scholar
  508. H. Sierks, C. Barbieri, P.L. Lamy, R. Rodrigo, D. Koschny, H. Rickman, H.U. Keller, J. Agarwal, M.F. A’Hearn, F. Angrilli, et al., On the nucleus structure and activity of comet 67P/Churyumov-Gerasimenko. Science 347, 1044 (2015) ADSCrossRefGoogle Scholar
  509. J.A. Simpson, D. Rabinowitz, A.J. Tuzzolino, L.V. Ksanfomaliti, R.Z. Sagdeev, The dust coma of comet P/Halley—measurements on the Vega-1 and Vega-2 spacecraft. Astron. Astrophys. 187, 742–752 (1987) ADSGoogle Scholar
  510. B.A. Smith, R.J. Terrile, A circumstellar disk around Beta Pictoris. Science 226, 1421–1424 (1984) ADSCrossRefGoogle Scholar
  511. C. Snodgrass, A. Fitzsimmons, S.C. Lowry, P. Weissman, The size distribution of Jupiter Family comet nuclei. Mon. Not. R. Astron. Soc. 414, 458–469 (2011) ADSCrossRefGoogle Scholar
  512. M. Solontoi, Ž. Ivezić, M. Jurić, A.C. Becker, L. Jones, A.A. West, S. Kent, R.H. Lupton, M. Claire, G.R. Knapp, et al., Ensemble properties of comets in the Sloan Digital Sky Survey. Icarus 218, 571–584 (2012) ADSCrossRefGoogle Scholar
  513. A. Sosa, J.A. Fernández, Masses of long-period comets derived from non-gravitational effects—analysis of the computed results and the consistency and reliability of the non-gravitational parameters. Mon. Not. R. Astron. Soc. 416, 767–782 (2011) ADSGoogle Scholar
  514. Space Studies Board, Vision and Voyages for Planetary Science in the Decade 2013–2022 (National Academies Press, Washington, 2012) Google Scholar
  515. P.D. Spudis, The Once and Future Moon (Smithsonian Institution Press, Washington, 1996) Google Scholar
  516. P.D. Spudis, D.E. Wilhelms, M.S. Robinson, The sculptured hills of the Taurus Highlands: implications for the relative age of Serenitatis, basin chronologies and the cratering history of the Moon. J. Geophys. Res., Planets 116, E00H03 (2011) ADSCrossRefGoogle Scholar
  517. S.W. Stahler, F. Palla, The Formation of Stars (Wiley, New York, 2004) CrossRefGoogle Scholar
  518. D.I. Steel, D.J. Asher, On the origin of comet Encke. Mon. Not. R. Astron. Soc. 281, 937–944 (1996) ADSCrossRefGoogle Scholar
  519. D.C. Stephens, K.S. Noll, Detection of six trans-Neptunian binaries with NICMOS: a high fraction of binaries in the cold classical disk. Astron. J. 131, 1142–1148 (2006) ADSCrossRefGoogle Scholar
  520. F.R. Stephenson, K.K.C. Yau, Far Eastern observations of Halley’s comet—240 BC to AD 1368. J. Br. Interplanet. Soc. 38, 195–216 (1985) ADSGoogle Scholar
  521. S.A. Stern, On the number of planets in the outer solar system—evidence of a substantial population of 1000-km bodies. Icarus 90, 271–281 (1991) ADSCrossRefGoogle Scholar
  522. S.A. Stern, Collisional time scales in the Kuiper Disk and their implications. Astron. J. 110, 856 (1995) ADSCrossRefGoogle Scholar
  523. S.A. Stern, On the collisional environment, accretion time scales, and architecture of the massive, primordial Kuiper Belt. Astron. J. 112, 1203 (1996) ADSCrossRefGoogle Scholar
  524. S.T. Stewart, Z.M. Leinhardt, Velocity-dependent catastrophic disruption criteria for planetesimals. Astrophys. J. Lett. 691, 133–137 (2009) ADSCrossRefGoogle Scholar
  525. D. Stöffler, G. Ryder, Stratigraphy and isotope ages of lunar geologic units: chronological standard for the inner Solar System. Space Sci. Rev. 96, 9–54 (2001) ADSCrossRefGoogle Scholar
  526. R.G. Strom, R. Malhotra, T. Ito, F. Yoshida, D.A. Kring, The origin of planetary impactors in the inner Solar System. Science 309, 1847–1850 (2005) ADSCrossRefGoogle Scholar
  527. R.G. Strom, R. Malhotra, Z.-Y. Xiao, T. Ito, F. Yoshida, L.R. Ostrach, The inner Solar System cratering record and the evolution of impactor populations. Res. Astron. Astrophys. 15, 407 (2015) ADSCrossRefGoogle Scholar
  528. K.Y.L. Su, Y.-H. Chu, G.H. Rieke, P.J. Huggins, R. Gruendl, R. Napiwotzki, T. Rauch, W.B. Latter, K. Volk, A debris disk around the central star of the Helix Nebula? Astrophys. J. Lett. 657, 41–45 (2007) ADSCrossRefGoogle Scholar
  529. J.M. Sunshine, M.F. A’Hearn, O. Groussin, J.-Y. Li, M.J.S. Belton, W.A. Delamere, J. Kissel, K.P. Klaasen, L.A. McFadden, K.J. Meech, H.J. Melosh, et al., Exposed water ice deposits on the surface of comet 9P/Tempel 1. Science 311, 1453–1455 (2006) ADSCrossRefGoogle Scholar
  530. G. Tancredi, The dynamical memory of Jupiter family comets. Astron. Astrophys. 299, 288 (1995) ADSGoogle Scholar
  531. G. Tancredi, Chaotic dynamics of planet-encountering bodies. Celest. Mech. Dyn. Astron. 70, 181–200 (1998) ADSCrossRefzbMATHGoogle Scholar
  532. G. Tancredi, A criterion to classify asteroids and comets based on the orbital parameters. Icarus 234, 66–80 (2014) ADSCrossRefGoogle Scholar
  533. G. Tancredi, J.A. Fernández, H. Rickman, J. Licandro, Nuclear magnitudes and the size distribution of Jupiter family comets. Icarus 182, 527–549 (2006) ADSCrossRefGoogle Scholar
  534. H. Tang, N. Dauphas, Abundance, distribution, and origin of \(^{60}\mbox{Fe}\) in the solar protoplanetary disk. Earth Planet. Sci. Lett. 359, 248–263 (2012) ADSCrossRefGoogle Scholar
  535. M.G.G.T. Taylor, C. Alexander, N. Altobelli, M. Fulle, M. Fulchignoni, E. Grün, P. Weissman, Rosetta begins its comet tale. Science 347, 387 (2015) ADSCrossRefGoogle Scholar
  536. S.C. Tegler, W. Romanishin, Extremely red Kuiper-Belt objects in near-circular orbits beyond 40 AU. Nature 407, 979–981 (2000) ADSCrossRefGoogle Scholar
  537. F. Tera, D.A. Papanastassiou, G.J. Wasserburg, Isotopic evidence for a terminal lunar cataclysm. Earth Planet. Sci. Lett. 22, 1–21 (1974) ADSCrossRefGoogle Scholar
  538. L. Testi, T. Birnstiel, L. Ricci, S. Andrews, J. Blum, J. Carpenter, C. Dominik, A. Isella, A. Natta, J.P. Williams, D.J. Wilner, Dust evolution in protoplanetary disks, in Protostars and Planets VI, ed. by H. Beuther, R.S. Klessen, C.P. Dullemond, T. Henning (Univ. Arizona Press, Tucson, 2014), pp. 339–361 Google Scholar
  539. E.W. Thommes, M.J. Duncan, H.F. Levison, The formation of Uranus and Neptune in the Jupiter-Saturn region of the Solar System. Nature 402, 635–638 (1999) ADSCrossRefGoogle Scholar
  540. M.S. Tiscareno, R. Malhotra, The dynamics of known Centaurs. Astron. J. 126, 3122–3131 (2003) ADSCrossRefGoogle Scholar
  541. B. Todorovic-Juchnicwicz, When we may and need to use barycentric orbit of a comet. Acta Astron. 31, 191–196 (1981) ADSGoogle Scholar
  542. K. Tomida, S. Okuzumi, M.N. Machida, Radiation magnetohydrodynamic simulations of protostellar collapse: nonideal magnetohydrodynamic effects and early formation of circumstellar disks. Astrophys. J. 801, 117 (2015) ADSCrossRefGoogle Scholar
  543. M.V. Torbett, Injection of Oort Cloud comets to the inner solar system by galactic tidal fields. Mon. Not. R. Astron. Soc. 223, 885–895 (1986) ADSCrossRefGoogle Scholar
  544. I. Toth, Impact-generated activity period of the asteroid 7968 Elst-Pizarro in 1996: identification of the asteroid 427 Galene as the most probable parent body of the impactors. Astron. Astrophys. 360, 375–380 (2000) ADSGoogle Scholar
  545. S. Tremaine, The distribution of comets around stars, in Planets Around Pulsars, ed. by J.A. Phillips, S.E. Thorsett, S.R. Kulkarni. Astronomical Society of the Pacific Conference Series, vol. 36 (1993), pp. 335–344 Google Scholar
  546. C.A. Trujillo, S.S. Sheppard, A Sedna-like body with a perihelion of 80 astronomical units. Nature 507, 471–474 (2014) ADSCrossRefGoogle Scholar
  547. K. Tsiganis, R. Gomes, A. Morbidelli, H.F. Levison, Origin of the orbital architecture of the giant planets of the Solar System. Nature 435, 459–461 (2005) ADSCrossRefGoogle Scholar
  548. E.F. van Dishoeck, E.A. Bergin, D.C. Lis, J.I. Lunine, Water: from clouds to planets, in Protostars and Planets VI, ed. by H. Beuther, R.S. Klessen, C.P. Dullemond, T. Henning (Univ. Arizona Press, Tucson, 2014), pp. 835–858 Google Scholar
  549. J.-B. Vincent, D. Bodewits, S. Besse, H. Sierks, C. Barbieri, P. Lamy, R. Rodrigo, D. Koschny, H. Rickman, H.U. Keller, et al., Large heterogeneities in comet 67P as revealed by active pits from sinkhole collapse. Nature 523, 63–66 (2015) ADSCrossRefGoogle Scholar
  550. R. Visser, S.D. Doty, E.F. van Dishoeck, The chemical history of molecules in circumstellar disks. II. Gas-phase species. Astron. Astrophys. 534, 132 (2011) ADSCrossRefGoogle Scholar
  551. R. Visser, E.F. van Dishoeck, S.D. Doty, C.P. Dullemond, The chemical history of molecules in circumstellar disks. I. Ices. Astron. Astrophys. 495, 881–897 (2009) ADSCrossRefGoogle Scholar
  552. D. Vokrouhlický, D. Nesvorný, Tilting Jupiter (a bit) and Saturn (a lot) during planetary migration. Astrophys. J. 806, 143 (2015) ADSCrossRefGoogle Scholar
  553. D. Vokrouhlický, W.F. Bottke, S.R. Chesley, D.J. Scheeres, T.S. Statler, The Yarkovsky and YORP effects, in Asteroids IV (2015). ArXiv e-prints 1502.01249 [astro-ph] Google Scholar
  554. K. Volk, R. Malhotra, The scattered disk as the source of the Jupiter Family Comets. Astrophys. J. 687, 714–725 (2008) ADSCrossRefGoogle Scholar
  555. S.K. Vsekhsvyatskij, Fizicheskie Kharakteristiki Komet. English translation (Add Izdatel’stvo Fiziko-Matematicheskoj Literatury, Moscow, 1958) (NASA TT F-80, 1964) Google Scholar
  556. K. Wahlberg Jansson, A. Johansen, Formation of pebble-pile planetesimals. Astron. Astrophys. 570, 47 (2014) ADSCrossRefGoogle Scholar
  557. K.J. Walsh, A. Morbidelli, The effect of an early planetesimal-driven migration of the giant planets on terrestrial planet formation. Astron. Astrophys. 526, 126 (2011) ADSCrossRefGoogle Scholar
  558. K.J. Walsh, A. Morbidelli, S.N. Raymond, D.P. O’Brien, A.M. Mandell, A low mass for Mars from Jupiter’s early gas-driven migration. Nature 475, 206–209 (2011) ADSCrossRefGoogle Scholar
  559. K.J. Walsh, A. Morbidelli, S.N. Raymond, D.P. O’Brien, A.M. Mandell, Populating the asteroid belt from two parent source regions due to the migration of giant planets—“the Grand Tack”. Meteorit. Planet. Sci. 47, 1941–1947 (2012) ADSCrossRefGoogle Scholar
  560. W.R. Ward, Density waves in the solar nebula—differential Lindblad torque. Icarus 67, 164–180 (1986) ADSCrossRefGoogle Scholar
  561. W.R. Ward, Protoplanet migration by nebula tides. Icarus 126, 261–281 (1997) ADSCrossRefGoogle Scholar
  562. W.R. Ward, D.P. Hamilton, Tilting Saturn. I. Analytic model. Astron. J. 128, 2501–2509 (2004) ADSCrossRefGoogle Scholar
  563. A. Waszczak, E.O. Ofek, O. Aharonson, S.R. Kulkarni, D. Polishook, J.M. Bauer, D. Levitan, B. Sesar, R. Laher, J. Surace, PTF Team, Main-belt comets in the Palomar Transient Factory survey—I. The search for extendedness. Mon. Not. R. Astron. Soc. 433, 3115–3132 (2013) ADSCrossRefGoogle Scholar
  564. H.A. Weaver, P.D. Feldman, M.F. A’Hearn, N. Dello Russo, S.A. Stern, The carbon monoxide abundance in comet 103P/Hartley 2 during the EPOXI flyby. Astrophys. J. Lett. 734, 5 (2011) ADSCrossRefGoogle Scholar
  565. S.J. Weidenschilling, Aerodynamics of solid bodies in the solar nebula. Mon. Not. R. Astron. Soc. 180, 57–70 (1977) ADSCrossRefGoogle Scholar
  566. S.J. Weidenschilling, The origin of comets in the solar nebula: a unified model. Icarus 127, 290–306 (1997) ADSCrossRefGoogle Scholar
  567. S.J. Weidenschilling, From icy grains to comets, in Comets II, ed. by M.C. Festou, H.U. Keller, H.A. Weaver (2004), pp. 97–104 Google Scholar
  568. S.J. Weidenschilling, Accretion of planetary embryos in the inner and outer Solar System. Phys. Scr. T 130(1), 014021 (2008) ADSCrossRefGoogle Scholar
  569. S.J. Weidenschilling, Initial sizes of planetesimals and accretion of the asteroids. Icarus 214, 671–684 (2011) ADSCrossRefGoogle Scholar
  570. S.J. Weidenschilling, J.N. Cuzzi, Formation of planetesimals in the solar nebula, in Protostars and Planets III, ed. by E.H. Levy, J.I. Lunine (1993), pp. 1031–1060 Google Scholar
  571. M. Weiler, H. Rauer, C. Sterken, Cometary nuclear magnitudes from sky survey observations. Icarus 212, 351–366 (2011) ADSCrossRefGoogle Scholar
  572. P. Weissman, P. Hut, Dynamics of cometary showers, in Lunar and Planetary Science Conference. Lunar and Planetary Inst. Technical Report, vol. 17 (1986), pp. 935–936 Google Scholar
  573. P.R. Weissman, Stellar perturbations of the cometary cloud. Nature 288, 242–243 (1980) ADSCrossRefGoogle Scholar
  574. P.R. Weissman, The mass of the Oort Cloud. Astron. Astrophys. 118, 90–94 (1983) ADSGoogle Scholar
  575. P.R. Weissman, Are cometary nuclei primordial rubble piles? Nature 320, 242–244 (1986) ADSCrossRefGoogle Scholar
  576. P.R. Weissman, The Oort Cloud, in Completing the Inventory of the Solar System, ed. by T. Rettig, J.M. Hahn. Astronomical Society of the Pacific Conference Series, vol. 107 (1996), pp. 265–288 Google Scholar
  577. P.R. Weissman, W.F. Bottke Jr., H.F. Levison, Evolution of comets into asteroids, in Asteroids III, ed. by W.F. Bottke Jr., A. Cellino, P. Paolicchi, R.P. Binzel (Univ. Arizona Press, Tucson, 2002), pp. 669–686 Google Scholar
  578. P.R. Weissman, M. A’Hearn, Accretion of cometary nuclei in the solar nebula: boulders, not pebbles, in American Astronomical Society, DPS meeting, vol. 47 (2015). 309.05 Google Scholar
  579. R.S. Westfall, Never at Rest: A Biography of Isaac Newton (Cambridge University Press, Cambridge, 1983) zbMATHGoogle Scholar
  580. G.W. Wetherill, Late Heavy Bombardment of the Moon and terrestrial planets, in Lunar and Planetary Science Conference Proceedings, vol. 6 (1975), pp. 1539–1561 Google Scholar
  581. F.L. Whipple, A comet model. I. The acceleration of comet Encke. Astrophys. J. 111, 375–394 (1950) ADSCrossRefGoogle Scholar
  582. F.L. Whipple, Cometary brightness variation and nucleus structure. Moon Planets 18, 343–359 (1978) ADSCrossRefGoogle Scholar
  583. P. Wiegert, S. Tremaine, The evolution of long-period comets. Icarus 137, 84–121 (1999) ADSCrossRefGoogle Scholar
  584. D.E. Wilhelms, J.F. McCauley, N.J. Trask, The Geologic History of the Moon (US Geological Survey, Washington, 1987) Google Scholar
  585. K. Willacy, C. Alexander, M. Ali-Dib, C. Ceccarelli, S. Charnley, M. Doronin, Y. Ellinger, P. Gast, E. Gibb, S. Milam, et al., The composition of the protosolar disk and the formation conditions for comets. Space Sci. Rev. (2015). doi: 10.1007/s11214-015-0167-6 Google Scholar
  586. J.G. Williams, G.S. Benson, Resonances in the Neptune-Pluto system. Astron. J. 76, 167–176 (1971) ADSCrossRefGoogle Scholar
  587. J.N. Winn, D.C. Fabrycky, The occurrence and architecture of exoplanetary systems. Annu. Rev. Astron. Astrophys. 53, 409–447 (2015) ADSCrossRefGoogle Scholar
  588. S. Wolff, R.I. Dawson, R.A. Murray-Clay, Neptune on tiptoes: dynamical histories that preserve the cold classical Kuiper Belt. Astrophys. J. 746, 171 (2012) ADSCrossRefGoogle Scholar
  589. J.T. Wright, K.M.S. Cartier, M. Zhao, D. Jontof-Hutter, E.B. Ford, The Ĝ search for extraterrestrial civilizations with large energy supplies. IV. The signatures and information content of transiting megastructures. ArXiv e-prints 1510.04606 [astro-ph] (2015)
  590. M.C. Wyatt, Evolution of debris disks. Annu. Rev. Astron. Astrophys. 46, 339–383 (2008) ADSCrossRefGoogle Scholar
  591. S. Wyckoff, M. Kleine, B.A. Peterson, P.A. Wehinger, L.M. Ziurys, Carbon isotope abundances in comets. Astrophys. J. 535, 991–999 (2000) ADSCrossRefGoogle Scholar
  592. Z. Xu, D.W. Pankenier, Y. Jiang, East-Asian Archaeoastronomy: Historical Records of Astronomical Observations of China, Japan and Korea (CRC Press, Boca Raton, 2000) Google Scholar
  593. D.K. Yeomans, J.D. Giorgini, S.R. Chesley, The history and dynamics of comet 9P/Tempel 1. Space Sci. Rev. 117, 123–135 (2005) ADSCrossRefGoogle Scholar
  594. D.K. Yeomans, J. Rahe, R.S. Freitag, The history of comet Halley. J. R. Astron. Soc. Can. 80, 62–86 (1986) ADSGoogle Scholar
  595. D.K. Yeomans, Comets. A Chronological History of Observation, Science, Myth, and Folklore (Wiley, New York, 1991) Google Scholar
  596. A.N. Youdin, J. Goodman, Streaming instabilities in protoplanetary disks. Astrophys. J. 620, 459–469 (2005) ADSCrossRefGoogle Scholar
  597. E.D. Young, Inheritance of solar short- and long-lived radionuclides from molecular clouds and the unexceptional nature of the solar system. Earth Planet. Sci. Lett. 392, 16–27 (2014) ADSCrossRefGoogle Scholar
  598. K. Zahnle, P. Schenk, H. Levison, L. Dones, Cratering rates in the outer Solar System. Icarus 163, 263–289 (2003) ADSCrossRefGoogle Scholar
  599. J.-Q. Zheng, M.J. Valtonen, L. Valtaoja, Capture of comets during the evolution of a star cluster and the origin of the Oort Cloud. Celest. Mech. Dyn. Astron. 49, 265–272 (1990) ADSCrossRefGoogle Scholar
  600. M. Ziółkowski, Observations of comets and eclipses in the Andes, in Handbook of Archaeoastronomy and Ethnoastronomy, ed. by C.L.N. Ruggles (Springer, Berlin, 2015), pp. 913–920 Google Scholar
  601. A. Zsom, C.W. Ormel, C. Güttler, J. Blum, C.P. Dullemond, The outcome of protoplanetary dust growth: pebbles, boulders, or planetesimals? II. Introducing the bouncing barrier. Astron. Astrophys. 513, 57 (2010) ADSCrossRefGoogle Scholar
  602. B. Zuckerman, I. Song, A 40 Myr old gaseous circumstellar disk at 49 Ceti: massive CO-rich comet clouds at young A-type stars. Astrophys. J. 758, 77 (2012) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Luke Dones
    • 1
    Email author
  • Ramon Brasser
    • 2
  • Nathan Kaib
    • 3
  • Hans Rickman
    • 4
    • 5
  1. 1.Southwest Research InstituteBoulderUSA
  2. 2.Earth-Life Science InstituteTokyo Institute of TechnologyTokyoJapan
  3. 3.H.L. Dodge Department of Physics and AstronomyUniversity of OklahomaNormanUSA
  4. 4.Department of Physics and AstronomyUppsala UniversityUppsalaSweden
  5. 5.PAS Space Research CenterWarszawaPoland

Personalised recommendations